
J. reine angew. Math. 470 (1996),51-88 Journal fiir die reine und
angewandte Mathematik
© WaIter de Gruyter
Berlin· New York 1996

PBW-bases of quantum groups
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1. Introduction

Let A = (aij)ij be the Cartan matrix of a finite-dimensional semisimple complex Lie
algebra ofrank n (see [H]), this is a symmetrizable matrix, and we denote by (BJi the minimal
symmetrization, thus Ci are positive integers without a proper common divisor such that
Biaij = Bjaji ·

Let Q (v) be the function field in one variable v over the field Q of rational numbers.

We denote by U+ the (+ )-part of the quantum group U = Uq(A) over Q(v) (as defined
by Drinfeld [D] and Jimbo [J1] and modified by Lusztig [L2]), it is the free Q (v)-algebra
with generators El' ... , En and relations

n(ij) [ ( ..)]

t~O (-1Y n;J ti Et ~Et(ij)-t= 0,

for all i *= j, where n (ij) = - aij + 1; we use the notation

VS - v- s

cs] = = vs - 1 + vs - 3 + ... + v- s +1
-1 'v-v

S [s] [s]!
[s]! = n [r], and = [ ]' [ _ ] , '

r= 1 r r . sr.

here, s, r are non-negative integers, and r ~ s; also, given a polynomial.! in the variable v and
an integer a, we denote by fa the polynomial obtained from f by replacing v by vQ

, for
2s -2s

example, [S]2 = v 2 - V-2' The considerations in this paper will be restricted to the
v - v

(+)-part U+, but the reader should observe that one may use the well-known triangular
decomposition U = U- Q9 UO Q9 U+, see [Ro], in order to obtain related results for the
Borel part UO ® U+ or even for U itself.

We denote by el' ... , en the standard basis of 7L n
• The Cartan matrix defines on 7Ln a

symmetric bilinear form by (e i , ej ) = Biaij • We consider U+ as a 7L n-graded algebra by
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assigning to Ei the degree ei • Given a homogeneous element X of U+, we denote its degree
by dimX.

We are going to present a sequence Xl' ... , Xm of homogeneous elements of U+ such
that the monomials X: 1

... X~rn form a Q (v)-basis of U+, and such that for all i <j

X.X. = v(dimXi,dimXj) X.X. + ~ c(a. a. )X~i+l ... X~j-l
) 1 1) L.,; 1+1'· .. , )-1 1+1 J-l

I(i,j)

with coefficients c(ai + 1 , ••• , aj - 1) in Q (v); here, the index set I(i,j) is the set of sequences
j-l

(a i +1 , ai + 2 , ••• , aj - 1) of natural numbers such that L at dimXt = dimXi + dirnX). We say
t=i+l

that the sequence Xl' ... , Xm generates a PBW-basis of U+.

It follows that U+ is an iterated skew polynomial ring over Q (v). To be more precise:
Let Uj be the subalgebra of U+ generated by Xl' ... , X). Thus Uo = Q (v) and for 1 ~ j ~ rn,
we have ~ = ~-1 [X); Ij' ()j]' with an automorphism Ij and an lj-l-derivation Dj of ~-1.

Note that the automorphism Ij is given explicitly by

and we will show that

The last assertion has the following consequence: we can apply a recent result of
Goodearl and Letzter [GL] in order to see that all prime ideals of U+ are completely prime.
We are indebted to Alev and Goodearl for drawing our attention to this problem.

There do exist several investigations dealing with the construction of PBW-bases for
U+ (or related algebras), let us mention papers by Khoroshkin and Tolstoy [KT1], [KT2],
[KT3], Levendorskii and Soibelman [LS], Lusztig [Ll], [L4], Takeuchi [T], Xi [X], and
Yamane [Yl], [Y2]. These investigations usually start with the Drinfeld-Jimbo presentation
and use direct calculations, often involving a braid group operation. Here we want to show
that the Hall algebra approach as introduced in [R3], [R5], [R?] (see also [L3] and
especially the new paper by Green [Gr]) is very suitable to deal with the problem. As
we will recall below, one may identify U+ with the socalled twisted generic Hall algebra
Jt;(J) ® Q(v). Using this identification, we obtain a special Q(v)-basis of U+, so that the
basis elements may be considered not just as elements, but as algebraic objects with a rich
structure: as modules over a finite-dimensional hereditary algebra A of finite representation
type. Since the basis elements may be interpreted as A-modules, one can discuss their module
theoretical, homological or geometrical properties: whether they are indecomposable, or
multiplicityfree and so on. A slight modification of these basis elements will form the
PBW-basis of interest; those elements which correspond to indecomposable modules
(together with some ordering) will be a generating sequence for the PBW-basis. The Hall
algebra approach allows to use the representation theory of finite-dimensional hereditary
algebras in order to derive properties of U+; in particular, the shape of the Auslander-Reiten
quiver of A will be of importance. The Auslander-Reiten quiver of A encodes a lot of
information about the PBW-basis which we will present. As examples, we will write down in
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full detail the rank 2 cases and the case An' In the latter case, we provide an explicit
comparison with the PBW-basis presented by Yamane [Yl], [Y2].

Before we use the Hall algebra approach, we want to exhibit our results on U+ without
any reference to the representation theory of finite-dimensional hereditary algebras. Here is
the recipe for writing down explicitly a PBW-basis: a generating sequence will be indexed by
the positive roots for L1, thus we will consider suitable orderings of the set of positive roots.

We denote by q,+ the set of positive roots for L1, and we assume that q,+ is embedded
into 7L. n so that el' ... , en are the simple roots and (-, - ) is the corresponding bilinear form.

For any positive root a, let us define an element X(a) of U+. For the simple roots e i , take
X(ei ) = E i , thus the generators El' ... , En will belong to our basis, the remaining elements
will be constructed inductively. Given a ring R, and Xl' X 2 , t 1 , t2 ER with t 1 , t2 central in R;
then the element t1 Xl X 2 - t2 X 2 X 1 will be called a skew commutator of x 1 and X 2 . We are
going to construct the generating sequence Xl' ... , Xm as iterated skew commutators,
starting from El' ... , En' (This sequence may also be obtained using a braid group operation
on U, as we will show at the end of the paper.)

First of all, we choose some orientation of the edges of the graph of L1. Recall that one
attaches a graph to L1 as follows: it has as vertices the integers 1, 2, ... , n and the edges are the
subsets {i,}} with aij < O. To choose an orientation means to select for any edge {i,}} one of
the pairs (i,}) or U, i); in case (i,}) is selected, we draw an arrow i --. }. Since the graph of L1
is a forest, it is sufficient to choose a total ordering « on the set {1, 2, ... , n} and to write i --.}
in case {i,}} is an edge and i «). Thus, we just may take the natural ordering of the integers
1 < 2 < ... < n; in this case, i --. } means a ij =t= 0 and i <}. Usually, in Lie theory,
constructions using L1 will not depend on the orientation of the edges. Thus, if we want to
stress that we use the chosen orientation in an essential way, we will write J instead of L1.

Here is the first such instance: J defines a (usually non-symmetric) bilinear form
<-, - >on 7L. n as follows: let <e i , e i>= Ci' and for i -:f:.}, let <ei , ej >= Ciaij provided i --. },
and zero otherwise.

A pair (b, a) of positive roots will be called J-orthogonal, provided the following two
conditions are satisfied:

<a, b> = 0, and (b, a> ~ 0,

and we denote r: = - <b, a>. In the simply-laced cases (An' !CDn' 1E6 , 1E 7 , IEs) we have r: ~ 1, in
the cases IBn , en' IF4' we have r: ~ 2, whereas for b 2 , we have r: ~ 3.

Suppose that (b, a) is a J-orthogonal pair, and that X(a), X(b) are already defined. If
r= r: ~ 1, then also a + b is a positive root and we define

X(a + b) = X(b) X(a) - v- r X(a) X(b).

If r = 2, then one of a, b is a short root, the other one is a long root. Consider first the case
that a is a short root, thus 2a + b is a root and we define
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1
X(2a + b) = [2] (X(a + b) X(a) - X(a) X(a + b)) .

Second, in case a is a long root, then a + 2b is a root and we define

1
X(a + 2b) = [2] (X(b)X(a + b) - X(a + b)X(b)).

It remains to consider the case r = 3, thus we deal with G2 , and we assume that a is a short root
and b is a long root. Then also 2a + b, 3a + band 3a + 2b are positive roots, and we define

1
X(2a + b) = [2] (X(a + b) X(a) - V-I X(a) X(a + b)),

1
X(3a + b) = [3] (X(2a + b)X(a) - v· X(a)X(2a + b)),

1
X(3a + 2b) = [3] (X(a + b)X(2a + b) - v· X(2a + b)X(a + b)).

We will show that these definitions are well-defined and we obtain in this way a set of
elements X(a) labelled by the positive roots a.

Also, we may index the positive roots a 1 , a 2 , .•. , am such that (ai' a j ) > 0 implies i ~j.
(We will see in Lemma 1 that such an ordering has the following additional property: If
(ai' a j ) < 0, then i > j.) Then X(a 1), X(a 2 ), ••• , X(am) generates a desired PBW-basis.

