Question 12.1. Let R = KQ where K is an algebraically closed field and Q is the quiver

(12.1)
$$1 \xrightarrow{a \atop b \atop 3} 2 \xrightarrow{c} 4 \xrightarrow{e} 5$$

- (1) Explain why rad(P[i]) is a direct sum of copies of $P[1], \ldots, P[5]$ for each $i = 1, \ldots, 5$.
- (2) Prove that the inclusion $P[5] \to P[4]$ is a source map and its cokernel $P[4] \to S[4]$ is a sink map.
- (3) Compute $\tau^-P[4]$, find sink maps $P[4] \to P[2]$ and $P[4] \to P[3]$, and considering

$$\underline{\dim}(P[4]) + \underline{\dim}(\tau^{-}(P[4])) - \underline{\dim}(S[4]) - \underline{\dim}(P[2]) - \underline{\dim}(P[3])$$

explain why $\operatorname{irr}(P[4], X) = \operatorname{irr}(X, \tau^{-}P[4]) = 0$ for any indecomposable $X \neq S[4], P[2], P[3]$.

(4) Run the knitting algorithm for projectives until you have a subquiver Γ' of Γ_R of the form

Write down the dimension vectors for M_i , M'_i and M''_i for each i = 1, ..., 5.

(5) Suppose you are given a subquiver Λ of Γ_R of the form (12.2) and assume that every arrow in Γ_R of the form $M_i \to X$ or of the form $X \to M'_i$ lies in Λ .

For each i = 1, ..., 5 let $m_i = \dim_K(M_i)$ and $m'_i = \dim_K(M'_i)$. Explain why

$$m_5' = m_4 - m_5$$
, $m_4' = m_3 + m_2 - m_5$, $m_3' = m_1 + m_2 - m_5$, $m_2' = m_1 + m_3 - m_5$.

Prove that if $m_1 > m_2 = m_3 > m_4 \ge m_5$ then $m_1' > m_2' = m_3' > m_4' \ge m_5'$ and hence deduce $m_5' \ge m_5$ and $m_i' > m_i$ for each i = 2, ..., 5.

(6) Explain why the connected component of Γ_R that contains Γ' from (4) must be infinite.

Question 12.2. Let R be a finite-dimensional algebra.

- (1) Let X be an indecomposable R-module. Prove that, if there is a bound on the lengths of paths in the AR quiver starting at X, then X is directing.
- (2) Describe the knitting algorithm for the preinjective component of Γ_R . Explain the preparation, construction, iterative step and outcomes.
- (3) Starting with injectives, knit Γ_R where R is the commutative square algebra from Question 9.2.