7. Questions on §1.8 and §1.9

Question 7.1. Let R be a ring, C be a module class in $R-\mathsf{Mod}$, $C \in \mathcal{C}$, $X \in R-\mathsf{Mod}$ and $\varphi \in \mathsf{Hom}_R(C,X)$.

- (1) Prove that if φ and $\varphi' \colon C' \to X$ are \mathcal{C} -covers then there is an isomorphism $C' \cong C$.
- (2) Assuming \mathcal{C} is the category R-Proj of projective R-modules, prove that φ is a \mathcal{C} -cover if and only if φ is surjective and $A + \ker(\varphi) \neq C$ for any proper submodule $A \subseteq C$.
- (3) Assuming R is artinian and C = R Proj, prove that φ is a C-cover if and only if the induced map $\overline{\varphi} \colon \text{top}(C) \to \text{top}(X)$, defined by $\overline{\varphi}(c + JC) = \varphi(c) + JX$ where J = rad(R), is an isomorphism.

Question 7.2. Let K be a field, R be a finite-dimensional K-algebra, $D = \operatorname{Hom}_{K-\operatorname{\mathsf{Mod}}}(-,K)$ and M be a left R-module such that $\dim_K(M) < \infty$.

- (1) Prove that if $\varphi \colon P \to M$ is a projective cover of M then $D(\varphi)$ is an injective envelope of D(M).
- (2) Given a minimal projective resolution of M, construct a minimal injective resolution of D(M), and justify why your construction is minimal.
- (3) Prove that $\operatorname{proj.dim}(RM) = \operatorname{inj.dim}(D(M)_R)$ and that $\operatorname{inj.dim}(RM) = \operatorname{proj.dim}(D(M)_R)$.

Question 7.3. Let $\Lambda = KQ/I$ where $I = \langle cb, da, \ell^2 \rangle$ where K is a field and Q is the quiver

- (1) Write down the simple Λ -modules and their projective covers as representations of the quiver Q.
- (2) Taking kernels, covers (syzygies) compute a minimal projective resolution of each simple.
- (3) Write down the indecomposable injective finite-dimensional Λ -modules as representations of Q, and indicate their images under the Nakayama functor ν .
- (4) Using Question 7.2, compute a minimal injective resolution for each simple. Write down gl. $\dim(\Lambda)$.
- (5) Discuss what you think would have happened if instead one took $I = \langle cb, da, \ell^2 \ell \rangle$. What do you think would happen to the (projective, injective and global) dimensions?