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ABSTRACT. The aim of this paper is to give a complete answer to the
isotropy of bilinear forms of dimension ≤ 5 over the function field of a
quadric in characteristic 2.

1. INTRODUCTION

Let F be a commutative field. We denote by F (ψ) the function field of
the affine quadric given by an F -quadratic form ψ. The isotropy problem
over function fields of quadrics consists in classifying F -quadratic forms ψ
for which a given anisotropic F -quadratic form ϕ becomes isotropic over
F (ψ). When F is of characteristic 2, a similar problem can be formulated
for bilinear forms. This problem was considered first in the case where F is
of characteristic not 2 and ϕ is of dimension≤ 8. Many persons contributed
in this case: Shapiro [31], Leep [28], Merkurjev [26], Hoffmann[3, 4, 6], the
first author [15, 16, 17], Karpenko and Izhboldin [10, 11, 12, 13] (probably
our list is not exhaustive neither for the results proved about this problem in
characteristic not 2, nor for the authors contributed to this problem). It is the
work of Merkurjev in the nineties on the u-invariant [26, 29] which gave a
revival to this problem. In characteristic 2, this problem was considered by
the first author [18] and Faivre [2] for some quadratic forms ϕ of dimension
≤ 8. Also, Hoffmann in characteristic not 2, and Hoffmann jointly with the
first author in characteristic 2, proved an important result on the isotropy
problem: If ϕ and ψ are anisotropic quadratic forms such that dimϕ ≤
2n < dimψ for some integer n ≥ 1, then ϕ remains anisotropic over F (ψ)
[5, 9].

¿From now on, we suppose that F is of characteristic 2. In this paper
we are interested in the isotropy problem for bilinear forms. Recall that,
to a given bilinear form B with underlying vector space V , we associate
the quadratic form B̃ defined over V by: B̃(v) = B(v, v) for any v ∈ V .
This quadratic form is uniquely determined by B, and it is diagonal, which
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means that B̃ is given by a polynomial
∑dimB

i=1 aix
2
i for some a1, · · · , an ∈

F , where dimB denotes the dimension of B. We say that B is isotropic
when B̃ is isotropic. The function field of B, denoted by F (B), is defined
to be the function field of the affine quadric given by B̃. It is well-known
that an anisotropic diagonal quadratic form remains anisotropic over the
function field of a non-diagonal quadratic form [18, Cor. 3.3]. Hence,
we will restrict our attention to the isotropy of bilinear forms over function
fields of diagonal quadratic forms. Recently, the first author gave a complete
answer to the isotropy of an Albert bilinear form over the function field
of a quadric [24, Th. 1.1] (an Albert bilinear form is a bilinear form of
dimension 6 and trivial determinant). Before this, the two authors studied
the isotropy of an Albert bilinear form over the function field of a conic [25,
Prop. 1.5].

Our aim in this paper is to treat the isotropy of bilinear forms of dimen-
sion ≤ 5 over the function field of a quadric. An important ingredient that
we will use is the norm degree introduced in [8, Section 8]. This notion
will be of great interest in the formulation of our results. Recall that the
norm field of a nonzero diagonal quadratic form ϕ, denoted by NF (ϕ), is
the field F 2(αβ | α, β ∈ DF (ϕ)), whereDF (ϕ) is the set of nonzero scalars
represented by ϕ. The norm degree of ϕ, denoted by ndegF (ϕ), is the in-
teger [NF (ϕ) : F 2]. The norm degree gives a criterion for an anisotropic
diagonal quadratic form being a quasi-Pfister neighbor (see below). Re-
call that a quasi-Pfister form is a quadratic form isometric to π̃ for some
bilinear Pfister form π. An anisotropic diagonal quadratic form ϕ is called
quasi-Pfister neighbor if it is similar to a subform of a quasi-Pfister form δ
and 2 dimϕ > dim δ, in which case the form δ is uniquely determined by
ϕ. If ϕ is an anisotropic diagonal quadratic form, then ϕ is a quasi-Pfister
neighbor iff 2 dimϕ > ndegF (ϕ) [8, Prop. 8.9(ii)]. In our case, if B is an
anisotropic bilinear form of dimension ≤ 5, then we have:

ndegF (B̃) =


2 if dimB = 2

4 if dimB = 3

4 or 8 if dimB = 4

8 or 16 if dimB = 5.

Hence, by the criterion above, B̃ is a quasi-Pfister form in the following
cases: dimB = 2 or 3, or dimB = 4 and ndegF (B̃) = 4, or dimB = 5

and ndegF (B̃) = 8. The isotropy in all these cases is given by the following
general result:

Proposition 1.1. (We combine [8, Prop. 8.9(iii)] and [19, Prop. 2.4]) Let
ϕ be a quasi-Pfister neighbor of a quasi-Pfister form δ, and let ψ be an
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anisotropic diagonal quadratic form. Then, ϕF (ψ) is isotropic iff ψ is similar
to a subform of δ.

For the other cases, where B̃ is not a quasi-Pfister neighbor, we will prove
the following theorem which is our main result:

Theorem 1.2. Let B be an anisotropic bilinear form of dimension 3, 4 or 5.
Let ψ be an anisotropic diagonal quadratic form of dimension≥ 2. Assume
that the following conditions hold:

– ndegF (B̃) = 8 if dimB = 4.
– ndegF (B̃) = 16 if dimB = 5.