For any positive root a, let e(a) = ~ (a, a); it is well-known that e(a) is a non-negative

integer (it is equal to 1 in the simply-laced cases, it is 1 or 2 for lEBn, en' IF4' and 1, 2, or 3 in the
case G2); of course, we have s(ei ) = Si. Consider the element

X(a)(t) = _1_,- X(aY ,
Et] 'e(a)

these elements are called divided powers.

Let d = 7L [v, v- 1], and let U';be the d-subalgebra of U+ generated by the elements
E/t). We will see that U.; contains all the divided powers X(a)<t), thus U.; may be considered
as an analogue of the Kostant 7L-form in classical Lie-theory.

The author is endebted to the referee for very useful comments concerning the
presentation of the results.

2. Hall algebras

It has been shown in [R7] that U+ may be identified with the twisted generic Hall
algebra .Ye = Jf*(J) ® Q (v), where J is obtained from L1 by choosing some orientation of
the edges of the graph of L1. (For a new, and much better proof we refer to Green [Or].) For
the convenience of the reader, we recall the main definitions.
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Choose a k-species !/ = (~, i~) of type J; we say that f/ is reduced provided
ei = dimk Fi for all i. (Readers not familiar with k-species may restrict their attention to the
simply-laced cases An' [))n' [6' [7' [8· In these cases, we may consider instead of !/ a quiver
of type A and its representations over k.) A reduced k-species!/ is given by field extensions~
over k of degree ei, and, for i --.. j an ~-}j-bimodulei~ of k-dimension - eiaij . Actually, in
case k is a finite field, there is (up to isomorphism) just one reduced k-species of type J.

We consider representations of !/, a representation being of the form (~, hj)' with ~

a finite-dimensional right ~-vector space, andhj: ~ ® i~ --.. Vj an }j-linear map, for any
i --.. j. Note that the representations of !/ are just the finite-dimensional right modules over
the tensor algebra of !/.

Given a representation M of !/, we denote its isomorphism class by [M] and by dim M
its dimension vector, it is an element in the Grothendieck group Ko (f/) ofall representations
modulo exact sequences. We identify 7Ln with Ko (!/) so that dim Si = ei , where Si is the simple
representation of !/ corresponding to the vertex i.

It is known [Ga], [DR1] that dim furnishes a bijection between the isomorphism
classes of the indecomposable representations of Y; and the positive roots. For a positive
root a, we denote by M(a) = My (a) an indecomposable representation of !/ with
dimM(a) = a. In particular, Si = M(ei) is the simple representation corresponding to the
vertex i. Given a map a: ljJ+ --.. No, we set

M(a) = My (a) = EB a (a) M(a)
a

(for t E No, and any representation N, we denote by tN the direct sum of t copies of N). The
theorem of Krull-Remak-Schmidt asserts that in this way, we obtain a bijection between the
set of isomorphism classes of representations of!/ and the set f!4 of maps a: ljJ+ --+ No. For
any a E f!4, let dim a = L a(a)a, thus dimM(a) = dima.

a

Note that we will identify a E ljJ+ with the corresponding characteristic function
(jJ+ --+ No; in particular, the simple roots ei are considered as elements of f!4. Given two
functions (jJ+ --.. No, we may add them, and we can take multiples by non-negative integers.
However, since we identify positive roots with the corresponding characteristic function,
we have to be careful about the addition: the addition inside 7Ln will be denoted by +, that
inside the set f!4 will be denoted by EB. For t E No, t-fold multiple of a E f!4 will be denoted by
ta (for t ~ 2, this uses the addition in f!4; note that there are no proper multiples in (jJ+).

In order to define the multiplication of :Ye, we need Hall polynomials and the Euler
form. Recall that we have defined a bilinear form <-, - >on 7Ln

• This form is called the Euler
form, since for representations M, N of !/, we have

<dimM,dimN) = L (-1)tdimk Extt(M,N)
t~O

= dimk Hom(M, N) - dimk Ext1 (M, N),

see [R1]. Note that (-, -) is the symmetrization of <-, - ).
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We will have to consider polynomials in one variable q, with integral coefficients; we
usually will consider the corresponding polynomial ring Z [q] as a subring of Q (v), where
q = v2

•

We recall from [R3] that given three elements a, (3, YE 86, there exists a polynomial <p~)!

in 7L [q] such that for k a finite field, and y; a reduced k-species of type J, the number 4J~y (I k /)
is equal to the number of subrepresentations U of My ((3) which are isomorphic to My (y)
such that My ({3)jU is isomorphic to Mf/(a). The polynomials 4J~)! are called Hall poly­
nomials (some have been calculated explicitly, see [R4]). Sometimes, it will be convenient

• A.M(fJ) . d f A.fJto write If'M(a)M(y) Instea 0 If'ay·

We note the following: If the polynomial 4J~y is non-zero, then 4J~y(lkl) =t= 0 for
some finite field k. Consider now a reduced k-species Y; of type J, then My ((3) has a
submodule U which is isomorphic to Mf/(Y) with My ({3)jU isomorphic to My (a). If U
is a direct summand, then M y ({3) ~ Mf/(a E9 y). If U is not a direct summand, then
Ext1(My (a), My (y)) =t= O.

More generally, we also will need the Hall polynomials 4J~1' ... ,an ' where aI' ... , an' (3 are
elements of84; again, these are polynomials in a variable q with integer coefficients and with
the following property: for any finite field k, and Y; a reduced k-species of type J, the number
4J~b ... ,an (Ik/) is the number of filtrations My ({3) = No ~ NI ~ ... ~ Nt = 0 such that
Ni-IjNi is isomorphic to Mf/(aJ, for 1 ~ i ~ t.

By definition,.Yf is the free Q(v)-module with basis the set 84 of functions ep+ ~ No
(or, equivalently, the set of isomorphism classes of representations of some fixed reduced
k-species Y; of type J), with multiplication

a * y = v(dima, dimy) L 4J~y {3,
{Jef!A

for a, y E !!J.

Theorem. There exists an isomorphism 11: U+ --+- :If of 7Ln-graded Q (v )-algebras such

that 11 (Ei ) = ei ·

For a proof, see [R7], or, better [Gr].

In the last sections, we also will consider .Yf* (J) itself; by definition, it is the
d-subalgebra generated by 84. Note that 84 'is a free si-basis of~ (J).

3. The basic formula

We will work with .Yf instead of U+. As we have seen, .Yf is the free Q (v)-module with
basis the set 84 = {<P+ ~ No}, but sometimes it will be more convenient to work with a
slightly modified basis:

We denote by dim: 7Ln --+- 7L the linear form given by dime i = Gi. For a E 84, let
dim a = dim (dim a); thus dim a = dimkMg(a), for any reduced k-species Y.
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Also, let us recall from [R3] that given rx E f!J and any reduced k-species Y of type J,
the k-dimension of the endomorphism ring of My (rx) is independent of Y and is denoted by
e(rx). Also observe that for a positive root 3, the k-dimension of the endomorphism ring of

My(a) is just ~ (a, a), thus the two definitions of da) coincide.

Let

the set of these elements <rx) with a E f!J is again a aJ (v)-basis of Ye; this is the basis we are
mainly interested in. Note that <ei ) = ei • The multiplication formula may be rewritten in
this basis as follows:

<a) * <y) = vt:(a)+t:(y)+(dima,dim y) L v-t:(P)<t>~y<f3).

PE~

We have noted that for any reduced k-species Y, the k-dimension of the endomorphism
ring of My (a) is independent of Y. Similarly [R3], also the k-dimension of Hom(My(a),
My (f3)) is independen of Y and will be denoted by e(rx, f3). In the same way, the k-dimension
of Ext 1 (My (rx), My (f3)) is independent of !7 and will be denoted by (a, f3). Note that
<dim rx, dim f3) = e(a, f3) - ( (rx, f3).

Proposition 1. Let a1 , ... ,at Ef!4 and let us assume that for i<j, we have both
(ai' aj ) = 0 and e(a j , ai) = O. Then

Proof It is sufficient to prove the assertion for t = 2, the general case follows by
induction. Thus, let a=a 1 , and y=a2 • Since (a,y)=O, the only f3 with <t>~y=t=O is
f3 = a ffi y. And <t>:yEBY = 1, since e(y, a) = o. Also,

<dim a, dim y) = e(ex, y) - , (a, y) = e(a, y) .

On the other hand, we have

e(ex (f) y) = e(a) + e(y) + e(a, y) + e(y, a) = e(rx) + e(y) + e(a, y).

Altogether:

<a) * <y) = v-dima+t:(a)-dimy+t:(y)a * y

= <rx ffi y).

Theorem 1. Let ex, yE f!J with e(y, a) = 0 and' (ex, y) = O. Then we have

<y) * <ex) = V(dima, dim 'I) <ex) * <y) + L Cp<f3) ,
PE J(a, 'I)
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with coefficients cp in 7L [v, v -1], where J (a, "I) is the set olmaps PE f!J differentlrom a Ee "I such
that </J~, (Z ::f: 0.

Proof The previous proposition shows that

(a) * ("I) = (a Ee "I) .

