ON A PHENOMENON DISCOVERED BY HEINZ HELLING

U. REHMANN
Fakultät für Mathematik
Universität Bielefeld
33501 Bielefeld, Germany
rehmann@math.uni-bielefeld.de

E. VINBERG
Department of
Mechanics and Mathematics
Moscow State University
Moscow 119991, GSP-1, Russia
evinberg@gmail.com

Abstract

The hyperbolic 3-manifolds fibered over the circle with fiber a once punctured torus are considered. Surprisingly, in all of about 200 cases, where the class numbers of their trace fields were calculated, they turned out to be equal to one.

This is a report on the work of our friend Heinz Helling during the last several years. Unfortunately, for health problems he is unable to write about it himself. All the main ideas and results presented in this paper belong to him, but some technical details may be different.

In a series of preprints [1], [3], [4], [5], H. Helling with co-authors studied some class of hyperbolic 3-manifolds fibered over the circle, and calculated the trace fields of these manifolds. Ten years later he came to the idea to investigate arithmetic properties of these fields. This led him to a surprising result: in all the cases, when he managed to calculate the class number (with the help of a computer program), it turned out to be equal to one!

Acknowledgements. The second author thanks CRC 701 for supporting his research stay at Bielefeld University in the summers of 2015 and 2016, when this paper was mainly written.

1. The construction

Let $T_{0}=T \backslash\{\mathrm{pt}\}$ be a once punctured torus. Observe that its fundamental group is a free group F_{2} on two generators, say, ξ and η. A fiber bundle over the circle with fiber T_{0} is defined by its monodromy, which is an element of the group

$$
\operatorname{Out} F_{2}:=\operatorname{Aut} F_{2} / \operatorname{Int} F_{2} \cong \mathrm{GL}(2, \mathbb{Z})
$$

(cf. [7, Prop. 4.5] for the last isomorphism).
Denote by $M(A)$ the fiber bundle defined by a matrix $A \in \mathrm{GL}(2, \mathbb{Z})$. The fiber bundles $M(A)$ and $M\left(A^{\prime}\right)$ are isomorphic if and only if the matrix A^{\prime} is conjugate

DOI: 10.1007/s00031-017-9416-y
Received September 1, 2016. Accepted December 9, 2016.
Corresponding Author: E. Vinberg, e-mail: evinberg@gmail.com.
to A or its inverse in $\mathrm{GL}(2, \mathbb{Z})$. The manifold $M(A)$ is hyperbolic (of finite volume) if and only if the matrix A is hyperbolic, i.e., has real eigenvalues distinct from ± 1 or, equivalently, $\operatorname{tr}(A) \notin\{0, \pm 1, \pm 2\}$ (see, for example, [9]). It is orientable if and only if $\operatorname{det} A=1$, i.e., $A \in \operatorname{SL}(2, \mathbb{Z})$.

Since any topological automorphism of the punctured torus T_{0} extends to an automorphism of the torus T, the fiber bundle $M(A)$ naturally embeds into a fiber bundle with fiber T. The boundary of this embedding is a circle. Retracting it to a point, we obtain a one point compactification of $M(A)$ with connected punctured neighborhoods of the boundary point. This means that the hyperbolic manifold $M(A)$ has only one cusp.

Let $\alpha \in \operatorname{Aut} F_{2}$ be a representative of the coset of $\operatorname{Int} F_{2}$ corresponding to A. Then the fundamental group of $M(A)$ is isomorphic to the semi-direct product $\langle\alpha\rangle<F_{2}$, where $\langle\alpha\rangle$ is the cyclic group generated by α. It is known that every automorphism of F_{2} takes the commutator (ξ, η) to a conjugate of $(\xi, \eta)^{ \pm 1}$. So we may assume that α takes (ξ, η) to $(\xi, \eta)^{ \pm 1}$, depending on $\operatorname{det} A$.

From now on, we assume that the manifold $M(A)$ is orientable, i.e., $\operatorname{det} A=1$, and $\alpha((\xi, \eta))=(\xi, \eta)$.