(1) Suppose that ndegF (ψ) = 8 if dimψ = 4. Then, B is isotropic over
F (ψ) iff ψ is similar to a subform of B̃.
(2) Suppose that dimψ = 4 and ndegF (ψ) = 4, and let ψ′ be any subform
of ψ of dimension 3. Then, B is isotropic over F (ψ) iff ψ′ is similar to a
subform of B̃.

Note that in this theorem we include the case dimB = 3 even if B̃ is a
quasi-Pfister neighbor. The reason is that, in this case, the answer given by
the theorem refines that given by Proposition 1.1.

The proof of Theorem 1.2 will be given case by case as follows. In Sec-
tion 3, we study the isotropy of 5-dimensional bilinear forms. To this end,
our arguments will be based on the result [24, Th. 1.1] about the isotropy
of Albert bilinear forms. Moreover, in this case, we will be inspired by
the method used by Hoffmann in characteristic not 2 for the isotropy of 5-
dimensional quadratic forms [3]. However, because we work with bilinear
forms in characteristic 2, many details in our proof will differ from those
used by Hoffmann in [3]. One of them is our use of the norm field which
will play the rôle of the Clifford algebra in characteristic not 2. In Sec-
tion 4, we study the isotropy of 4-dimensional bilinear forms. This will be
again based on [24, Th. 1.1]. More precisely, starting from our anisotropic
bilinear form B of dimension 4, we will consider the Albert bilinear form
B′ = B ⊥ t 〈1, d〉 over the rational function field F (t), where d is the deter-
minant of B. Clearly, if ψ is a diagonal quadratic form (as in statement (1)
of Theorem 1.2) such that BF (ψ) is isotropic, then B′F (t)(ψ) is also isotropic.
By combining a specialization result (Proposition 2.5) with others, we will
be able to derive from the isotropy of B′ over F (t)(ψ) that ψ is similar to a
subform of B̃. Finally, in Section 5, we study the isotropy of 3-dimensional
bilinear forms. The idea is to introduce the bilinear form B′ = B ⊥ 〈t〉
over F (t), and then proceed as for the isotropy of 4-dimensional bilinear
forms.
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2. PRELIMINARY RESULTS

All bilinear forms considered in this paper are supposed to be regular of
finite dimension.

For two quadratic (or bilinear) forms ϕ and ψ, we say that ψ is a subform
of ϕ, denoted by ψ ⊂ ϕ, if there exists a form ψ′ such that ϕ ' ψ ⊥ ψ′,
where ' and ⊥ denote the isometry and the orthogonal sum of forms. We
write ψ ≺ ϕ when αψ ⊂ ϕ for some scalar α ∈ F ∗ := F \ {0}.

For a1, · · · , an ∈ F , let 〈a1, · · · , an〉 denote the diagonal quadratic form
a1x

2
1 + · · · + anx

2
n . If moreover, ai 6= 0 for 1 ≤ i ≤ n, we denote by

〈a1, · · · , an〉b the bilinear form a1x1y1 + · · ·+ anxnyn.
A metabolic plane is a 2-dimensional isotropic bilinear form. An orthog-

onal sum of metabolic planes is called a metabolic form. Any bilinear form
B decomposes as follows: B ' Ban ⊥ M , where M is a metabolic form,
and Ban is an anisotropic form which is unique [14, 30]. We call Ban the
anisotropic part of B. In general, the form M is not unique. For two bilin-
ear forms B and C, we write B ∼ C if Ban ' Can. In particular, B ∼ 0
means that B is metabolic. Any diagonal quadratic form ϕ decomposes as
follows: ϕ ' ϕan ⊥ r × 〈0〉, where ϕan is an anisotropic quadratic form
which is unique [8, Prop. 2.4]. Let id(ϕ) denote the integer r.

For a1, · · · , an ∈ F ∗, the bilinear form π = 〈1, a1〉b ⊗ · · · ⊗ 〈1, an〉b is
called an n-fold bilinear Pfister form, we denote it by 〈〈a1, · · · , an〉〉b. In
this case, the quasi-Pfister form π̃ is denoted by 〈〈a1, · · · , an〉〉. The bilinear
form π′ satisfying π ' 〈1〉b ⊥ π′ is unique [1, Cor. 2.18, page 101], called
the pure part of π.

Recall that a bilinear Pfister form B is isotropic iff it is metabolic [20,
Prop. 3.3], and B is multiplicative, i.e., B ' αB for any α ∈ DF (B) [1,
Cor. 2.16, page 101].

Let IF denote the ideal of the Witt ring W (F ) of even dimensional bi-
linear forms. For any integer n ≥ 1, let InF denote the n-th power of
IF . The ideal InF is additively generated by n-fold bilinear Pfister forms.
An important property about the forms in InF , called the Arason-Pfister
Hauptsatz, asserts the following: Any anisotropic bilinear form B in InF
satisfies dimB ≥ 2n [22, Lem. 4.8].

Lemma 2.1. Let π1, π2 be anisotropic n-fold bilinear Pfister forms, and
α1, α2 ∈ F ∗, such that α1π1 ⊥ α2π2 ∈ In+1F . Then, π1 ' π2.