Thus, let us consider ("I) * (a), it can be written in the form L cp{3, where {3 ranges over all
p

elements from f!J such that cP~,(Z ::f: 0, and clearly the coefficients cp belong to 7L [v, v- 1
]. Of

course, we have

cp = c
p

v-dimp+e(p) •

It remains to calculate the coefficient c~ $ y' Let [/ be a reduced k-species. Let U be
a submodule of M[/(a Ee "I) isomorphic to M[/(a), with factor module isomorphic to
M[/(y). Clearly, U has to be a direct summand (see [R2], Lemma 2.3.1). Since
Horn (M[/ ("I), M[/ (a)) = 0, the theorem ofKrull-Remak-Schmidt asserts that U is the image
of a homomorphism of the form (1,/): M[/(a) --. Mf/(a) Ee M[/(y), where 1 is a
homomorphism Mg(a) --. M[/(y). In this way, we obtain a bijection between the considered
submodules U and the elements of Hom(Mf/(a), Mg(y)). Thus, we see that

</J~~ y = qe(a, y)

= v2 °e(a,y) •

Also,

8(a Ee "I) = 8(a) + 8("1) + 8(a, "I).

Finally, we note that

(dim a, dim "I) = (dim a, dimy) + (dimy, dima)

= 8(a, "I) - '("I, a) .

Altogether, we see that

c' = v-dimy+e(y)-dima+e(a) v(dimy,dima) ,-ha$y
a$y o/ya ,

= v-dima$y+e(a$y) v(dima,dim y).

This shows that

4. Ordering the positive roots

It is well-known that !/ is representation-directed, see [BGP], [DR2]; this means
that there exists a total ordering of the positive roots, say 8 1, 8 2 , .•• , 8 m such that
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Horn (Mg'(ai),Mg' (aj ) 4= 0 (or equivalently, e(ai, aj ) ::f 0) implies that i ~j: such an
ordering will be called A-admissible. The usual visualization using the Auslander-Reiten
quiver will be recalled in Section 6.

Lemma 1. A total ordering a1 , a2 , ... , am ofthe positive roots is A-admissible ifand only
if the following property is satisfied: (ai' aj ) > 0 implies i ~ j.

Such an ordering has the additional property: (ai' a j ) < 0 implies i > j.

Proof We write M(aJ instead of Mg'(ai).

First, let us observe that Ext1(M(aJ, M(aj ) =t= 0 implies i > j. For, assume that there
exists an exact sequence

which does not split. Let M(a t ) be an indecomposable direct summand of N. Then
Hom(M(aj ), M(at ) ::f 0 and Hom(M(at ), M(aJ) ::f 0, thus j ~ t ~ i. We cannot have
a j = ai' since Ext1(M(aJ, M(ai) = o. Thus i > j. Of course, i > j implies that
Hom(M(aJ, M(a j ) = O. In particular, the groups Ext1 (M(ai), M(a j ) and
Horn (M(aJ, M(aj ) cannot be non-zero at the same time.

As a consequence, we see: if (ai' a j ) > 0, then

Assume that there is given an ordering aI' a2 , ... , am with the property that (ai' a j ) > 0
implies i ~j. If Hom(M(aJ, M(a j ) =t= 0, then Ext1 (M(aJ, M(a j ) = 0 and therefore
(ai' aj ) > 0, thus, by assumption i ~j.

For the converse, let us assume that the ordering aI' a2 , ... , am is J-admissible. Let
(ai' aj ) > O. Then Hom(M(ai), M(a j ) = (ai' aj ) > 0, and therefore i ~j. On the other
hand, let <ai' aj ) < O. Then Ext1 (M(a i ), M(a j ) = - (ai' aj ) < O. As we have seen above, we
have i > j. This completes the proof.

Let us fix some A-ordering aI' a2 , ••• , am.

Proposition 1'. For any r:J. E f!J, we have

Proof For i <j, we have e(aj , ai) = 0, by assumption, and we also have
'(ai' aj ) = O. Thus, the assertion is a direct consequence of Proposition 1.
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Given an element w in :Yf, and 1 ~ 0, then w*t denotes its t-th power. For a positive
root a, we also consider a corresponding divided power of (a):

Lemma 2. Lel a be a positive root, and t ~ O. Then

Proof Let f/ be a k-species, where k is a finite field. The number of filtrations

t M (a) - M :::> M :::> ••• :::> M - 0f/ - 0 1 t-

with factors isomorphic to Mf/(a) is given by evaluating the following polynomial at Ikl:

(v 2e(a)t _ 1)(v2e(a)(t-l) - 1) ... (v 2e(a) - 1) t t
----------- - (V(2) [tJ') - ve(a)(z). [tJ'(v2e(a) _ 1)t -. e(a) - 'e(a) .

Let us express a*t in the basis fA. Since' (a, a) = 0, we see that a*t is a multiple of ta, namely

It follows that

= _1_ v-tdima+te(a) a*t
[t]!e(a)

= v - t dim a + te(a) Ve(a)(~) Ve(a)(~) . ta

= (la),

since 8(ta) = t2 8(a) = (t + 2(~)) 8(a). This completes the proof.

We define

Proposition 2. Let \1., E fA, and set \1.,(i) = \1.,(a i ). Then

( \1.,) = X(*r:x(l» * ... * x(*r:x(m» = ( nm 1 ) X*r:x(l) * ... * x*r:x(m)
1 m [ (')J' 1 m·i = 1 \1., l . e(ai)

Proof According to Proposition 1', we have

(\1.,) = (cx(1)a1) * ... * (\1., (m) Sm) .
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Lemma 2 asserts that

This shows the first equality. The second uses just the definition of divided powers.

61

Theorem 2. The monomials Xi(X(1) * ... * x,:(X(m) with a(1), ... , a(m) E No form a
Q (v )-basis of yr, and for all i < j

X.*X.=V(dimXi,dimXj)X.*X.+ " c(a. a. )x.*ai+1*···*x.*aj-lj 1 1 j ~ 1+1' ... , j-1 1+1 j-l
l(i,j)

with coefficients c(ai +1 , .•. , aj - 1) in Q (v). Here, the index set I(i,j) is the set of sequences
j-1

(a i +1 , ai + 2 , .•• , aj - 1) of natural numbers such that L atat = a i + aj .

t=i+l

Proof Given a(1), ... , a(m) E No, define a E fJ by a(aJ = a(i). According to Pro­
position 2, we have

X*(X(1) * ... * x*(X(m) = (nm

[a (i)]' ) <a)1 m ·e(ai)'
i=1

thus the given monomials are non-zero scalar multiples of the elements of fJ, and therefore
form a (]J (v)-basis of :K.

Let i <j. We apply Theorem 1 to ai' a j . We have to show that for f3 E J(ai , a j ),

the element <f3) is a scalar multiple of some monomial xt+ai+ 1* ... * ~*-a/-l with
j-1

L at at = a i + aj.
t=i+1

Let f3 E J (ai' aj ), and let p(t) = f3 (at). Since <P~jai =t= 0, there is an exact sequence

f m
o~ M(ai ) ---+ Ef)p(t)M(at ) ~ M(a j ) ---+ 0,

t=1

and we write/ = (h)t withh: M(a i ) ~ f3(t) M(a t ). Note that the sequence does not split, since
otherwise f3 = ai EB aj' contrary to the assumption f3 E J (ai' aj). Consider some t with
pet) > o. We claim that thenh =t= o. Otherwise, the cokernel of/would split off pet) copies
of M(at ), and since the cokernel of/is indecomposable, this would mean that the sequence
splits. Since Hom(M(ai ), M(at )) =F 0, it follows that i ~ t. Also, we can exclude the case
i = t, since in this caseh, and therefore also/would be a split monomorphism. Altogether,
we see that i < t. The dual arguments (applied to g) show that also t <j. According to
Proposition 2, <f3) is a scalar multiple of xi*+ai + 1 * ··. * Xj*~{ - 1. Also, the exact sequence

j-l

exhibited above shows that L atat = a i + a j . This completes the proof.
t=i+1

5 Journal fUr Mathematik. Band 470
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5. The automorphisms and skew derivations

For any element dE zn, there exists an automorphism Id of Ye given by

for w a homogeneous element of Ye (of degree dim w).

We also note the following rather obvious assertion:

Lemma 3. Let R be a ring, let 1be an endomorphism of R. For r E R, we define a map
£5,: R ~ R by

£5,(x) = rx - l(x)r for x ER.

Then £5, is a 1-1-derivation.

Proof The map £5, clearly is additive. Also, for x, y E R,

£5,(xy) = rxy - l(xy)r

= rxy - I(x)ry + 1(x)ry - 1(x) l(y)r

= (rx - 1(x) r)y + 1(x) (ry - l(y)r)

= £5,(x) . y - l(X) . £5,(y) .

One may call £5, an inner 1-1-derivation.

Let Kbe a commutative ring, and assume that R is a K-algebra and that 1 is K-linear.
Then also £5, is K-linear, for any rE R. If R is generated as a K-algebra by r1 , .•• , rn' and £5 is a
1-1-derivation, the values £5 (rJ, with 1 ~ i ~ n, determine £5 uniquely.