If A is hyperbolic with $\operatorname{det} A=1$, then the fundamental group of $M(A)$ is isomorphic to a torsion-free lattice in $\operatorname{PSL}(2, \mathbb{C})$, which is defined uniquely up to conjugacy. It is known [6] that any such lattice can be isomorphically lifted to $\mathrm{SL}(2, \mathbb{C})$. This means that there is a faithful linear representation

$$
\varphi:\langle\alpha\rangle \curlywedge F_{2} \rightarrow \mathrm{SL}(2, \mathbb{C})
$$

such that its image is a lattice in $\operatorname{SL}(2, \mathbb{C})$. Denote this lattice by $\Gamma(A)$.
Set

$$
X=\varphi(\xi), Y=\varphi(\eta), L=\varphi(\alpha)
$$

Then X, Y and L generate $\Gamma(A)$. Moreover, since the matrices L and (X, Y) commute, they generate a free abelian group of rank 2. It follows that they are unipotent up to a sign. In particular, $\operatorname{tr}(X, Y)= \pm 2$. However, the case $\operatorname{tr}(X, Y)=$ 2 is realized, when X and Y have a common eigenvector, which implies that L has the same eigenvector, a contradiction. Hence, $\operatorname{tr}(X, Y)=-2$. Replacing L with $-L$ if needed, one may assume that $\operatorname{tr} L=2$, i.e., L is unipotent.

2. Calculating the traces

A standard calculation with traces shows that

$$
\operatorname{tr}(X, Y)=(\operatorname{tr} X)^{2}+(\operatorname{tr} Y)^{2}+(\operatorname{tr} X Y)^{2}-(\operatorname{tr} X)(\operatorname{tr} Y)(\operatorname{tr} X Y)-2
$$

for any matrices $X, Y \in \mathrm{SL}(2, \mathbb{C})$. Thus, in our situation we have

$$
(\operatorname{tr} X)^{2}+(\operatorname{tr} Y)^{2}+(\operatorname{tr} X Y)^{2}=(\operatorname{tr} X)(\operatorname{tr} Y)(\operatorname{tr} X Y)
$$

In other words, if we set $x=\operatorname{tr} X, y=\operatorname{tr} Y, z=\operatorname{tr} X Y$, then the point (x, y, z) belongs to the (complex) Markov surface defined by the equation

$$
x^{2}+y^{2}+z^{2}=x y z .
$$

ON A PHENOMENON DISCOVERED BY HEINZ HELLING

The traces of the matrices

$$
\alpha(X):=\varphi(\alpha(\xi)), \quad \alpha(Y):=\varphi(\alpha(\eta)), \quad \alpha(X) \alpha(Y)=\alpha(X Y):=\varphi(\alpha(\xi \eta))
$$

can be expressed in terms of x, y, z. They do not change when α is multiplied by an inner automorphism of F_{2}, so they depend only on the matrix A.

More precisely, there is a natural action (by the precomposition of homomorphisms with automorphisms) of the group $\operatorname{GL}(2, \mathbb{Z})=\operatorname{Out}\left(F_{2}\right)$ on the character variety

$$
X\left(F_{2}, \mathrm{SL}(2, \mathbb{C})\right):=\operatorname{Hom}\left(F_{2}, \mathrm{SL}(2, \mathbb{C})\right) / / \mathrm{SL}(2, \mathbb{C})=\operatorname{Spec} \mathbb{C}[\operatorname{tr} X, \operatorname{tr} Y, \operatorname{tr} X Y]=\mathbb{C}^{3},
$$

such that

$$
A(\operatorname{tr} X, \operatorname{tr} Y, \operatorname{tr} X Y)=(\operatorname{tr} \alpha(X), \operatorname{tr} \alpha(Y), \operatorname{tr} \alpha(X Y)) \quad \text { for } \quad A \in \mathrm{GL}(2, \mathbb{Z})
$$

It is well known that the group $\mathrm{GL}(2, \mathbb{Z})$ is generated by the matrices

$$
R_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad R_{2}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad R_{3}=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)
$$

acting on the hyperbolic plane H^{2} as the reflections in the sides of a triangle with angles $\pi / 2, \pi / 3,0$. They lift to the following automorphisms of F_{2} :

$$
\rho_{1}: \xi \mapsto \xi, \eta \mapsto \eta^{-1}, \quad \rho_{2}: \xi \mapsto \eta, \eta \mapsto \xi, \quad \rho_{3}: \xi \mapsto \xi \eta, \eta \mapsto \eta^{-1} .
$$