Proof. Since πi ≡ αiπi (mod In+1F ), i = 1, 2, the condition α1π1 ⊥
α2π2 ∈ In+1F implies that π1 ⊥ π2 ∈ In+1F . Since dim(π1 ⊥ π2)an <
2n+1, it follows, from the Arason-Pfister Hauptsatz, that π1 ∼ π2. By the
uniqueness of the anisotropic part, we conclude that π1 ' π2. �

The following two lemmas are well-known and easy to prove:
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Lemma 2.2. For any a, b ∈ F , the quadratic form 〈a, b〉 is isometric to
〈a, a+ b〉.

Lemma 2.3. Let B1, B2 be anisotropic bilinear forms over F , and t a vari-
able over F . Then, the bilinear form B1 ⊥ tB2 is anisotropic over F (t).

We recall an important result on Witt kernels for bilinear forms:

Theorem 2.4. ([20, Th. 1.2]) Let B be an anisotropic bilinear form and
ϕ be an anisotropic diagonal quadratic form. Suppose that NF (ϕ) =
F 2(a1, · · · , an) and ndegF (ϕ) = 2n. Let π = 〈〈a1, · · · , an〉〉b. Then, B be-
comes metabolic over F (ϕ) iff B ' α1B1 ⊥ · · · ⊥ αrBr for some scalars
α1, · · · , αr ∈ F ∗, and n-fold bilinear Pfister forms B1, · · · , Br satisfying
B̃i ' π̃.

2.1. Specialization and substitution results. The following specializa-
tion result will be of great interest in our proofs:

Proposition 2.5. ([24, Cor. 3.2]) Let R = F [t1, · · · , tm] be the polynomial
ring in the variables t1, · · · , tm over F . Let ϕ be a diagonal quadratic
form over F , and p ∈ R an irreducible polynomial. Let K and Fp denote
the quotient fields of R and R/pR, respectively. Let u1, · · · , un ∈ R be
polynomials not divisible by p such that:

– The K-quadratic form ϕK represents pu1, · · · , pun.
– The quadratic form 〈u1, · · · , un〉 is anisotropic over Fp, where ui de-

notes the class of ui in Fp, 1 ≤ i ≤ n.
Then, id(ϕFp) ≥ n.

We will also need the following representation result:

Proposition 2.6. ([24, Cor. 3.5]) Let ϕ and ψ = 〈a1, · · · , an〉 be diagonal
quadratic forms over F , and b ∈ F ∗ (n ≥ 2). Suppose that, over F (t), we
have b 〈a1t2 + a2, a3, · · · , an〉 ⊂ ϕF (t). Then, b 〈a1, a2, a3, · · · , an〉 ⊂ ϕ.

As in [24], Proposition 2.6 is a corollary of the following substitution
result:

Proposition 2.7. ([21, Cor. 2.4]) Let ϕ be an anisotropic diagonal qua-
dratic form over F . Let p ∈ F [t1, · · · , tn] be a polynomial which is
represented by ϕ over the rational function field F (t1, · · · , tn). If c =
(c1, · · · , cn) ∈ F n satisfies p(c) 6= 0, then p(c) ∈ DF (ϕ).

Sometimes we need to lift an isometry between two diagonal quadratic
forms to an isometry between two bilinear forms associated to them. To do
so, we use the following result:
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Lemma 2.8. ([24, Lem. 3.7]) Let B be a bilinear form over F , and ψ =
〈a1, · · · , an〉 an anisotropic diagonal quadratic form over F . Then, the
following statements are equivalent:
(1) ψ ⊂ B̃.
(2) 〈b1, · · · , bn〉b ⊂ B, where, for any 1 ≤ i ≤ n,

bi ≡ ai mod DF (〈a1, · · · , ai−1〉)
(read b1 = a1).

As a corollary, we get:

Corollary 2.9. LetB be a bilinear form over F , and ψ an anisotropic diag-
onal quadratic form over F . Then, the following statements are equivalent:
(1) ψ ⊂ B̃.
(2) There exists a bilinear form C satisfying: C̃ ' ψ and C ⊂ B.

Proof. Put ψ = 〈a1, · · · , an〉, and let C = 〈b1, · · · , bn〉b with the scalars
b1, · · · , bn as given in Lemma 2.8. By Lemma 2.2, we have 〈b1, b2〉 '
〈a1, a2〉, which gives 〈b1, b2, b3〉 ' 〈a1, a2, b3〉 ' 〈a1, a2, a3〉, and so on, we
conclude that C̃ ' ψ. �

2.2. Results on the norm degree. One of the important facts needed is
the following result, describing the behavior of the norm degree after scalar
extension to the function field of an affine hypersurface:

Proposition 2.10. ([24, Prop. 3.6]) Let p ∈ F [t1, · · · , tn] be an irreducible
polynomial, and ϕ a diagonal F -quadratic form. Let F (p) be the quotient
field of F [t1, · · · , tn]/(p). If ndegF (p)(ϕF (p)) < ndegF (ϕ), then p is in-
separable, and ndegF (p)(ϕF (p)) =

1
2
ndegF (ϕ). (p inseparable means that

∂p/∂ti = 0 for any i.)