Let :Yt) be the subalgebra of Ye generated by Xl' ... , Xj. Thus Yeo = Q (v) and for
1 ~j ~ m, we have:Yt} = :Yt}-1 [Xj; 1j' £5 j ], with an automorphism 1j and a Ij-1-derivation £5 j
of :Yt}-1. Note that the automorphism Ij of :Yt}-1 is given explicitly by

it is just the restriction of laj to :Yt} -1'

The lj-1-derivation £5 j is given by the formula

£5j(~) = Ai * Xi - Ij(~) * Ai
- ~ c(a a )x*ai + 1 * ... * x*atO-

1
- f...J i+l' ... , j-I i+l j-

I(i,j)

for i <j; in particular, £5 j is the restriction of the inner lj-1-derivation £5 xj to :Yt}-1.

Altogether, we see that Jt is an iterated skew polynomial ring over Q (v).
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Theorem 3. The automorphism Ij and the lj-i-derivation ~j ofJft}-1 satisfy thefollowing
relation:

Proof Let i <j. First of all, we have lj(X) = V(ai,ftj) Xi' and therefore

Let us denote d = a i + aj . We know that ~j(XJ is a linear combination ofmonomials of the
j-l

form xt+at 1 * ... * Xj~f-l where L atat = a i + aj = d, thus ~j(X) belongs to~. It follows
t=i+l

that

As an application we obtain:

Corollary. Any prime ideal of u+ is completely prime.

Proof The corresponding assertion for Ye is a direct consequence of Theorem 2,
Theorem 3 and a recent result of Goodearl and Letzter [GL], Theorem 2.3, see also [Go].

6. The Auslander-Reiten quiver

The Auslander-Reiten quiver is a convenient tool to visualize the module category of a
finite-dimensional algebra. We want to point out that the Auslander-Reiten quiver is also
extremely useful for dealing with the corresponding Hall algebras. Let us formulate a
combinatorial version of those definitions which are needed.

As vertices of the Auslander-Reiten quiver r take the positive roots. If a, b are positive
roots, write a --. b provided the following conditions are satisfied: first, 8 =t= b, second
<8, b) > 0, and third, if c is a positive root with (8, c) > 0 and (c, b) > 0, then 8 = C or
c = b. In general, if <8, b) > 0, then there exists a path 8 = ao --. a 1 --. ... --+ at = b (of length
t ~ 0) from 8 to b.

For example, the Auslander-Reiten quiver for 1£6 with the following orientation

o
t

0--+0-+0-+0-+0

is of the form
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We may endow r with a valuation by associating to any arrow a --+ b a pair of positive

. I (a,b) (a,b») I . .mtegers, name y 6(b)' 6 (a) . In case the va uatlOn of an arrow is (1,1), one usually

drops these numbers, this happens for all the arrows in the simply-laced cases; in the cases
[f]n' en' rF4' some arrows will carry a valuation (1,2) or (2, 1); for G 2 , all the arrows will carry
a valuation (1, 3) or (3, 1). Note that the valuation ofr allows to recover B(a) for any vertex a.

The Auslander-Reiten quiver is usually considered as a translation quiver: some of the
vertices are called projective, for any of the remaining vertices, say a, there is defined a vertex
1'a, such that there exists an arrow 1:'a --+ b if and only if there exists an arrow b --+ a. Here
is the combinatorial recipe:

For any vertex i of L1, let 6i be the reflection in 7Ln at ei with respect to the symmetric
bilinear form (-, -). The orientation 1 determines a unique Coxeter element C; for
example, if we start with the natural ordering 1 < 2 < --- < n of the vertex set, then
C = a1 6 2 _•• an- A positive root a will be said to be projective, provided C(a) is no longer
positive; for the remaining positive roots, let 1'a = C(a). Note that for any non-projective
positive root a, there are paths from ra to a, and all are of length 2. (In the drawing of an
Auslander-Reiten quiver, the translation l' usually will correspond to a shift from right to
left; sometimes one connects a and 1:'a by a dotted line; in the drawing above, the projective
vertices have been denoted bye.) The translation l' is very useful. For example, given
positive roots a, b, then either a is projective and then (a, b) = 0, or else (a, b) = B(b, 1'a).
In particular, if ( (a, b) =F 0, then there is a path from b to a.

A path a 1 --+ a 2 --+ _.• --+ at in the Auslander-Reiten quiver is said to be sectional,
provided we have ai- 1 =F 1:'ai+1 , for all 1 < i < t. Finally, two vertices a, b are said to be
incomparable provided there is no path from a to b, and no path from b to a.

What kind of information can be read off from the Auslander-Reiten quiver? First of
all, the l-admissible orderings of the positive roots are just the refinements of the arrow
relation: in order to deal with a PBW-basis, we may start with any total ordering
a 1 , a 2 , ... , am of the positive roots such that ai --+ a j implies i < j. Given positive roots a, b,
there exists a i-admissible ordering a 1, a 2 , .. _, am such that a = ai' b = a j with i < j, if and
only if there is no path from b to a.

Also, in case there is an arrow a --+ b in the Auslander-Reiten quiver, then

<b) * <a) = vrnax(e(a),e(b» <a) * (b>.

Actually, the same formula is true in the general case that there exists a sectional path
a = a 1 --+ a 2 ..• --+ at = b (note that the existence of such a sectional path implies that we
have Ext1(My (a) Ee Mg>(b), Mg>(a) Ee Mg>(b») = 0). Of course, in case the vertices a, bare
incomparable, then

<a) * (b) = <b) * <a).

As we have seen above, the main problem to be solved is an effective procedure for
calculating the various skew derivations_
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Lemma 4. Let a, b be positive roots, and assume that there is no path from b to a. If
b(b)«a» =t= 0, then ((b, a) =t= 0, and therefore, there is a path from a to b.

Proof Since there is no path from b to a, we know that ( (a, b) = 0, thus <a) * <b) is a
multiple of <a Ef) b). If we assume that ((b, a) = 0, then also <b) * <a) is a multiple of
<a Ef) b), therefore b(b)«a» = 0.

Thus, we have to consider pairs a, b with a path from a to b. Ifwe express b(b) «a» as a
linear combination

L cp<f3)
pEJ(a,b)

as in Theorem 1, the index set J (a, b) will involve only f3 E PA such that f3 (c) =t= °implies that
there exists paths of length at least 1 from a to c and from c to b.

7. The rank 2 cases

Assume that we deal with a Cartan matrix of the form

where one of the numbers - a12' - a21 is equal to 1, whereas the other is
r = -81 a 12 = -82 a21 = 1,2, or 3. We work with the orientation 1 ~ 2. Note that
d = e1 + e2 is a positive root and let us stress that ei = (e i ).

We have

whereas

Also note that dimd = 81 + 82 , and 8(d) = 8 1 + 82 - r, thus <d) = v-rd. It follows that

Consider now the cases r ~ 2, and let us assume that 82 = 1, thus a2 is a short root,
whereas a 1 is a long one. On the one hand, we have

where we use that dim d Ef) e2 = r + 2 and 8(d Ef) e2) = 3. On the other hand, we use that
((d, e2 ) = r - 1, and a rather easy calculation of Hall polynomials, in order to see that

<d)*e2 =v- r d*e2

= V-
2r +1 ((q + 1)(e1 + 2e2) + q(d Ef) e2»)

= V- 2r + 2 (V + v- 1)(e1 + 2e2) + V- 2r + 3 d Ef) e2 ·



66

It follows that
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After these preparations, we may consider in detail the different cases:

Case A2 • In this case, we have r = 1, thus

The corresponding Ausl~nder-Reiten quiver is of the form

Case 8 2 , with 81 = 2. The considerations above show that

here, we have used that dime1 + 2e2 = 4, whereas 8(e 1 + 2e2) = 2, so that

In this case, we deal with the Auslander-Reiten quiver

The arrows? carry the valuation (1,2), the arrows '\i carry the valuation (2,1).

In Appendix 1, we will present the multiplication table for the elements

Case 8 2 , with 81 = 1. Here, a similar calculation shows that

The corresponding Auslander-Reiten quiver is of the form
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Here, the arrows ? carry the valuation (2, 1), the arrows '\t carry the valuation (1, 2).

Case G2 , with et = 3. The Auslander-Reiten quiver looks as follows:

The arrows? carry the valuation (1, 3), the arrows '\t carry the valuation (3,1).

For any positive root a, we can express <a> as a skew commutator as follows:

The first equality has been shown above. For the second equality, we only have to
add to previous considerations that <et + 2e2>= v- s+t(e t + 2e2), since in this case,
e(e t + 2e2) = 1.

The calculation of <et + 3e2>proceeds as follows: We have

and, on the other hand,

<e l + 2e2>* e2 = V- S«(q2 + q + l)(e l + 3e2) + q2«(e t + 2e2) EB e2))

= v- 3 ([3] (et + 3e2)) + v- t «(e l + 2e2) EB e2).

Since el + 3e2 has dimension 6, and the dimension of its endomorphism ring is 3, we see that
<et + 3e2>= v- 3 (e t + 3e2)·

A similar proof shows the last equality.

In Appendix 1, we will present the multiplication table for the elements
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Case (;2' with et = 1. The Auslander-Reiten quiver looks as follows:

This time, the arrows J'f carry the valuation (3, 1), the arrows \. carry the valuation (1, 3).

For any positive root a, we can express <a) as a skew commutator as follows:

1 -t
(2et + e2>= [2] (et * (et + e2>- v (et + e2>*et),

1
(3et + e2>= [3] (et * (2et + e2>- v · (2e t + e2>*et),

1
(3et + 2e2>= [3] (2et + e2>* (et + e2>- v · (et + e2>* (2et + e2»·

We are going to present the elements of the form <et + te2 ) with 1 ~ t ~ a t2 as linear
combinations of monomials; this will be needed at the end of the paper.