It is easy to see how they transform the traces. Thus we obtain:

$$
R_{1}(x, y, z)=(x, y, x y-z), \quad R_{2}(x, y, z)=(y, x, z), \quad R_{3}(x, y, z)=(z, y, x)
$$

In our situation, the matrices $\alpha(X)$ and $\alpha(Y)$ are conjugate to X and Y by means of L, so there must be

$$
A(x, y, z)=(x, y, z)
$$

In other words, (x, y, z) is a fixed point of A lying on the Markov surface.
Recall that the trace field of a linear group is the field generated over \mathbb{Q} by the traces of its elements. The trace field $K=K(A)$ of the group $\Gamma(A)$ coincides with the trace field of the subgroup $\Delta(A)$ generated by X and Y and is equal to $\mathbb{Q}(x, y, z)$: see [8, Cor. 4.3.2].

The invariant trace field of a lattice Γ in a semisimple Lie group is the trace field of the group $\operatorname{Ad}(\Gamma)$. It is known to be invariant under commensurability [11]. According to [12, Cor. to Thm. 2], the invariant trace field of the group $\Gamma(A)$ is equal to

$$
k(A)=\mathbb{Q}\left(x^{2}, y^{2}, x y z\right)=\mathbb{Q}\left(x^{2}, y^{2}, z^{2}\right) .
$$

U. REHMANN, E. VINBERG

3. A series of examples

In [3], H. Helling calculated the trace fields for the groups $\Gamma\left(A_{n}\right)$, where

$$
A_{n}=\left(\begin{array}{cc}
1 & 1 \\
n & n+1
\end{array}\right)=R_{2}\left(R_{1} R_{3}\right)^{n} R_{2} R_{1} R_{3} \in \mathrm{SL}(2, \mathbb{Z})
$$

Below we reproduce his calculations with some modifications. (Similar calculations, but with a bit weaker result, were done in a later paper [2].)

Set

$$
A_{n}(x, y, z)=\left(x_{n}, y_{n}, z_{n}\right) .
$$

We have

$$
\begin{aligned}
\left(x_{0}, y_{0}, z_{0}\right)=R_{1} R_{3}(x, y, z) & =(z, y, y z-x) \\
\left(x_{n}, y_{n}, z_{n}\right)=R_{2} R_{1} R_{3} R_{2}\left(x_{n-1}, y_{n-1}, z_{n-1}\right) & =\left(x_{n-1}, z_{n-1}, x_{n-1} z_{n-1}-y_{n-1}\right)
\end{aligned}
$$

whence $x_{n}=z$ and

$$
\binom{z_{n}}{y_{n}}=\left(\begin{array}{cc}
z & -1 \\
1 & 0
\end{array}\right)\binom{z_{n-1}}{y_{n-1}} .
$$

If (x, y, z) is a fixed point of A_{n}, there must be $x=z$, so $z_{0}=y z-z$ and

$$
\binom{z}{y}=\left(\begin{array}{cc}
z & -1 \tag{1}\\
1 & 0
\end{array}\right)^{n}\binom{z_{0}}{y_{0}}=\left(\begin{array}{cc}
z & -1 \\
1 & 0
\end{array}\right)^{n+1}\binom{y}{z}
$$

One can easily prove by induction that

$$
\left(\begin{array}{cc}
z & -1 \tag{2}\\
1 & 0
\end{array}\right)^{n+1}=\left(\begin{array}{cc}
q_{n+1} & -q_{n} \\
q_{n} & -q_{n-1}
\end{array}\right) \text { for } n \geq 1
$$

where q_{n} are polynomials in z defined by

$$
\begin{equation*}
q_{0}=1, \quad q_{1}=z, \quad q_{n+1}=z q_{n}-q_{n-1} \text { for } n \geq 1 \tag{3}
\end{equation*}
$$

By taking determinants one obtains the identity

$$
\begin{equation*}
q_{n}^{2}-1=q_{n-1} q_{n+1} \tag{4}
\end{equation*}
$$

It follows from (3) that

$$
\begin{equation*}
q_{n}(z)=U_{n}(z / 2)=\sum_{i=0}^{[n / 2]}(-1)^{i}\binom{n-i}{i} z^{n-2 i} \tag{5}
\end{equation*}
$$

where U_{n} is the Chebyshev polynomial of the second kind (of degree n). Note that the polynomial q_{n} is even (odd) for n even (odd).