We deduce a general corollary:

Corollary 2.11. Let n ≥ 1 be an integer, and ψ = 〈1, a1, · · · , am〉 an
anisotropic diagonal quadratic form over F with m > 2n. Let p ∈ F [t] be
an irreducible polynomial. Then, there exist n + 1 elements c1, · · · , cn+1

of the set {t2 + a1, a2, a3, · · · , am} such that the diagonal quadratic form
〈c1, · · · , cn+1〉 is anisotropic over F (p), where c denotes the class of c in
F (p).

Proof. Let ψ′ = 〈t2 + a1, a2, a3, · · · , am〉 and ψ′′ = 〈a2, · · · , am〉. These
forms are anisotropic. Since dimψ′′ = m − 1 ≥ 2n, we get ndegF (ψ′′) ≥
2n. It follows from Proposition 2.10 that ndegF (p)(ψ

′′
F (p)) ≥ 2n−1. Hence,

there exist n elements ε1, · · · , εn ∈ {a2, · · · , am} such that the quadratic
form 〈ε1, · · · , εn〉 is anisotropic over F (p).
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Now we are able to prove the corollary. Suppose that for any n + 1
elements c1, · · · , cn+1 ∈ {t2 + a1, a2, a3, · · · , am}, the quadratic form
〈c1, · · · , cn+1〉 is isotropic over F (p). Hence, dim(ψ′F (p))an ≤ n. Moreover,
we have found elements ε1, · · · , εn ∈ {a2, · · · , am} such that 〈ε1, · · · , εn〉
is anisotropic over F (p). Consequently, we have (ψ′F (p))an ' 〈ε1, · · · , εn〉.
This implies that any element α ∈ {t2 + a1, a2, a3, · · · , am} satisfies
α ∈ DF (p)(〈ε1, · · · , εn〉). Hence, over F (t), this implies that any α ∈ {t2 +
a1, a2, a3, · · · , am} is represented by 〈ε1, · · · , εn, p〉. Then, NF (t)(ψ

′) ⊂
NF (t)(〈ε1, · · · , εn, p〉), and thus, ndegF (t)(ψ

′) ≤ 2n, which yields a contra-
diction because dimψ′ = m > 2n. �

2.3. On the similarity of 4-dimensional bilinear forms. It is well-known
in characteristic not 2 that two 4-dimensional quadratic forms having the
same determinant are similar iff they are similar over the quadratic exten-
sion given by their determinant. In characteristic 2 for bilinear forms, the
situation is different as it is shown by the following proposition:

Proposition 2.12. ([23, Prop. 2.5]) Let B = 〈k, l, kl, d〉b and C =
〈p, q, pq, d〉b be two anisotropic bilinear forms over F of dimension 4 having
the same determinant d. Suppose that ndegF (B̃) = 8 and 〈k, l, kl, p, q, pq〉b
is isotropic. Then, B and C are similar over F (

√
d) if and only if there ex-

ists x ∈ F such that 〈k, l, kl, d+ x2〉b is similar to 〈p, q, pq, d+ x2〉b.

As a corollary, we get:

Corollary 2.13. Let B = 〈k, l, kl, d〉b and C = 〈p, q, pq, d〉b be two
anisotropic bilinear forms over F of dimension 4 having the same deter-
minant d. Suppose that ndegF (B̃) = 8 and F 2(k, l) = F 2(p, q). If B
and C are similar over F (

√
d), then 〈〈k, l〉〉b ' 〈〈p, q〉〉b. In particular,

〈k, l, kl〉b ' 〈p, q, pq〉b.

Proof. The assumption F 2(k, l) = F 2(p, q) implies that 〈〈k, l〉〉 '
〈〈p, q〉〉. Also, it implies that NF (〈k, l, kl, p, q, pq〉) = F 2(k, l), and thus
〈k, l, kl, p, q, pq〉b is isotropic. By Proposition 2.12, there exists x, y ∈ F ,
y 6= 0, such that 〈k, l, kl, d+ x2〉b ' y 〈p, q, pq, d+ x2〉b. In particular,

〈〈k, l〉〉b ∼ y 〈〈p, q〉〉b ⊥
〈〈
y, d+ x2

〉〉
b
. (1)

Consequently, 〈〈y, d+ x2〉〉b is metabolic over F (〈〈k, l〉〉). Since d 6∈
F 2(k, l) because ndegF (B̃) = 8, it follows that 〈〈y, d+ x2〉〉b ∼ 0. Hence,
we conclude by (1) that 〈〈k, l〉〉b ' 〈〈p, q〉〉b. By the uniqueness of the
pure part of a bilinear Pfister form, we get the isometry 〈k, l, kl〉b '
〈p, q, pq〉b. �
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2.4. Other results needed in the proofs. In this subsection, we give two
results that we will need for the isotropy of 5-dimensional bilinear forms
over function fields of 4-dimensional quadratic forms.

Lemma 2.14. Let ψ = 〈k, l, kl, d〉 be an anisotropic quadratic form of
norm degree 8. Let η, β ∈ F ∗ be such that η ∈ F 2(k, l) − F 2, and the
quadratic form 〈〈k, l〉〉 ⊥ d 〈1, η〉 ⊥ 〈β〉 is isotropic over F . Then, β ∈
F 2(k, l, d).

