13. Questions on $\{2.6, \{2.7 \text{ and } \{2.8\}\}\}$

Question 13.1. Let R = KQ/I where K is a field, $I = \langle \beta \alpha, \gamma \beta, \alpha \gamma, \lambda \eta, \mu \lambda, \eta \mu \rangle$ and Q is the quiver

- (1) Describe P[i], I[i], $\operatorname{rad}(P[i])$ and $\operatorname{soc}(I[i])$ for each $i \in Q_0$. Prove $I[3]/\operatorname{soc}(I[3]) \cong \operatorname{rad}(P[1] \oplus P[5])$.
- (2) Starting with the source map $\operatorname{rad}(P[3]) \hookrightarrow P[3]$, knit until you get the sink map $I[3] \twoheadrightarrow I[3]/\operatorname{soc}(I[3])$.
- (3) Explain why the component you knitted in (2) is the entire Auslander–Reiten quiver, and say what you can about the geometry of the underlying graph.

Question 13.2. Let K be a field. Let R be a graded algebra, so where $R = \bigoplus_{n \in \mathbb{Z}} R_n$ and $R_n R_m \subseteq R_{n+m}$ for each $n, m \in \mathbb{Z}$. Write R-grmod for the category of finite-dimensional graded left R-modules M, so where $M = \bigoplus_{n \in \mathbb{Z}} M_n$ and $R_n M_m \subseteq M_{n+m}$ for each $n, m \in \mathbb{Z}$, and such that $\sum_{n \in \mathbb{Z}} \dim_K(M_n) < \infty$. Let

$$\widehat{R} = \begin{pmatrix} \ddots & \vdots & \vdots & \ddots \\ \cdots & R_0 & R_{-1} & \cdots \\ \cdots & R_1 & R_0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Namely, \widehat{R} is the set of matrices $\underline{r} = (r_{ij})$ where the entry in row $i \in \mathbb{Z}$ and column $j \in \mathbb{Z}$ is $r_{ij} \in R_{i-j}$.

(1) Explain why \widehat{R} has the structure of a catalgebra, and describe a small K-category \mathcal{C} such that

$$\widehat{R} \cong \bigoplus_{X,Y \in ob(\mathcal{C})} \operatorname{Hom}_{\mathcal{C}}(X,Y).$$

- (2) Characterise the objects in a full subcategory of the category of K-linear functors $\mathcal{C} \to K$ -Mod which is equivalent to the category \widehat{R} -mod of finite-dimensional left \widehat{R} -modules.
- (3) Describe what the equivalence $R-\mathsf{grmod} \to \widehat{R}-\mathsf{mod}$ does on objects and morphisms, and hence describe the K-linear functor $\mathcal{C} \to K-\mathsf{Mod}$ associated to an object of $R-\mathsf{grmod}$.
- (4) Explain how any object M in R-grmod corresponds to a module over an algebra of the form

$$\widehat{R} = \begin{pmatrix} R_0 & 0 & \cdots & 0 & 0 \\ R_1 & R_0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ R_{m-n} & R_{m-n-1} & \cdots & R_1 & R_0 \end{pmatrix}$$

for some $n, m \in \mathbb{Z}$ with $n \geq m$. This is the truncation of \widehat{R} in degrees [n, m].

Question 13.3. Let R = KQ/I where K is a field, $I = \langle a^2, ab \rangle$ and Q is the quiver

$$2 \xrightarrow{\beta} 1 \rightleftharpoons \alpha$$

Let a have degree 1 and b have degree 0.

- (1) Compute the truncation T of \widehat{R} in degrees [-3,0].
- (2) By knitting, compute the Auslander–Reiten quiver of T.
- (3) Using (2), compute the Auslander-Reiten guiver of R.