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Abstract. The hyperbolic 3-manifolds fibered over the circle with fiber a once punctured
torus are considered. Surprisingly, in all of about 200 cases, where the class numbers of
their trace fields were calculated, they turned out to be equal to one.

This is a report on the work of our friend Heinz Helling during the last several
years. Unfortunately, for health problems he is unable to write about it himself.
All the main ideas and results presented in this paper belong to him, but some
technical details may be different.

In a series of preprints [1], [3], [4], [5], H. Helling with co-authors studied some
class of hyperbolic 3-manifolds fibered over the circle, and calculated the trace fields
of these manifolds. Ten years later he came to the idea to investigate arithmetic
properties of these fields. This led him to a surprising result: in all the cases, when
he managed to calculate the class number (with the help of a computer program),
it turned out to be equal to one!

Acknowledgements. The second author thanks CRC 701 for supporting his
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paper was mainly written.

1. The construction

Let T0 = T \ {pt} be a once punctured torus. Observe that its fundamental
group is a free group F2 on two generators, say, ξ and η. A fiber bundle over the
circle with fiber T0 is defined by its monodromy, which is an element of the group

OutF2 := AutF2/IntF2
∼= GL(2,Z)

(cf. [7, Prop. 4.5] for the last isomorphism).
Denote by M(A) the fiber bundle defined by a matrix A ∈ GL(2,Z). The fiber

bundles M(A) and M(A′) are isomorphic if and only if the matrix A′ is conjugate
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to A or its inverse in GL(2,Z). The manifold M(A) is hyperbolic (of finite volume)
if and only if the matrix A is hyperbolic, i.e., has real eigenvalues distinct from ±1
or, equivalently, tr(A) /∈ {0,±1,±2} (see, for example, [9]). It is orientable if and
only if detA = 1, i.e., A ∈ SL(2,Z).

Since any topological automorphism of the punctured torus T0 extends to an
automorphism of the torus T , the fiber bundle M(A) naturally embeds into a fiber
bundle with fiber T . The boundary of this embedding is a circle. Retracting it to a
point, we obtain a one point compactification of M(A) with connected punctured
neighborhoods of the boundary point. This means that the hyperbolic manifold
M(A) has only one cusp.

Let α ∈ AutF2 be a representative of the coset of IntF2 corresponding to A.
Then the fundamental group of M(A) is isomorphic to the semi-direct product
⟨α⟩ i F2, where ⟨α⟩ is the cyclic group generated by α. It is known that every
automorphism of F2 takes the commutator (ξ, η) to a conjugate of (ξ, η)±1. So we
may assume that α takes (ξ, η) to (ξ, η)±1, depending on detA.

From now on, we assume that the manifold M(A) is orientable, i.e., detA = 1,
and α((ξ, η)) = (ξ, η).

If A is hyperbolic with detA = 1, then the fundamental group of M(A) is
isomorphic to a torsion-free lattice in PSL(2,C), which is defined uniquely up to
conjugacy. It is known [6] that any such lattice can be isomorphically lifted to
SL(2,C). This means that there is a faithful linear representation

φ : ⟨α⟩i F2 → SL(2,C)

such that its image is a lattice in SL(2,C). Denote this lattice by Γ(A).
Set

X = φ(ξ), Y = φ(η), L = φ(α).

Then X,Y and L generate Γ(A). Moreover, since the matrices L and (X,Y )
commute, they generate a free abelian group of rank 2. It follows that they are
unipotent up to a sign. In particular, tr(X,Y ) = ±2. However, the case tr(X,Y ) =
2 is realized, when X and Y have a common eigenvector, which implies that L has
the same eigenvector, a contradiction. Hence, tr(X,Y ) = −2. Replacing L with
−L if needed, one may assume that trL = 2, i.e., L is unipotent.

2. Calculating the traces

A standard calculation with traces shows that

tr(X,Y ) = (trX)2 + (trY )2 + (trXY )2 − (trX)(trY )(trXY )− 2

for any matrices X,Y ∈ SL(2,C). Thus, in our situation we have

(trX)2 + (trY )2 + (trXY )2 = (trX)(trY )(trXY ).

In other words, if we set x = trX, y = trY, z = trXY, then the point (x, y, z)
belongs to the (complex) Markov surface defined by the equation

x2 + y2 + z2 = xyz.
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The traces of the matrices

α(X) := φ(α(ξ)), α(Y ) := φ(α(η)), α(X)α(Y ) = α(XY ) := φ(α(ξη))

can be expressed in terms of x, y, z. They do not change when α is multiplied by
an inner automorphism of F2, so they depend only on the matrix A.

More precisely, there is a natural action (by the precomposition of homomor-
phisms with automorphisms) of the group GL(2,Z) = Out(F2) on the character
variety

X(F2, SL(2,C)) := Hom(F2, SL(2,C))//SL(2,C) = SpecC[trX, trY, trXY ] = C3,

such that

A(trX, trY, trXY ) = (trα(X), trα(Y ), trα(XY )) for A ∈ GL(2,Z).