Proof. The assumption ndegF (〈k, l, kl, d〉) = 8 implies that the quasi-
Pfister form 〈〈k, l, d〉〉 is anisotropic. Since η 6∈ F ∗2, the form 〈1, η〉 is
anisotropic, and thus 〈1, η〉 ⊂ 〈〈k, l〉〉 because η ∈ DF (〈〈k, l〉〉). Hence,
〈〈k, l〉〉 ⊥ d 〈1, η〉 ⊂ 〈〈k, l, d〉〉, in particular, 〈〈k, l〉〉 ⊥ d 〈1, η〉 is
anisotropic. Hence, the isotropy of 〈〈k, l〉〉 ⊥ d 〈1, η〉 ⊥ 〈β〉 implies that
β ∈ DF (d 〈1, η〉 ⊥ 〈〈k, l〉〉) ⊂ F 2(k, l, d). �

Proposition 2.15. Let us consider an isometry between two anisotropic Al-
bert bilinear form

eα 〈k, l, kl, d〉b ⊥ f 〈1, d〉b ' e′α′ 〈p, q, pq, e′r, e′s, rs〉b . (?)

Moreover, assume the following conditions:
– F 2(k, l) = F 2(p, q).
– ndegF (〈k, l, kl, d〉) = 8.
– The diagonal quadratic form of the Albert bilinear form in (?) has

norm degree 16.
Then, the following statements hold:
(1) 〈〈k, l〉〉b ' 〈〈p, q〉〉b and 〈k, l, kl〉b ' 〈p, q, pq〉b.
(2) There exists u0, v0, w0 ∈ F ∗ such that:

– 〈d, efα〉b ' 〈u0, v0〉b and 〈e′r, e′s〉b ' 〈u0, w0〉b.
– 〈1, u0〉b ' 〈v0w0, u0v0w0〉b.

Proof. Let B′ denote the Albert bilinear form in (?). We have

NF (B̃
′) = F 2(k, l, d, efα) = F 2(p, q, e′r, e′s) (2)

(1) Clearly, from the isometry in (?), we get the relation:

eα 〈〈k, l〉〉b ⊥ eα 〈〈d, efα〉〉b ∼ e′α′ 〈〈p, q〉〉b ⊥ e′α′ 〈〈e′r, e′s〉〉b . (3)

Claim 1. 〈〈e′r, e′s〉〉b is metabolic over F (
√
d).

In fact, the assumption F 2(k, l) = F 2(p, q) implies 〈〈k, l〉〉 ' 〈〈p, q〉〉.
Hence, after extending (3) to F (

√
d)(〈〈k, l〉〉), we deduce that 〈〈e′r, e′s〉〉b is

metabolic over F (
√
d)(〈〈k, l〉〉). Since ndegF (〈k, l, kl, d〉) = 8, it follows

that 〈〈k, l〉〉 is anisotropic over F (
√
d). Thus, if 〈〈e′r, e′s〉〉b is anisotropic

over F (
√
d), then e′r, e′s ∈ F 2(k, l, d) = F 2(p, q, d), which implies, by
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(2), that NF (B̃
′) ⊂ F 2(p, q, d), a contradiction to ndegF (B̃

′) = 16. Hence,
〈〈e′r, e′s〉〉b is metabolic over F (

√
d).

Claim 2. 〈〈k, l〉〉b ' 〈〈p, q〉〉b and 〈k, l, kl〉b ' 〈p, q, pq〉b.
We extend (3) to F (

√
d), and we use Claim 1 to get (〈〈k, l〉〉b)F (

√
d) '

(〈〈p, q〉〉b)F (
√
d). In particular, (〈k, l, kl, d〉b)F (

√
d) ' (〈p, q, pq, d〉b)F (

√
d).

Since ndegF (〈k, l, kl, d〉) = 8 and F 2(k, l) = F 2(p, q), we conclude, by
Corollary 2.13, that 〈〈k, l〉〉b ' 〈〈p, q〉〉b and 〈k, l, kl〉b ' 〈p, q, pq〉b. This
proves statement (1).

(2) By Claim 2 and relation (3), it is clear that

eα 〈〈d, efα〉〉b ⊥ e′α′ 〈〈e′r, e′s〉〉b ∈ I
3F.

Hence, by Lemma 2.1, 〈〈d, efα〉〉b ' 〈〈e′r, e′s〉〉b. In particular,
〈d, efα, e′r, e′s〉b is isotropic. Then there exists u0, v0, w0 ∈ F ∗ such that

〈d, efα〉b ' 〈u0, v0〉b 〈e
′r, e′s〉b ' 〈u0, w0〉b .

Cleary, we have

0 ∼ 〈〈d, efα〉〉b ⊥ 〈〈e′r, e′s〉〉b
∼ 〈〈u0, v0〉〉b ⊥ 〈〈u0, w0〉〉b
∼ 〈v0, u0v0, w0, u0w0〉b
∼ v0 〈1, u0, v0w0, u0v0w0〉b.

Hence, 〈1, u0, v0w0, u0v0w0〉b is metabolic, which implies 〈1, u0〉b '
〈v0w0, u0v0w0〉b. This proves statement (2). �

3. PROOF OF THEOREM 1.2: CASE dimB = 5

Let B be an anisotropic bilinear form of dimension 5 and determinant
d such that ndegF (B̃) = 16. We introduce the Albert bilinear form B′ =

B ⊥ 〈d〉b. Since NF (B̃) = NF (B̃
′), it follows that ndegF (B̃′) = 16, and

thus B′ is anisotropic. Let ψ be an anisotropic diagonal quadratic form of
dimension ≥ 3.

