Question 9.1. Let R be a finite-dimensional algebra and let C be a module class in R-mod. For R-modules M and N define $\operatorname{Hom}^{\mathcal{C}}(M,N)$ to be the set of $\theta \in \operatorname{Hom}_{R}(M,N)$ such that there exists a module C in C with $\theta = \beta \alpha$ for some $\alpha \in \operatorname{Hom}_{R}(M,C)$ and some $\beta \in \operatorname{Hom}_{R}(C,N)$.

(1) Recall the definition of an *ideal* of R-mod, and prove that $\text{Hom}^{\mathcal{C}}$ is an ideal.

Define a new category $\mathcal{Q} := R - \text{mod} / \langle \mathcal{C} \rangle$ with R-modules as objects and

$$\operatorname{Hom}_{\mathcal{Q}}(M,N) := \operatorname{Hom}_{R}(M,N)/\operatorname{Hom}^{\mathcal{C}}(M,N) = \{ [\theta] = \theta + \operatorname{Hom}^{\mathcal{C}}(M,N) \mid \theta \in \operatorname{Hom}_{R}(M,N) \}.$$

- (2) Explain why composition in \mathcal{Q} is well-defined and bilinear over any subring of the centre of R. Construct a functor $q: R \text{mod} \to \mathcal{Q}$ such that q(C) = 0 for all C in \mathcal{C} .
- (3) Let $\theta \in \operatorname{Hom}_R(M, N)$, $\varphi \in \operatorname{Hom}_R(N, M)$. Prove that if $[\varphi \theta] = [1_M]$ then there exists C in C, $\theta' \in \operatorname{Hom}_R(M, N \oplus C)$ and $\varphi' \in \operatorname{Hom}_R(N \oplus C, M)$ with $\varphi' \theta' = 1_M$ and $[\theta \varphi] = [1_N] \Rightarrow [\theta' \varphi'] = [1_{N \oplus C}]$.
- (4) Prove that $q(M) \cong q(N)$ if and only if there exist objects C and D in C such that $M \oplus D \cong N \oplus C$ in R-mod. Hint: use part (3), and then prove that the canonical inclusion $\iota \in \operatorname{Hom}_R(M, M \oplus D)$ gives an isomorphism $[\iota] \in \operatorname{Hom}_{\mathcal{Q}}(M, M \oplus D)$, and then prove $[1_D] = [0]$.
- (5) Prove that non-isomorphic non-projective indecomposables in R-mod cannot be isomorphic in $R-\text{mod} = R-\text{mod}/\langle R-\text{proj}\rangle$. State and prove a similar result about $R-\overline{\text{mod}} = R-\text{mod}/\langle R-\text{inj}\rangle$.

Question 9.2. Let K be a field and let $R = KQ/\langle ca - db \rangle$ where Q is the quiver

$$\begin{array}{ccc}
1 & \xrightarrow{a} & 2 \\
b \downarrow & & \downarrow c \\
3 & \xrightarrow{d} & 4
\end{array}$$

- (1) Prove that $\tau(I[1]) \cong P[1]/S[4]$, $\tau(P[1]/S[4]) \cong \operatorname{rad}(P[1])$ and $\tau(\operatorname{rad}(P[1])) \cong P[4]$.
- (2) Prove that $\tau(I[2]) \cong S[3], \tau(S[3]) \cong P[2], \tau(I[3]) \cong S[2] \text{ and } \tau(S[2]) \cong P[3].$
- (3) Without calculating projective or injective resolutions, prove that proj. $\dim(I[1]) \ge 2 \le \inf \dim(P[4])$.
- (4) Prove that $\operatorname{rad}(P[1])$ and P[1]/S[4] are indecomposable R-modules that are non-isomorphic in the categories R-mod, R-mod and R- $\overline{\text{mod}}$.
- (5) Prove that $\operatorname{Hom}_R(P[1]/s[4], P[i]) = 0$ for each i = 1, 2, 3, 4. Deduce that $\operatorname{Hom}(P[1]/s[4], I[2]) \neq 0$ and that there is a non-split short exact sequence $0 \to \operatorname{rad}(P[1]) \to M \to I[2] \to 0$ in $R \operatorname{mod}$.