From (1) and (2) we obtain

$$
\begin{equation*}
y_{n}=y q_{n}-z q_{n-1}, \quad z_{n}=y q_{n+1}-z q_{n} . \tag{6}
\end{equation*}
$$

We thus see that the fixed points (x, y, z) of A_{n} on the Markov surface are given by the following equations (having in mind that $x=z$):

$$
\begin{array}{r}
y^{2}+(2-y) z^{2}=0 \\
y\left(q_{n}(z)-1\right)-z q_{n-1}(z)=0 \\
y q_{n+1}(z)-z\left(q_{n}(z)+1\right)=0 . \tag{9}
\end{array}
$$

Since we are interested only in non-real solutions, we may assume that $y, z \neq 0$.
If $q_{n}(z)=1$, it follows from (8) that $q_{n-1}(z)=0$, and then from (3) we get that $q_{n+1}(z)=z$. Substituting this in (9) we obtain $y=2$, which contradicts (7).

If $q_{n}(z)=-1$, it follows from (9) that $q_{n+1}(z)=0$, and then from (3) we get that $q_{n-1}(z)=-z$. Substituting this in (8) we obtain $2 y=z^{2}$, whence by (7) $y=4$ and therefore $z=\sqrt{8}$. However, all the roots of the polynomial q_{n+1} lie in the interval $(-2,2)$, so this case does not occur.

Thus, we may assume that $q_{n}(z) \neq \pm 1$. Under this assumption, equations (8) and (9) are equivalent due to (4). Eliminating y from (7) and (8), one obtains

$$
\begin{equation*}
2\left(q_{n}(z)-1\right)^{2}-z q_{n-1}(z)\left(q_{n}(z)-1\right)+q_{n-1}(z)^{2}=0 . \tag{10}
\end{equation*}
$$

It follows from the obvious multiplication law for matrices (2) and from (4) that

$$
\begin{aligned}
q_{2 k} & =\left(q_{k}+q_{k-1}\right)\left(q_{k}-q_{k-1}\right), & q_{2 k}-1 & =q_{k-1}\left(q_{k+1}-q_{k-1}\right), \\
q_{2 k-1} & =q_{k-1}\left(q_{k}-q_{k-2}\right), & q_{2 k+1}-1 & =\left(q_{k}+q_{k-1}\right)\left(q_{k+1}-q_{k}\right) .
\end{aligned}
$$

In particular, this shows that if $q_{n}(z) \neq 1$, then $q_{k-1}(z) \neq 0$ for $n=2 k$ and $q_{k}(z)+q_{k-1}(z) \neq 0$ for $n=2 k+1$.

We will use the above formulas to simplify the polynomial F_{n} from the left-hand side in (10) as follows.

For $n=2 k$ we have

$$
\begin{aligned}
q_{k-1}^{-2} F_{n} & =2\left(q_{k+1}-q_{k-1}\right)^{2}-z\left(q_{k}-q_{k-2}\right)\left(q_{k+1}-q_{k-1}\right)+\left(q_{k}-q_{k-2}\right)^{2} \\
& =2\left(q_{k+1}-q_{k-1}\right)^{2}-\left(q_{k+2}-q_{k}\right)\left(q_{k}-q_{k-2}\right) \\
& =\left(q_{k+1}-q_{k-1}\right)^{2}-\left|\begin{array}{cc}
q_{k+2}-q_{k} & q_{k+1}-q_{k-1} \\
q_{k+1}-q_{k-1} & q_{k}-q_{k-2}
\end{array}\right| \\
& =\left(q_{k+1}-q_{k-1}\right)^{2}-\left(z^{2}-4\right) .
\end{aligned}
$$