(1) Suppose that ndegF (ψ) = 8 if dimψ = 4. It is clear that BF (ψ) is
isotropic if ψ is similar to a subform of B̃. Conversely, suppose that BF (ψ)

is isotropic. Then, B′F (ψ) is also isotropic. By [24, Th. 1.1], αψ ⊂ B̃′ for a
suitable α ∈ F ∗. By Corollary 2.9, there exists a bilinear form C such that
C̃ ' ψ and αC ⊂ B′. We continue our proof case by case.

(a) Case dimψ = 3. There exist scalars e, k, l, x, y ∈ F ∗ such that
C ' e 〈k, l, kl〉b and B′ ' eα 〈k, l, kl, x, y, xy〉b. Then

B ⊥ d 〈x, y, xy〉b ∼ eα 〈〈k, l〉〉b ⊥ eα 〈〈x, y, deα〉〉b . (4)
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Since C̃ ' ψ, the form 〈〈k, l〉〉b is isotropic over F (ψ), and NF (ψ) =
F 2(k, l). If we extend (4) to F (ψ), we get

(B ⊥ d 〈x, y, xy〉b)F (ψ) ∈ I3F (ψ).

Since BF (ψ) is isotropic, it follows from the Arason-Pfister Hauptsatz that

(B ⊥ d 〈x, y, xy〉b)F (ψ) ∼ 0.

By using Theorem 2.4, we get two possibilities:

• Either dim(B ⊥ d 〈x, y, xy〉b)an = 8: In this case, there exist two 2-fold
bilinear Pfister forms π1, π2, and α1, α2 ∈ F ∗ such that π̃1 ' π̃2 ' 〈〈k, l〉〉,
and

B ⊥ d 〈x, y, xy〉b ' α1π1 ⊥ α2π2.

Hence,
NF (B̃) ⊂ NF (α1π̃1 ⊥ α2π̃2) = F 2(k, l, α1α2),

and thus, ndegF (B̃) ≤ 8, a contradiction.

• Or dim(B ⊥ d 〈x, y, xy〉b)an = 4: In this case, there exists α ∈ F ∗, and
a 2-fold bilinear Pfister form π = 〈1〉b ⊥ π′ such that π̃ ' 〈〈k, l〉〉, and

(B ⊥ d 〈x, y, xy〉b)an ' απ.

Hence, B ∼ απ ⊥ d 〈x, y, xy〉b. By the multiplicativity of π, we conclude
that π′ ≺ B. In particular, π̃′ ≺ B̃. Moreover, πF (ψ) ∼ 0 because π̃ '
〈〈k, l〉〉. Then, π′F (ψ) is isotropic. By Theorem 1.2, in dimension 3, we

conclude that π̃′ is similar to ψ, hence ψ ≺ B̃.

(b) Case dimψ = 4. Let e, k, l, d ∈ F ∗ be such that C ' e 〈k, l, kl, d〉b.
Hence, B′ ' eα 〈k, l, kl, d〉b ⊥ f 〈1, d〉b for a suitable f ∈ F ∗. We have

NF (ψ) = F 2(k, l, d).

Let ψ′ = 〈k, l, kl〉. Since BF (ψ) and ψF (ψ′) are isotropic, it follows from [7,
Cor. 7.20] that BF (ψ′) is isotropic. By the isotropy in dimension 3 (treated
in the case (a)), there exists α′ ∈ F ∗ such that α′ψ′ ⊂ B̃. By Corollary
2.9, there exists a 3-dimensional bilinear form C ′ such that C̃ ′ ' ψ′ and
α′C ′ ⊂ B. Set C ′ = e′ 〈p, q, pq〉b for suitable e′, p, q ∈ F ∗. Hence, the
condition C̃ ′ ' ψ′ implies

F 2(k, l) = F 2(p, q). (5)

Let r, s ∈ F ∗ be such that B = e′α′ 〈p, q, pq, e′r, e′s〉b. Then,

B′ ' eα 〈k, l, kl, d〉b ⊥ f 〈1, d〉b
' e′α′ 〈p, q, pq, e′r, e′s, rs〉b.

(6)
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Hence, using (5) and (6), we get

NF (B̃′) = F 2(k, l, d, efα) = F 2(k, l, e′r, e′s). (7)

Since all the hypotheses of Proposition 2.15 are satisfied, there exists
u0, v0, w0 ∈ F ∗ such that

〈d, efα〉b ' 〈u0, v0〉b
〈e′r, e′s〉b ' 〈u0, w0〉b,

(8)

and

〈1, u0〉b ' 〈v0w0, u0v0w0〉b (9)

Claim 1. 〈〈k, l, v0w0〉〉b is metabolic over F (ψ).
Let τ = 〈k, l, kl, d, efα〉b = 〈k, l, kl, u0, v0〉b. Since 〈k, l, kl〉b ' 〈p, q, pq〉b
(Proposition 2.15), it follows from (8) that

B ' e′α′ 〈p, q, pq, e′r, e′s〉b ' e′α′ 〈k, l, kl, u0, w0〉b . (10)

By using (8) and (9), it is easy to verify that

τ ⊥ e′α′v0w0B ∼ 〈〈k, l, v0w0〉〉b . (11)

Since τF (ψ) is isotropic (because ψ is similar to 〈k, l, kl, d〉), and BF (ψ) is
isotropic, we deduce, after comparing the dimensions of the anisotropic
parts of both sides in (11), that 〈〈k, l, v0w0〉〉b is metabolic over F (ψ). �

Claim 2. ψ ≺ B̃.
To prove the claim, we distinguish between two cases:

(A) Suppose that 〈〈k, l, v0w0〉〉b is isotropic Then, this form is metabolic,
and by (11), τ is similar to B. Hence, ψ ≺ B̃ since C ≺ τ and C̃ is similar
to ψ.