It is well known that the group GL(2,Z) is generated by the matrices

R1 =

(
1 0
0 −1

)
, R2 =

(
0 1
1 0

)
, R3 =

(
1 1
0 −1

)
,

acting on the hyperbolic plane H2 as the reflections in the sides of a triangle with
angles π/2, π/3, 0. They lift to the following automorphisms of F2:

ρ1 : ξ 7→ ξ, η 7→ η−1, ρ2 : ξ 7→ η, η 7→ ξ, ρ3 : ξ 7→ ξη, η 7→ η−1.

It is easy to see how they transform the traces. Thus we obtain:

R1(x, y, z) = (x, y, xy − z), R2(x, y, z) = (y, x, z), R3(x, y, z) = (z, y, x).

In our situation, the matrices α(X) and α(Y ) are conjugate to X and Y by
means of L, so there must be

A(x, y, z) = (x, y, z).

In other words, (x, y, z) is a fixed point of A lying on the Markov surface.
Recall that the trace field of a linear group is the field generated over Q by

the traces of its elements. The trace field K = K(A) of the group Γ(A) coincides
with the trace field of the subgroup ∆(A) generated by X and Y and is equal to
Q(x, y, z): see [8, Cor. 4.3.2].

The invariant trace field of a lattice Γ in a semisimple Lie group is the trace
field of the group Ad(Γ). It is known to be invariant under commensurability [11].
According to [12, Cor. to Thm. 2], the invariant trace field of the group Γ(A) is
equal to

k(A) = Q(x2, y2, xyz) = Q(x2, y2, z2).
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3. A series of examples

In [3], H. Helling calculated the trace fields for the groups Γ(An), where

An =

(
1 1
n n+ 1

)
= R2(R1R3)

nR2R1R3 ∈ SL(2,Z).

Below we reproduce his calculations with some modifications. (Similar calcula-
tions, but with a bit weaker result, were done in a later paper [2].)

Set
An(x, y, z) = (xn, yn, zn).

We have

(x0, y0, z0) = R1R3(x, y, z) = (z, y, yz − x),

(xn, yn, zn) = R2R1R3R2(xn−1, yn−1, zn−1) = (xn−1, zn−1, xn−1zn−1 − yn−1),

whence xn = z and (
zn
yn

)
=

(
z −1
1 0

)(
zn−1

yn−1

)
.

If (x, y, z) is a fixed point of An, there must be x = z, so z0 = yz − z and(
z
y

)
=

(
z −1
1 0

)n (
z0
y0

)
=

(
z −1
1 0

)n+1 (
y
z

)
. (1)

One can easily prove by induction that(
z −1
1 0

)n+1

=

(
qn+1 −qn
qn −qn−1

)
for n ≥ 1 (2)

where qn are polynomials in z defined by

q0 = 1, q1 = z, qn+1 = zqn − qn−1 forn ≥ 1. (3)

By taking determinants one obtains the identity

q2n − 1 = qn−1qn+1. (4)

It follows from (3) that

qn(z) = Un(z/2) =

[n/2]∑
i=0

(−1)i
(
n− i

i

)
zn−2i, (5)

where Un is the Chebyshev polynomial of the second kind (of degree n). Note that
the polynomial qn is even (odd) for n even (odd).

From (1) and (2) we obtain

yn = yqn − zqn−1, zn = yqn+1 − zqn. (6)

We thus see that the fixed points (x, y, z) of An on the Markov surface are given
by the following equations (having in mind that x = z):
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y2 + (2− y)z2 = 0, (7)

y(qn(z)− 1)− zqn−1(z) = 0, (8)

yqn+1(z)− z(qn(z) + 1) = 0. (9)

Since we are interested only in non-real solutions, we may assume that y, z ̸= 0.
If qn(z) = 1, it follows from (8) that qn−1(z) = 0, and then from (3) we get that

qn+1(z) = z. Substituting this in (9) we obtain y = 2, which contradicts (7).
If qn(z) = −1, it follows from (9) that qn+1(z) = 0, and then from (3) we get

that qn−1(z) = −z. Substituting this in (8) we obtain 2y = z2, whence by (7)
y = 4 and therefore z =

√
8. However, all the roots of the polynomial qn+1 lie in

the interval (−2, 2), so this case does not occur.
Thus, we may assume that qn(z) ̸= ±1. Under this assumption, equations (8)

and (9) are equivalent due to (4). Eliminating y from (7) and (8), one obtains

2(qn(z)− 1)2 − zqn−1(z)(qn(z)− 1) + qn−1(z)
2 = 0. (10)

It follows from the obvious multiplication law for matrices (2) and from (4) that

q2k = (qk + qk−1)(qk − qk−1), q2k − 1 = qk−1(qk+1 − qk−1),

q2k−1 = qk−1(qk − qk−2), q2k+1 − 1 = (qk + qk−1)(qk+1 − qk).

In particular, this shows that if qn(z) ̸= 1, then qk−1(z) ≠ 0 for n = 2k and
qk(z) + qk−1(z) ̸= 0 for n = 2k + 1.