For $n=2 k+1$ we have

$$
\begin{aligned}
\left(q_{k}+q_{k-1}\right)^{-2} F_{n} & =2\left(q_{k+1}-q_{k}\right)^{2}-z\left(q_{k}-q_{k-1}\right)\left(q_{k+1}-q_{k}\right)+\left(q_{k}-q_{k-1}\right)^{2} \\
& =2\left(q_{k+1}-q_{k}\right)^{2}-\left(q_{k+2}-q_{k+1}\right)\left(q_{k}-q_{k-1}\right) \\
& =\left(q_{k+1}-q_{k}\right)^{2}-\left|\begin{array}{cc}
q_{k+2}-q_{k+1} & q_{k+1}-q_{k} \\
q_{k+1}-q_{k} & q_{k}-q_{k-1}
\end{array}\right| \\
& =\left(q_{k+1}-q_{k}\right)^{2}-(z-2) .
\end{aligned}
$$

The evaluation of the determinants is obtained in both cases by observing that the underlying 2×2 matrix Q_{k} obeys $Q_{k}=\left(\begin{array}{cc}z & -1 \\ 1 & 0\end{array}\right) Q_{k-1}$, so $\operatorname{det} Q_{k}=\operatorname{det} Q_{k-1}$ and hence $\operatorname{det} Q_{k}=\operatorname{det} Q_{1}$ (assuming $q_{-1}=0$).

U. REHMANN, E. VINBERG

Thus, under the assumption $q_{n}(z) \neq 1$, the solutions to (10) are the roots of the polynomial

$$
f_{n}(z)=\left\{\begin{array}{cl}
\left(q_{k+1}(z)-q_{k-1}(z)\right)^{2}-\left(z^{2}-4\right) & \text { if } n=2 k \\
\left(q_{k+1}(z)-q_{k}(z)\right)^{2}-(z-2) & \text { if } n=2 k+1
\end{array}\right.
$$

These formulas have been given also, without proof, in [3] and [5].
The trace field of $\Gamma\left(A_{n}\right)$ is $\mathbb{Q}(z)$, where z is a suitable root of f_{n}. The invariant trace field is $\mathbb{Q}\left(y^{2}, z^{2}\right)=\mathbb{Q}\left(y, z^{2}\right)$. For n even, it follows from (8) that $y \in \mathbb{Q}\left(z^{2}\right)$; in this case the invariant trace field coincides with $\mathbb{Q}\left(z^{2}\right)$.

By means of the computer program Pari [10] (used also by H. Helling), in all the cases checked so far $(n \leq 46)$, it was found that the polynomial f_{n} is irreducible and the trace field $K_{n}=\mathbb{Q}(z)$ has class number one. Moreover, for n odd it has no nontrivial subfield. For n even, it has exactly one nontrivial subfield $k_{n} \subset K_{n}$ of index two, which also has class number one. It is the invariant trace field of $\Gamma\left(A_{n}\right)$.

For $n=47$, PARI gave up because it could not cope with the large discriminants showing up, but for several higher values it succeeded, and we never found any class number >1 for these fields. The irreducibility of the factor f_{n} has been verified for $n \leq 2000$.

In the table below, we give the polynomial f_{n} and the discriminant of the trace field K_{n} for $n \leq 12$ as computed by Pari. Note that in [8] the fields K_{n} had been calculated for $n=1$ (p. 138), $n=2$ (p. 143), and $n=3$ (p. 143, Ex. 4.6).