(B) Suppose that 〈〈k, l, v0w0〉〉b is anisotropic Since NF (ψ) =
F 2(k, l, d), it follows from Theorem 2.4, that

〈〈k, l, v0w0〉〉 ' 〈〈k, l, d〉〉 . (12)

Hence, there exists m,n ∈ DF (〈〈k, l〉〉) ∪ {0} such that v0w0 = m + dn.
Since 〈〈k, l, v0w0〉〉b is anisotropic, we have n 6= 0. Let η = mn−1 and
x = η + d. It is clear that η ∈ F 2(k, l), x ∈ F 2(k, l, d), and

v0w0x ∈ DF (〈〈k, l〉〉). (13)

(B.1) Suppose that η 6∈ F ∗2. We have the following isometries of diago-
nal quadratic forms:
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v0w0x 〈1, 1〉 ⊥ e′α′v0w0xB̃ '
(10)
' v0w0x 〈1, 1〉 ⊥ v0w0x 〈k, l, kl, u0, w0〉
' x 〈u0v0w0, v0, v0w0〉 ⊥ v0w0x 〈〈k, l〉〉
(9)
' x 〈1, u0, v0〉 ⊥ v0w0x 〈〈k, l〉〉

(8),(13)
' x 〈1, d, efα〉 ⊥ 〈〈k, l〉〉
' 〈η + d, dη + d2〉 ⊥ 〈xefα〉 ⊥ 〈〈k, l〉〉

Lem.2.2' 〈d, dη〉 ⊥ 〈xefα〉 ⊥ 〈〈k, l〉〉.

(14)

Since the form in the first line in (14) is isotropic, we get by Lemma 2.14
that xefα ∈ F 2(k, l, d). In particular, efα ∈ F 2(k, l, d). Then, by (7),
NF (B̃

′) ⊂ F 2(k, l, d), a contradiction to ndegF (B̃
′) = 16.

(B.2) Suppose that η ∈ F ∗2. Then, x ∈ DF (〈1, d〉b), i.e., x 〈1, d〉b '
〈1, d〉b. We reproduce some isometries in (14) for bilinear forms instead of
diagonal quadratic forms. We get:

v0w0x 〈1, 1〉b ⊥ e′αv0w0xB '
(10)
' v0w0x 〈1, 1〉b ⊥ v0w0x 〈k, l, kl, u0, w0〉b
' x 〈u0v0w0, v0, v0w0〉b ⊥ v0w0x 〈〈k, l〉〉b
(9)
' x 〈1, u0, v0〉b ⊥ v0w0x 〈〈k, l〉〉b

(8),(13)
' x 〈1, d, efα〉b ⊥ 〈〈k, l〉〉b
' 〈1, d, xefα〉 ⊥ 〈〈k, l〉〉b
' 〈1, 1〉b ⊥ 〈k, l, kl, d, xefα〉b.

(15)

By the uniqueness of the anisotropic part, we deduce that B is similar to
〈k, l, kl, d, xefα〉b, which implies that ψ ≺ B̃.

(c) Case dimψ = 5. We can write C = e 〈k, l, kl, d, efα〉b for suitable
scalars e, f, k, l, d ∈ F ∗. Hence, B′ ' eα 〈k, l, kl, d〉b ⊥ f 〈1, d〉b. Let
ψ′ = 〈k, l, kl〉.

Since BF (ψ′) is isotropic, there exists α′ ∈ F ∗ such that α′ψ′ ⊂ B̃. Let
C ′ be a bilinear form of dimension 3 such that α′C ′ ⊂ B̃ and ψ′ ' C̃ ′. Set
C ′ = e′ 〈p, q, pq〉b. Hence,

F 2(k, l) = F 2(p, q). (16)

Let r, s ∈ F ∗ be such that B = e′α′ 〈p, q, pq, e′r, e′s〉. Then,

B′ ' eα 〈k, l, kl, d〉b ⊥ f 〈1, d〉
' e′α′ 〈p, q, pq, e′r, e′s, rs〉. (17)
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We have
NF (B̃

′) = F 2(k, l, d, efα) = F 2(k, l, e′r, e′s).