<et + e2) = et * e2 - v- 2 e2 * et,

<et + 2e2) = et *et2
) - v-t e2* et * e2+ v-2e~*2) * et.

<et + e2) = et * e2 - v- 3 e2* et,

<et + 2e2) = et * e~*2) - v·- 2e2 lie et * e2+ v-4e~*2) * et,

<et + 3e2) = et * e~*3) - v-1e2 * et * e~*2) + v-2e~*2) * et * e2 - v-3e~*2) * et.
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For arbitrary J, we will be interested in the elements of the form <ej + tei>with} =t= i
and 0 ~ t ~ au. Here is the general rule for expressing them as linear combinations of
monomials:

Proposition 3. Let 0 ~ t ~ - aij • If i is a sink for J, then

<e.+ le.) = ~ (_l)rv-eir(-aij-t+l)E.(r)E.E~s).
J l !-J l J l ,

r+s=t

if i is a source, then

(e.+ te.) = ~ (_l)rv-eir(-aij-t+l)E.(s)E.E~r)
J l !-J l J l •

r+s=t

Proof We may restrict to the case where i,} are the only vertices. If we assume that
i is a sink, then we relabel the vertices as follows: } = 1, i = 2, and we use the previous
consideration. The case when i is a source follows by duality.

A direct proof of Proposition 3 may be given along the line of the proof of the
fundamental relations, see [R5].

8. The inductive construction of exceptional modules

Let A be a finite-dimensional hereditary k-algebra (for example, the tensor algebra
of a k-species as above), let n be the number of isomorphism classes of simple A-modules.

Recall that a (finite-dimensional) A-module M is said to be exceptional provided its
endomorphism ring is a division ring and Ext1 (M, M) = O. A set M i (i E I) of modules is
said to be orthogonal provided Hom(Mi , M j ) = 0 for all i =t=}.

Proposition 4. Let M be a non-simple exceptional A-module. Then there exist
orthogonal exceptional modules M 1 , M 2 , and an exact sequence

Remark. In the case of an algebraically closed field, the result is due to Schofield [S].

Crawley-Boevey recently has shown that a braid group operates transitively on the set
of complete exceptional sequences. Ideas from [CB] and [R8], which have been developed
in order to establish this result, will be used for a proof of Proposition 4.

We recall the following: A sequence (M!, ... , Ms) of exceptional modules is called
exceptional, provided Hom(Mj , M i ) = 0 = Ext1 (Mj , M i ) for any pair i <}. An exceptional
sequence (M!, ... , Ms) is said to be complete, ifs = n. (Note that a pair (b, a) ofpositive roots
is J-orthogonal if and only if (M(b), M(a)) is an orthogonal exceptional sequence; this
explains the order of the roots.) In our case of a finite-dimensional hereditary k-algebra, the
indecomposable projective modules, the simple modules, as well as the indecomposable
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injective modules, always taken in a suitable order, yield examples of complete exceptional
sequences.

Given a module N, we denote by f.C (N) the smallest subcategory containing Nand
being closed under extensions, kernels of epimorphisms and cokernels of monomorphisms.
In case (M1 , ••• , Ms) is an exceptional sequence, then Crawley-Boevey [CB] has shown that
f.C (M1 Ef) ... Ef) Ms) is equivalent to the module category of a finite-dimensional hereditary
algebra with precisely s isomorphism classes of simple modules.

Lemma 5. Let M be a non-simple exceptional A-module. Then there exists a module N
such that (M, N) or (N, M) is an exceptional sequence, and M considered as an object of
f.C(M EB N) is not simple.

Proof Take a complete exceptional sequence (N1 , ••• , N n ) with M = ~ for some j,
n

and such that the length of ffi Ni is minimal.
i=l

Let M be an exceptional A-module with the following property: If (M, N) or (N, M)
is an exceptional sequence, then M is simple in f.C(M EB N). Under this assumption, the
reduction process as exhibited in [R8] shows that the sequence is orthogonal. Namely, in
case we use transpositions, the modules Ni are not changed, only their indices are. We cannot
use a proper reduction which does not involve M, since this would contradict our minimality
assumption. Thus, assume that we make a proper reduction involving M. Up to duality, we
have Hom(Nj , Nj +1) =t= O. By assumption we know that M = Nj is a simple object in
f.C(M EB Nj +1), thus there is an exact sequence

o -+ tM -+ Nj +1 -+ N' -+ 0

with Hom(M, N') = O. The proper reduction replaces the pair (M, N j +1) by the pair (N', M),
thus we obtain a new exceptional sequence

of smaller length. This contradiction shows that our given sequence was orthogonal.

Note that given an orthogonal, complete exceptional sequence (N1 , •.• , N,,), all the
modules Ni are simple [R8]. Thus, we see that M is simple.

ProofofProposition 4. Assume that M is non-simple, and exceptional. According to
Lemma 5, there exists an exceptional sequence (M, N) or (N, M) such that M is not simple
in ~(M EB N). Let M 1 , M 2 be the two simple objects in this subcategory f.C(M EB N), with
Ext t (M1 , M 2 ) =F O. Since M is not simple, in ~(M EB N), there exists an exact sequence

with at, a2 ~ 1. This completes the proof.
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Consider now the special case when A is the tensor algebra of a k-species g of type J.
Assume that there is given an exact sequence

with indecomposable modules M, M I , M 2 , and aI' a 2 ~ 1. Let M = M(a), M 1 = M(a 1),

M 2 = M(a 2 ) with positive roots a, aI' a 2. We see that a = a1 a 1 + a2 a2. Note that the linear
combinations of a 1, a 2 which are roots form a root system of rank 2, thus it is of type A 2 , 1EB 2 ,

or G 2 ; in particular, we see that at a2 ~ 3. We are looking for conditions in order to have
a 1 = 1 = a2 .

n

Recall that a root a is called sincere, provided a = L ciei with Ci =t= 0 for all i.
i=1

Proposition 5. Let g be a k-species oftype J, with L1 not ofthe form A 1 or G2' Let a be
a sincere positive root. In case J is of the form Cn for some n ~ 2, assume in addition that
a is short. Then there is an exact sequence

with J-orthogonal positive roots aI' a 2.

Proof According to Proposition 4, there is an exact sequence

with J-orthogonal positive roots at, 8 2 and at, a2 ~ 1. In case the roots a 1, a 2 have the same
length, the root system generated by aI' a 2 is of type A 2 , thus a l = 1 = a2 • We assume that a 1 ,

a 2 have different length. The existence of a sincere root implies that L1 is connected, thus J
is of the form lRn, Cn with n ~ 2, or 1F4 . If a is a short root, then a = a 1 + a 2 , thus again
a l = 1 = a2 • Thus, we can assume that a is a long root, and therefore only the cases lRn, with
n ~ 3, and lF4 remain.

In drawing the graph of L1, we use the usual conventions. In the case [Bn' we label the
vertices of the graph of L1 as follows:

o~o-o­
123

-0-0
n-l n

with a l2 = - 2. Similarly, in the case 1F4 , we label the vertices

o-o~o-o
1 234

with a23 = - 2. We use an arbitrary ordering -< on the set ofvertices {1, 2, ... , n}. Let P (i) be
the projective cover of Si' for 1 ~ i ~ n, and Q(i) its injective envelope. Let p (i), q (i) be
positive roots such that M(p(i)) = P(i), M(q(i)) = Q(i).

We deal with the Auslander-Reiten quiver r. We can write a = t-Sp(i) for some
1 ~ i ~ n and some s ~ O. Since a is a long root, we have i ~ 2 for lBn, and i ~ 3 for lF4 •
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Consider first the case when i < n. Then there exists an arrow from a2 to a in r such
that a2 lies in the r-orbit of p(i + 1); a corresponding non-zero map M(a 2 ) -+ M(a) is
injective and its cokernel is indecomposable, say of the form M(a l ), and a l lies in the r-orbit
ofp(n); here, we use that a is sincere, so that the "wing" with center a exists. In this way, we
have obtained the two positive roots aI' a 2 we were looking for.

This shows that we can assume that i = n. Case [an: Since a is sincere, there is a path
p(l) -+ ... -+ a, and a path a -+ ... -+ q (1), and an easy length consideration shows that both
paths are sectional. In particular, the root a is uniquely determined. Up to duality, we can
assume that q(l) is a simple root. It follows that we deal with the natural ordering
1-< 2-<··· -< n, since otherwise we would obtain some i> 1 with Horn (M, Q(i)) = O. As a

n

consequence, M(a) = Q(n), and therefore a = 2e1 + 'L e i . The case n = 2 has been
i=2

excluded, thus n ~ 3, and there is an exact sequence of the form

n

o -+ M('L eJ -+ M -+ M(2el +e2 ) -+ O.
i=3

Case [F4. Consider the sectional paths p(l) -+ ... -+ b l and b2 -+ ... -+ q(l), where both
b1 , b2 belong to the r-orbit ofp(4). We have b1 = r 2 b2 . Note that Horn (P(l), r M(b2)) = 0,
thus the two modules M(b l ), M(b2) are the only modules N = M(c) with c in the r-orbit of
p(4) which satisfy Hom(P(l), N)::f: o. This shows that M(a) is one of these two modules.
Up to duality, we can assume that b l or r- 1 b l is equal to q (4). In both cases, there exists an
exact sequence

thus, for a = b l , we have found an exact sequence as required. It remains to consider the
case a = b2 . Note that b2 =t= rq (4), since Hom(M(rq (4)), M(q (4))) = 0, whereas we assume
that a is sincere. It follows that b2 = q (4). But q(4) is sincere only in case we deal with the
natural ordering 1-< 2 -< 3 -< 4, and then we have the exact sequence

o -+ 84 -+ M(q(4)) -+ M(q(3)) -+ 0,

as required. This completes the proof.