We will use the above formulas to simplify the polynomial Fn from the left-hand
side in (10) as follows.

For n = 2k we have

q−2
k−1Fn = 2(qk+1 − qk−1)

2 − z(qk − qk−2)(qk+1 − qk−1) + (qk − qk−2)
2

= 2(qk+1 − qk−1)
2 − (qk+2 − qk)(qk − qk−2)

= (qk+1 − qk−1)
2 −

∣∣∣∣ qk+2 − qk qk+1 − qk−1

qk+1 − qk−1 qk − qk−2

∣∣∣∣
= (qk+1 − qk−1)

2 − (z2 − 4).

For n = 2k + 1 we have

(qk + qk−1)
−2Fn = 2(qk+1 − qk)

2 − z(qk − qk−1)(qk+1 − qk) + (qk − qk−1)
2

= 2(qk+1 − qk)
2 − (qk+2 − qk+1)(qk − qk−1)

= (qk+1 − qk)
2 −

∣∣∣∣qk+2 − qk+1 qk+1 − qk
qk+1 − qk qk − qk−1

∣∣∣∣
= (qk+1 − qk)

2 − (z − 2).

The evaluation of the determinants is obtained in both cases by observing that

the underlying 2×2 matrix Qk obeys Qk =

(
z −1
1 0

)
Qk−1, so detQk = detQk−1

and hence detQk = detQ1 (assuming q−1 = 0).
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Thus, under the assumption qn(z) ̸= 1, the solutions to (10) are the roots of
the polynomial

fn(z) =

{
(qk+1(z)− qk−1(z))

2 − (z2 − 4) if n = 2k,

(qk+1(z)− qk(z))
2 − (z − 2) if n = 2k + 1.

These formulas have been given also, without proof, in [3] and [5].
The trace field of Γ(An) is Q(z), where z is a suitable root of fn. The invariant

trace field is Q(y2, z2) = Q(y, z2). For n even, it follows from (8) that y ∈ Q(z2);
in this case the invariant trace field coincides with Q(z2).

By means of the computer program Pari [10] (used also by H. Helling), in all
the cases checked so far (n ≤ 46), it was found that the polynomial fn is irreducible
and the trace field Kn = Q(z) has class number one. Moreover, for n odd it has
no nontrivial subfield. For n even, it has exactly one nontrivial subfield kn ⊂ Kn

of index two, which also has class number one. It is the invariant trace field of
Γ(An).

For n = 47, Pari gave up because it could not cope with the large discriminants
showing up, but for several higher values it succeeded, and we never found any
class number > 1 for these fields. The irreducibility of the factor fn has been
verified for n ≤ 2000.

In the table below, we give the polynomial fn and the discriminant of the trace
field Kn for n ≤ 12 as computed by Pari. Note that in [8] the fields Kn had been
calculated for n = 1 (p. 138), n = 2 (p. 143), and n = 3 (p. 143, Ex. 4.6).

The discriminants of the invariant trace fields kn for n = 2, 4, 6, 8, 10, 12 are

−7, −44, 2917, 7684, −315544, −2985968.

n fn Discriminant
1 z2 − 3z + 3 -3
2 z4 − 5z2 + 8 392
3 z4 − 2z3 − z2 + z + 3 697
4 z6 − 6z4 + 8z2 + 4 -123904
5 z6 − 2z5 − 3z4 + 6z3 + 2z2 − 5z + 3 -453683
6 z8 − 8z6 + 20z4 − 17z2 + 8 68071112
7 z8 − 2z7 − 5z6 + 10z5 + 7z4 − 14z3 − 2z2 628432401

+3z + 3
8 z10 − 10z8 + 35z6 − 50z4 + 24z2 + 4 -60460908544
9 z10 − 2z9 − 7z8 + 14z7 + 16z6 − 32z5 -1537714619747

−13z4 + 26z3 + 3z2 − 7z + 3
10 z12 − 12z10 + 54z8 − 112z6 + 105z4 − 37z2 + 8 79654564209992
11 z12 − 2z11 − 9z10 + 18z9 + 29z8 − 58z7 − 40z6 5910843534832201

+40z6 + 80z5 + 22z4 − 44z3 − 3z2 + 5z + 3
12 z14 − 14z12 + 77z10 − 210z8 -146079824232841216

+294z6 − 196z4 + 48z2 + 4
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4. Conclusion

Heinz Helling calculated the trace fields of the groups Γ(A) in about 200 cases,
and in all the cases they turned out to have class number one. However, he had
no time to prove or disprove this for all the groups Γ(A), and did not dare to
formulate this as a conjecture.

A vague indication to the reason why this phenomenon takes place is the known
theorem that the class number of an imaginary quadratic field is equal to the num-
ber of cusps for the corresponding Bianchi group (see, for example, [8, Thm. 9.1.1,
p. 276]). As was explained above, the group Γ(A) has only one cusp. However,
it is not arithmetic, unless the invariant trace field is quadratic, and the known
proof for Bianchi groups does not work.
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