Now, we continue with the same arguments as in the case (b) to find scalars
v0, w0 ∈ F ∗ such that π := 〈〈k, l, v0w0〉〉b is isotropic over F (ψ), and

τ ⊥ e′α′v0w0B ∼ π (18)

where τ = 〈k, l, kl, d, efα〉b. If π is anisotropic, then ψ is a quasi-Pfister
neighbor of π̃ (because πF (ψ) is isotropic), which implies that BF (π) is
isotropic. In particular, B′F (π) is isotropic, this is not possible by [24, Th.
1.1]. Hence, π is isotropic, and by (18), B is similar to τ . It follows that
ψ ≺ B̃ because ψ ' C̃. �

(d) Case dimψ = 6. We may suppose 1 ∈ DF (ψ). Set ψ =
〈1, a1, a2, a3, a4, a5〉, and let ψ′ := 〈t2 + a1, a2, a3, a4, a5〉. The field F (ψ)
is isomorphic to F (t)(ψ′). Hence, BF (t) is isotropic over F (t)(ψ′). Thus,
ψ′ ≺ B̃F (t). Let f ∈ F [t] be a nonzero, square free, polynomial such that
B̃F (t) ' f 〈t2 + a1, a2, a3, a4, a5〉.

Claim. f is a constant polynomial.
Suppose that f is not constant, and let p be an irreducible factor of f . By

using Corollary 2.11 in the case m = 5 and n = 2, we get three elements
c1, c2, c3 ∈ {t2 + a1, a2, a3, a4, a5} such that 〈c1, c2, c3〉 is anisotropic over
F (p). But, since f 〈c1, c2, c3〉 ⊂ B̃F (t), it follows from Proposition 2.5,
that id(B̃F (p)) ≥ 3. Consequently, ndegF (p)(B̃F (p)) ≤ 2, a contradiction
to Proposition 2.10. Hence, f is constant, and thus Proposition 2.6 implies
that ψ ≺ B̃, which is not possible by dimension account. Then, B remains
anisotropic over F (ψ).

(e) Case dimψ > 6. In this case, the form B′F (ψ) is anisotropic [24, Th.
1.1], and thus, BF (ψ) is also anisotropic.

(2) Suppose that dimψ = 4 and ndegF (ψ) = 4. Let ψ′ be any subform
of ψ of dimension 3. If B is isotropic over F (ψ), then B is also isotropic
over F (ψ′) [7, Cor. 7.20]. It follows, from the case (a), that ψ′ ≺ B̃.
Conversely, suppose that ψ′ ≺ B̃. Since ψ is similar to a quasi-Pfister form
(because ndegF (ψ) = 4), the form ψ′ is isotropic over F (ψ). Hence, BF (ψ)

is also isotropic.

4. PROOF OF THEOREM 1.2: CASE dimB = 4

Let B be an anisotropic bilinear form of dimension 4 and determinant d.
Suppose that ndegF (B̃) = 8. Let B′ = B ⊥ t 〈1, d〉b over F (t). Since
d 6= 1 (because ndegF (B̃) = 8), the Albert bilinear form B′ is anisotropic
(Lemma 2.3). Moreover, ndegF (t)(B̃

′) = 16.
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Let ψ be an anisotropic diagonal quadratic form of dimension n ≥ 3 such
that BF (ψ) is isotropic, and ndegF (ψ) = 8 when n = 4.

Since B′F (t)(ψ) is isotropic, there exists f ∈ F [t], a nonzero square free

polynomial, and a diagonal quadratic form ψ′ over F (t) such that B̃′ '
fψ ⊥ ψ′ [24, Th. 1.1].

Claim. f is not divisible by t.
Suppose that t divides f . We consider the t-adic valuation of F (t). By
Corollary 2.9, there exists a bilinear form C over F (t) such that B′ '
fC ⊥ C ′ for some bilinear form C ′ over F (t), and C̃ ' ψF (t). Set
C = 〈a1, · · · , an〉b for some a1, · · · , an ∈ F [t]∗. Since ψ is anisotropic
over F , we deduce that all the polynomials a1, · · · , an are units (for the t-
adic valuation of F (t)). If we take the first residue form of B′, we deduce
that B is isotropic over F because dimC ′ ≤ 3, a contradiction.

Now, using the fact that f is a unit and taking the first residue
form of B′, we get that f(0) 〈a1(0), · · · , an(0)〉b ⊂ B. In particular,
〈a1(0), · · · , an(0)〉b is anisotropic. Moreover, since ai is represented by
ψF (t), 1 ≤ i ≤ n, we deduce from Proposition 2.7 that ai(0) ∈ DF (ψ),
1 ≤ i ≤ n. Because the form 〈a1(0), · · · , an(0)〉b is anisotropic, we get
that

〈a1(0), · · · , an(0)〉 ' ψ.

Hence, ψ ≺ B̃.
When dimψ = 4 and ndegF (ψ) = 4, the same proof as for the case

dimB = 5 works. �

5. PROOF OF THEOREM 1.2: CASE dimB = 3

Let B be an anisotropic bilinear forms of dimension 3. We consider the
bilinear form B′ = B ⊥ 〈t〉 over F (t). It is clear that ndegF (t)(B̃

′) = 8.
Let ψ be an anisotropic diagonal quadratic form of dimension≥ 3 such that
BF (ψ) is isotropic, and ndegF (ψ) = 8 when dimψ = 4. Since B′F (t)(ψ) is

isotropic, it follows from the isotropy in dimension 4 that B̃′ ' fψ ⊥ ψ′ for
some f ∈ F [t], a nonzero square free polynomial, and a diagonal quadratic
form ψ′ over F (t). We proceed as for the isotropy of 4-dimensional bilinear
form to conclude that ψ ≺ B̃. �
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