Remark. In Proposition 5, we had to exclude the case AI' since otherwise a would be
a simple root, thus M(a) a simple representation. Also, we have excluded the case G 2 , since it
has been discussed in detail before: the only J-orthogonal positive roots are the simple roots,
and there are three sincere roots which are not of the form e l + e2 • Finally, consider the case
en:

0:+=0-0­
123

-0-0
n -1 n

t

with a21 = - 2. The only long positive roots are given by e l + 2 'L ei , where 1 =t= t ;£ n. We
i=2

see that there is just one sincere long positive root, and it cannot be written in the form a + b,
where 8, b are long positive roots. It follows that it cannot be written in the form a + b, where
8, bare J-orthogonal positive roots.
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9. Skew commutators

73

Let a, b be roots. The linear combinations of a, b which are roots form a root system of
type Al x AI' A z, [EEz, or ([;z.

Assume that the pair (aI' az) is A-orthogonal. Let r = - <aI' az). Then M(a l ), M(a z)
are orthogonal exceptional modules. The subcategory

is equivalent to the category of representations of a K-species !f/' of type A', where A' is a
Cartan matrix of rank 2. Here, we take K = k in the simply-laced cases, and also in case at
least one of the roots aI' az is a short root; in case both roots aI' az are long, let
K = End M(a l ). The last case can happen only for r = 2. Note that as a K-species, !f/' again
is reduced. Let us fix an equivalence from the category of representations of!/' onto~, and
denote it by v. Since the objects M(a t ), M(a z) are the simple objects in ~, they are the images
of the simple representations s~ and S; of !f/' under v. We obtain an embedding of the
Grothendieck group Ko (!f/') = 7L z into Ko (!/), which again we denote by v (with v (ei ) = ai'
for i = 1, 2). Under this embedding, the bilinear form <-, - ) of Ko (!f/) restricts to a scalar
multiple of the corresponding bilinear form of Ko (!/'), since ~ is an extension closed full
subcategory of the category of representations of .Y. In fact, in case K = k, we obtain the
corresponding bilinear form itself, in case K = End M (a l ), we obtain the r-multiple: given
two representations M, N of !f/', we have

<vM, vN) = dimkHom(vM, vN) - dimkExtl(vM, vN)

= [K: kJ(dimKHom(M, N) - dimKExtl(M, N))

= [K: k] <M, N),

and, in case aI' az both are long roots, then [K: k] = 2 = r.

Since A' is of rank 2, it is of the form Al x At, A z, 1H z, or ([;z. In case r = 0, the only
indecomposable objects in ~ are the two modules M(a l ), M(az), thus let us assume that
r > O. For the connected rank 2 cases, we have seen above how to express the inde­
composable as skew commutators, and we claim that we obtain corresponding formulae
when we replace ei by a i ; in case of two long roots aI' az, we also have to replace v by vZ

• It is
sufficient to consider Ye' = Ye* (A') ® CD (v), and the ring homomorphism Ye' ~ Ye which
sends E i to <ai ), and v to V[K:k]. In this way, we see that the recipe outlined in the introduction
is based on our calculations in the rank 2 cases.

Of course, we may use the information provided by Proposition 5 in order to improve
the inductive construction of the elements X(a). For any A-orthogonal pair (a, b), with
r = r~ ~ 1, we have defined

X(a + b) = X(b) X(a) - v- r X(a) X(b) ,

and we wonder which additional elements we have to take care off. We may assume that A is
connected and not of type G2. In the simply-laced cases, we will have obtained a PBW-basis
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in this way, thus, we only have to consider the cases lBn, Cn and [F4. We work with the graph
and the labelling as presented in the last section.

For lBn, the only positive root to be considered in addition is 2e1 + e2 ; for Cn; we have
t

to deal with all the additional roots e1 + L ei for 2 ~ i ~ t; and for [F4' we have to take into
i=2

account the roots 2e2 + e3 and 2e1 + 2e2 + e3 . For these roots a, we have to construct X(a)

as outlined in the introduction, as the [~] -multiple of a proper commutator.

10. The si-form US:

Recall that we denote si = Z (v, v-1
] and that U,: is the d-subalgebra of U+ generated

by the elements E?).

Proposition 6. The d-algebra ..tf*(J) is generated by the elements e~t), with 1 ~ i ~ n
and t ~ 1.

This is known, see [R6], [R7]. For the convenience of the reader, we outline below
a direct argument.

Corollary. The isomorphism 11: U+ --+ ..tf ofQ (v)-algebras defined by 11 (EJ = ei maps
U,: onto ..tf* (J).

In order to present a proof of Proposition 6, we need the following lemma:

Lemma 6. For any d = (d1 , ..• , dn)E zn,

e\*dd * ... * e~*dn) = L v-,(a,a) (a).
dima=d

Proof
n

(3 = EB diei· Thus dimd = dim{3 = L diei, and e({3) = L d? f,i· Also,
i=l

(({3, (3) = L ((diei, die j ),

i<j

Any module M with dimension vector d has a unique filtration

with factors M i - 1 / M i isomorphic to diSi , since EXt1 (Si' Sj) = 0 for i ?:'j. This shows that the
Hall polynomial 4>~lel, .. .,dnen is equal to 1, for any rx with dim a = d.
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= V - Ldiei +Ld;ei V -i~j<diei,djej) L [ex]
dimIX=d

= v-dimfJ+e(p)-~(fJ,p) L [ex]
dima=d

= V-dimd+<d,d) ~ []1..J ex.
dimIX=d
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We insert [ex] = vdimIX-e(IX) <ex) and note that (d, d) = (dim ex, dim a) = a(a) - '(ex, a). In this
way, we obtain the formula as stated.

Proof of Proposition 6. According to Lemma 2, e~t) = (ei)(t) = (te i ), thus the
elements e~t) belong to Yf* (J).

Let f§ be the subring of Yf* (J) generated by the e~t), with 1 ~ i ~ nand t ~ 1. Let us
show that any a E f!4 belongs to f§. We use induction on dim a. If there are at least two
different positive roots a i with a(aJ =t= 0, then we use Proposition l' in order to see that
(a) = <a(at)a t ) * ... * (a(am)am). By assumption, we know that dima(aJa i < dima,
for all i; thus by induction, all the elements (a(aJa i ) belong to f§. This shows that (a)
belongs to r'§. It remains to be seen that for any positive root a, and any t E No, the element
( ta) belongs to r'§.

We apply Lemma 6 for d = ta. Note that' (ta, ta) = 0, thus

(ta)=el*dd*"·*e~*dn)- L v-~(fJ,fJ)(f3).

dimfJ=d
fJ=t=ta

If f3 * ta is given with dim f3 = d, then f3 cannot be a multiple ofa root, thus there are at least
two different roots a i with f3(aJ *0, and therefore we know already that (f3) belongs to r'§.

Of course, also el*dd * ... * e~*dn) belongs to r'§, therefore (ta) belongs to rI. This completes
the proof.

We obtain the following consequence, where Xl' ... , Xm generates a PBW-basis of U+
as constructed above.

Theorem 4. The elements Xf*IX(l» * ... * X~*IX(m» with a(l), ... , a(m,) E No form an
d -basis of u; .

11. The subalgebra ~IJI(

Let f/ be a reduced k-species of type J. We denote by rep-Y' the category of all
representations of f/. Recall that a subcategory At of rep-f/ is said to be closed under direct
summands provided for every module M in ~, all its direct summands belong to ~. A
subcategory vi( of rep-Y' will be said to be closed under potential extensions provided for
M t , M 2 in~, and <P~lM2*0, also M belongs to vIt. (Let us stress that it may happen that
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<P~lM2 =f: 0, whereas there is no exact sequence of the form 0 ..... M 2 ..... M ..... M I ..... 0; the
evaluation of the Hall-polynomial <P~lM2 =f: 0 at Ikl may be zero: as an example, for [[D4'

there are indecomposable modules M, M I , M 2 with <P~lM2 = q - 2.

The following is obvious from the definition of the Hall multiplication: Let dt be a
subcategory of rep-g which is closed under potential extension. Let Jf Idt be the Q (v)­
subspace ofJf generatedby the elements [M] with M E J(. Then Jf IJ( is a subring. Similarly,
let~ (J)IJt be the d-submodule ofJf* (J)generatedby the elements [M] with ME Jt. Then
Jf* (J) IJI is a subring.