The discriminants of the invariant trace fields k_{n} for $n=2,4,6,8,10,12$ are

$$
-7,-44,2917,7684,-315544,-2985968
$$

n	f_{n}	Discriminant
1	$z^{2}-3 z+3$	-3
2	$z^{4}-5 z^{2}+8$	392
3	$z^{4}-2 z^{3}-z^{2}+z+3$	697
4	$z^{6}-6 z^{4}+8 z^{2}+4$	-123904
5	$z^{6}-2 z^{5}-3 z^{4}+6 z^{3}+2 z^{2}-5 z+3$	-453683
6	$z^{8}-8 z^{6}+20 z^{4}-17 z^{2}+8$	68071112
7	$z^{8}-2 z^{7}-5 z^{6}+10 z^{5}+7 z^{4}-14 z^{3}-2 z^{2}$	628432401
8	$z^{10}-10 z^{8}+35 z^{6}-50 z^{4}+24 z^{2}+4 \quad+3 z+3$	-60460908544
9	$\begin{aligned} z^{10}-2 z^{9}-7 z^{8}+ & 14 z^{7}+16 z^{6}-32 z^{5} \\ & -13 z^{4}+26 z^{3}+3 z^{2}-7 z+3 \end{aligned}$	-1537714619747
10	$z^{12}-12 z^{10}+54 z^{8}-112 z^{6}+105 z^{4}-37 z^{2}+8$	79654564209992
11	$\begin{aligned} & z^{12}-2 z^{11}-9 z^{10}+18 z^{9}+29 z^{8}-58 z^{7}-40 z^{6} \\ & \quad+40 z^{6}+80 z^{5}+22 z^{4}-44 z^{3}-3 z^{2}+5 z+3 \end{aligned}$	5910843534832201
12	$\begin{aligned} z^{14}-14 z^{12}+77 z^{10} & -210 z^{8} \\ & +294 z^{6}-196 z^{4}+48 z^{2}+4 \end{aligned}$	-146079824232841216

ON A PHENOMENON DISCOVERED BY HEINZ HELLING

4. Conclusion

Heinz Helling calculated the trace fields of the groups $\Gamma(A)$ in about 200 cases, and in all the cases they turned out to have class number one. However, he had no time to prove or disprove this for all the groups $\Gamma(A)$, and did not dare to formulate this as a conjecture.

A vague indication to the reason why this phenomenon takes place is the known theorem that the class number of an imaginary quadratic field is equal to the number of cusps for the corresponding Bianchi group (see, for example, [8, Thm. 9.1.1, p. 276]). As was explained above, the group $\Gamma(A)$ has only one cusp. However, it is not arithmetic, unless the invariant trace field is quadratic, and the known proof for Bianchi groups does not work.

References

[1] P. Alestado, H. Helling, On torus fibrations over the circle, preprint E97-005, SFB 343, Bielefeld, 1997.
[2] J. O. Button, Invariant trace fields of once-punctured torus bundles, Kodai Math. J. 28 (2005), no. 1, 181-190.
[3] H. Helling, The trace field of a series of hyperbolic manifolds, preprint 99-072, SFB 343, Bielefeld, 1999.
[4] H. Helling, Ch. Menzel, Towards an algebraic construction of the hyperbolic structure on surface bundles, preprint 99-074, SFB 343, Bielefeld, 1999.
[5] H. Helling, The Markov group, unpublished manuscript, Bielefeld, 2013.
[6] M. Culler, Lifting representations to covering groups, Adv. Math. 59 (1986), 64-70.
[7] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin, 2001.
[8] C. Maclachlan, A. W. Reid, The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Mathematics, Vol. 219, Springer-Verlag, New York, 2003.
[9] J.-P. Otal, The hyperbolization theorem for fibered 3-manifolds, SMF/AMS Texts and Monographs, Vol. 7, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001.
[10] The Pari-Group, PARI/GP version 2.7.5, Bordeaux, 2015, http://pari.math. u-bordeaux.fr.
[11] Э. Б. Винберг, Кольча определения плотных подгрупп полупростых линейных грynn, Izv. AN SSSR 35 (1971), no. 1, 45-55. Engl. transl.: E. B. Vinberg, Rings of definition of dense subgroups of semisimple linear groups, Math. USSR, Izv. 5 (1971), no. 1, 45-55.
[12] Э. Б. Винберг, Наименьшее поле определения подгруппьь группьи PSL_{2}, Мат. Сб. 184 (1993), no. 10, 53-66. Engl. transl.: E. B. Vinberg, The smallest field of definition of a subgroup of the group PSL_{2}, Russian Acad. Sci. Sb. Math. 80 (1995), no. 1, 179-190.