Proposition 7. Let Jt be a subcategory ofrep-g which is closed under direct summands
and potential extensions. Let JV ~ ..,It be a subcategory, and assume that any represerltation
in Jt has afiltration with/actors in AI: Then JfIJt is generated as a Q(v)-subalgebra by the
elements [N] with N in AI:

The proof is similar to that of Proposition 4: Let c§ be the Q (v)-subalgebra generated
by the elements [N] with N in AI: In order to show that any [M], with M in Jt belongs to C§,

we use induction. Let M = M(a) for some a E fA. Note that M is the direct sum of the
modules M(a(a)a), with a E q,+. If a(ai) =f: 0 for at least two different positive roots ai' then
all the modules M(a(a) a) have smaller length, and by induction [M(a(a) a)] belongs to C§.

Proposition l' shows that also [M] itself belongs to C§. It remains to consider the case a = ta
for some positive root a and some t ~ 1. By assumption, M = M(ta) has a filtration with
factors in %, thus, there are modules NI' ... , Ns with <P~, ... ,Ns =f: O. Write

[NI] * ... * [Ns] = L cp' [M (P)] ,
dimp=ta

with coefficients cp E Q(v). Note that [M(ta)] occurs with a non-zero factor Cta' Thus

[M] = ct-;.I([NI ] * ... * [Ns] - L cp' [M(P)])·
dimp=ta

p=t=ta

If P=f: ta is given with dimp = d, then there are at least two different roots a i with p(a i ) =f: 0,
and therefore we know already that [M(P)] belongs to C§. Altogether, this shows that [M]
belongs to C§.

For example, if i is a vertex for J, let rep-g(i) be the subcategory ofall representations
which do not have Si as a direct summand. By construction, this subcategory is closed under
direct summands. If i is a sink or a source for J, then rep-g(i) is also closed under potential
extensions (note that for i a sink, Si is projective; similarly, for i a source, Si is injective). In
these two cases, we will consider

Jf(i) = Jflrep-g(i),

J'f. (J) (i) = Jf. (J) Irep-g(i).

The set of isomorphism classes of representations in rep-g(i) will be denoted by fA (i),
thus J'f(i) is the free Q(v)-module with basis f!l(i).
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Lemma 7. Let i be a sink or a source. Let JV be the set of indecomposable
representations N with dimension vector ej + tei for some} =t= i, and some t ~ O. Then any
representation in rep-g<i) has a filtration with factors in .AI:

Proof We consider the case where i is a sink. The other case follows by duality. Since
i is a sink, Si is projective. Thus, a representation M belongs to rep-g<i) if and only if
Hom(M, Si) = O. In particular, we see that in this case the subcategory rep-g<i) is closed
under factor modules.

Let M be a representation in rep-g<i). Let M' be the maximal submodule of M
without composition factor of the form Si. The composition factors ofM' belong to JV, thus
it remains to exhibit a filtration of M/M' with factors in JV. By definition of M', the socle
of M/M' is a direct sum of copies of Si. It follows that the socle of M/ M' is contained in
the radical of M/M', since Hom(M, Si) = O. We can assume that M/M' =t= O. Let M" be a
submodule of M containing M' such that N = M" /M' is local and of Loewy length 2. Then
clearly N belongs to JV. Also, M/ M" again belongs to rep-g<i), thus by induction M/ M"
has a filtration with factors in .H. This completes the proof.

Of course, if N is an indecomposable representations with dimension vector ej + tei

for some} * i, and some t ~ 0, then t ~ - aij , and, conversely such indecomposable re­
presentations do exist.

Consider again the case where i is a sink. The bimodule jMi has, as a right ~-vector
space, dimension - aij (since its k-dimension is -eiaij ). Let M' be an ~-subspaceof jMi of
codimension t. We construct a representation of g by attaching Fj to}, and j M i / M' to i, and
we use the projection map Fj ® jMi ~ jMi/M'for the arrow} ~ i.

The case when i is a source follows by duality; of course, we also can write down an
explicit recipe: attach again Fj to}, an ~-subspaceM" ofHomFj(iMj' Fj) to i, and use as map
M" ® i~ ~ Fj the evaluation map.

Corollary. Let i be a sink or a source. The Q(v)-algebra Yf<i) is generated by the
elements ej + tei , where} =t= i, and 0 ~ t ~ - aij .

12. Reflection functors

Let i be a vertex of J. Let (Ji J be obtained from J by changing the orientation of all
arrows which have i as starting point or end point.

Let g be a reduced k-species of type J. Let (jig be the k-species obtained from g by
replacing ,Ms by its k-dual, if r = i or s = i; note that (Ji g is a reduced k-species of type (Ji J.

Let us assume that i is a sinkfor J. We denote by (Jt , the Bernstein-Gelfand-Ponomarev
reflection functor, see [BGP], [DR2]: it is an equivalence

6 Journal fUr Mathematik. Band 470
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Theorem 5. Let i be a sink. The functor at yields an si-algebra isomorphism

where

Proof The subcategories rep-Y <i), rep-ai Y <i), are closed under extensions. Let
NI' N 2 be in rep-Y (i). If M is a module with a submodule M I isomorphic to N 2 , such that
M/M I is isomorphic to NI' then M belongs to rep-Y<i), and

dimkM = dimkN I + dimkN 2 ,

and

Also, we may calculate the Hall-polynomials, as well as the bilinear form between modules
in rep-Y<i) inside this subcategory, and therefore

Recall that

with c(M) = e(NI ) + e(N2 ) + <dimNI, dimN2 ) - e(M). Similarly, we have

with the same function c. It follows that

ai«NI ) * (N2 ») = ai(LvC(M)</J~lN2<M»)

= L vc(M) </J~lN2 <atM)

_" c(M) ~a:M < +M)
- f...J v 'YatN l at N 2 ai

= <at NI) * (at N 2 )

= ai<NI ) * ai<N2 )·

This shows that ai is a ring homomorphism.

Example. Let i be a sink. Let j =F i, and 0 ~ t ~ - aij . Then

Proof Recall that we denote by Gi the reflection in 7Ln at e i with respect to the
2(e. e.)

symmetric bilinear form (-, -), thus c1i (e j ) = ej - ( I' ) ei and (e i , e) = 8i aij , whereas
ei , ej

(ei,ei) = 2ei · This shows that Gi(ej)=ej-aijei' and that <1i (ei)=-ei, thus
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G'i(ej+ teJ = ej +(- aij - t)ei. On the other hand, for M an indecomposable representation
of [/ different from Si' we have dim (Jt (M) = G'i dim M, see [DR2].

Lusztig has proposed several braid group operations on U. In particular, consider for
any i the following operator ~:'1 defined for the canonical generators Ei , ~, K/l of U by

T·"1 (F) = - K.-ei E.
l, I I I'

T/.'1(Ej)= L (-l)rv-eirEi(s)EjEi(r) for }=t=i,
r+s= -aij

Tt1 (Fj) = L (- l)r ueir Fi(r) FjEi(S) for} =t= i,
r+s= -aij

this defines an automorphism ~:'1 of U.

Theorem 6. Let i be a sink. The hornomorphism (Ji is the restriction ofTtl to Jf* (J) (i).

We show that ~:'1 and (Ji have the same effect on a generating set of Jf (i). We have seen
above that the elements (ej + tei) with} =t= i and 0 ~ t ~ aij form such a generating set, and
that (Ji(e j + tei) = (ej + (- aij - t)ei).

On the other hand, Lusztig has shown in [L4], 37.2.5, that

where

. . = ~ (_l)r -eir(-aij-t+l)E.(r)E.E~s)x l ,J;l,t;-1 i...J v l J l ,

r+s=t

~ . = ~ (_1)' -eir(-aij-t+l)E~s)E.E~')X1,J;1,t;-1 i...J v I J l •

r+s=t

By Proposition 3, we know that Xi,j;1,t;-1 = (ej+tei>J' since i is a sink for J, and that
X;,j;1,t;-1 = (ej + tei) l1iJ, since i a source for (JiJ. Here, we have added to (ej + tei ) the
indices J and (JiJ, respectively, in order to point out the relevant orientation. This completes
the proof.

13. Construction of the PBW-basis, using a braid group operation

We recall from Lusztig [L4] that the operators ~:'1' where i runs through the vertices of
the graph of L1, define a braid group operation on U. The considerations above allow to see
that our generating sequences for PBW-bases can be obtained from the generators El' ... , En
using this braid group operation (in the simply-laced cases, a similar result was pointed out
by Lusztig in [L3]).

Recall that a sequence im , .•. , i1 is called a sink sequence for J, provided im is a sink for
J, and for any 1 ~ t < rn, the vertex it is a sink for the orientation (Ji

t
+1 • • • (Ji

m
J.
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Consider a A-admissible ordering a 1 , ... , am of the positive roots. There exists a
sequence i1 , ••• , im of vertices of A, with the following properties:

(1) The sequence im , ... , i 1 is a sink sequence for A.

(We may construct this sequence i 1 , ... , im as follows: Let C be the Coxeter
transformation for J. For any j, there exist some power Cs such that CS(aj ) is a positive root,
but cs+ 1 (aj ) is not positive. Then there exists a unique vertex ij such that <Cs (aj ), eij ) > 0,
this is the vertex we are interested in. In terms of representation theory: the representation
M(CS (aj )) is indecomposable projective, thus has a unique simple factor module, namely
M(e ij )·)

We fix a A-admissible ordering a 1 , ... , am of the positive roots and we set .xj = <aj ).

Theorem 7.

Proof Since we deal with a sink sequence, the operations T/,'l are given by (Ji' see
Theorem 6, thus we can use the reflection functors (Ji+' see Theorem 5. This shows that

T" T" ... T:' (E. ) = <a. a· ... a· (S. )
11,1 12,1 lj-1,1 li 11 12 lj-1 lj ,

where Sij is the simple representation of aij -1 •• • ai2 ail !/ corresponding to the vertex ij •

However,

This completes the proof.

Appendix 1. The rank 2 cases

For all the rank 2 cases, we are going to present the multiplication table for one of the
generating sequences for a PBW-basis, explicitly.

Case A2 • Let

Then

X 2 * Xl = vX1 * X 2 ,

X 3 * X2 = vX2 * X 3 ,

Actually, for arbitrary An' an explicit presentation of Jf by generators and relations, using
as generating set the generating sequence for a PBW-basis, will be given in Appendix 2.
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Case 1B 2 , with 8 1 = 2. The elements

satisfy the following relations:

81

X2 *Xl =

X 3 * X2 =

X4 * X 3 =

v2 Xl * X 2 ,

v2 X 2 * X3 ,

v2 X 3 * X4 ,

Xl * X 3 + [2]X2 ,

X2 * X4 + (v2 - 1)X~*2),

Proof The vanishing of a skew commutator for Xi' Xi+l follows from the general
considerations concerning Auslander-Reiten quivers. We have seen above how to write X 2

and X 3 as skew commutators. This yields the fourth and the sixth equality. It remains to
show the fifth equality.

Note that <el' e l + 2e2 >= - 2. The Hall polynomial 4>:~'~1(~1;e~e2) is given by q2. On the
other hand, there are q2 + 1 images of non-zero maps M(e l + 2e2) ~ M(2(e l + e2»). The
number of images of the form M(e l + e2) is q + 1, the remaining ones are of the form
M(e l + 2e2 ). This shows that the Hall polynomial4>;;~~1++ei~2is given by q2 - q = v4 - v2.
Thus, we see that

X4 * X2 = v- 2 e l * (e l + 2e2)

= v- 4 v4 el ffi (e l + 2e2) + V-
4

(V
4

- v2)(2(el + e2»)

Case 6 2 , with 8 1 = 3. We denote the elements as follows:

We have the following relations: Of course, as usual, we have
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In addition
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X3 * Xl = vXl * X 3+ [3]Xz ,

X4 * X z = v3Xz * X4 + (v6
- v4

- VZ+ 1)X~*3),

vX3 * X s + [3]X4 ,

v3X4 * X6 + (v6
- v4

- VZ+ 1)X~*3),

X s * Xl = V-I Xl * X s + [2]X3,

X6 * X z = v- 3Xz * X6 + (V Z-1)X3* X s + (v3 - V- V- l )X4 ,

Consider X6 * X 3. Note: X 6 = <el ) = el . X 3 = <el + 2ez) = v-S+l(e l + 2ez), and
<el' e l + 2ez) = - 3. The Hall polynomial tP:~~~e~i;2e2) is given by q3. On the other hand,
there are q3 + 1 images of non-zero maps M(e l + 2ez) -+ M(2(e l + ez)). The number of
images of the form M(e l + ez) is q + 1, the remaining ones are of the form M(el + 2ez). This
shows that the Hall polynomial 4>;1(~;7':¥e2 is given by q3 - q = v6

- vZ. Thus, we see that

X 6 * X 3 = v- 4 el * (e l + 2e2)

= v- 7 v6 el EB (e l + 2ez) + v- 7 (v6
- vZ)(2(e l + ez))

= X 3* X6 + (v- 3 - V-l)X~*Z),

here, we use that X3 * X6 = v- 4 (e l + 2ez) * e l = v-le l EB (e l + 2ez), and that
X~*Z) = <2(e l + ez) = v- 8 + 4 (2(e l + ez)). This proves the assertion concerning X6 * X 3 .

The shift by t yields a similar formula for X 4 * Xl' by duality, we obtain the corresponding
result for Xs * Xz.

Consider X6 * X 2 • We have X 6 = <et) = el' Xz = <el + 3ez) = v- 6 + 3(e l + 3ez), and
<el' e l + 3ez) = - 6. Therefore

X6 * Xz = v- 3 el * (e l + 3ez)

= V- 9 (C I el EB (el + 3ez) + Cz (e l + ez) EB (el + 2ez) + c3(2e l + 3ez)) ,

where
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are the various Hall polynomials. Clearly, Cl = <p:~~~e~ ;;2e2)= q3. The last polynomial has
been determined in [R4] it is C = A. Ze

l +3 e
2 = q3 _ qZ - q, 3 "Vel,el+3e2 .

Thus, it remains to calculate CZ. Consider mapsf: M(e l + 3ez) ~ M(e l + 2ez) and
f': M(e l + 3ez) ~ M(e 1 + ez)· The corresponding map

is injective if and only if f =t= 0 and f' cannot be factored through f Since End (M(e l + 3ez»)
operates transitively on Horn (M(e 1 + 3ez), M(e l + 2ez»), we can fix some projection
n: M(el + 3ez) ~ M(e l + 2ez) and we obtain all images of injective maps

by using only the maps [;,J,where /' does not factor through TC. Now assume there is given

another map /": M(e 1 + 3e2) - M(e1 + e2) such that [;,J and [;,J have the same

image. The projectivity of M(e l + 3ez) shows that there exists an automorphism (l of
M(e l + 3ez) such that nQ = nand f'Q =/". The first equality implies that Q = 1, thus
f' = f"· Also, since n is surjective, the multiplication by n yields a bijection between

and the set of those elements of

which factor through n. This shows that

Also, we note that

Xz * X6 = <el EB (e l + 3ez» = v- 9 +
g

el EB (e l + 3ez),

X 3 * X s = «el + ez) EB (e l + 2ez» = v- 9 + 4 (e 1 + ez) EB (e l + 2ez),

X4 = <2e t + 3ez) = v- 9 + 3 (2e l + 3ez)·

Therefore

X 6 * Xz = v- 9 (v 6 el EB (e l + 3ez) + (v6
- v4)(e1 + ez) EB (e l + 2ez)

+ (v6
- v4

- vZ)(2e l + 3ez»)

= V- 9 V6 VO X z * X 6 + V-
9

(V
6

- v4
)V

S X 3 * X s + V-
9

(V
6

- v4
- V

Z )v6 X 4 ·
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Consider X4 * X 2 • We have X4 = v- 9 + 3 (2e 1 + 3e2), X 2 = v- 6 + 3 (e 1 + 3e2), and
<2e1 + 3e2 , e 1 + 3e2 ) = - 3. Thus

with

We calculate the Hall polynomials. We have c = ~(el + 3e2)EB(2el + 3e2) = q6 = v12
1 o/2el + 3e2,el + 3e2 •

On the other hand, given three maps f, f', f": M(e1+ 3e2) ~ M(e1+ e2), the
corresponding map

is injective if and only iff,f',f" are linearly independent over k = End (M(e 1 + e2)). This
shows that the number of injective maps M(e1+ 3e2 ) ~ 3M(e1 + e2) is given by the
polynomial (q3 - 1) (q3 - q) (q3 - q2). Of course, different triples will yield the same image
ifand only if they are obtained from each other by the multiplication using an automorphism
of M (e1 + 3e2), and the number of such automorphisms is given by the polynomial q3 - 1.
Note that the cokerneI of any injective map M(e 1+ 3e2 ) ~ 3M(e1 + e2) is of the form
M(3(e 1+ 2e2)). Altogether we see that

Thus:

X4 * X2 = v-12(v12(e1 + 3e2 ) EB (2e 1 + 3e2 ) + (V 12 - v10 - v8 + v6)(3(e1+ 2e2)))

= v3X 2 * X 4 + (v6
- v4

- v2+ 1)X~*3),

since

and X~*3) = <3(e 1 + 2e2) = v- 15 + 9 (3(e 1 + 2e2)). This completes the consideration of
X4 * X 2 • The shift by r- 1 yields the corresponding result for X6 * X 2 •

Appendix 2. The case An

A PBW-basis for this case has been exhibited by Yamane [Y1], [Y2]. We will show that
his basis can be derived easily from the considerations above. For the convenience of the
reader, we choose an analogous indexing, and label the cases in the same way as he did.

We consider the following orientation:

o --+- 0 --+- ... --+- 0 --+- O.
1 2 n-1 n
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Let P (i) be the projective cover of Si' for 1 ~ i ~ n, and set Pen + 1) = O. Note that for i < j,
there is an embedding PU) c P(i), and we denote by Mij = P(i)/PU) the corresponding
factor module. In this way, Si = M i,i+l' and M ij is a serial module of length j - i. The
Auslander-Reiten quiver has the following shape:

.. ....
M 14

"".. ? \t
M 24 M 13

? \t ? \t

A/34 M 23 Al12

......

.... ..

,,,

M 1 ,n+ 1

? '\a

M 2 ,n+ 1 M 1 ,n

'\a ? '\a

M 2 ,n M 1,n-l

Some general features should be mentioned: If M rs ' Alij are indecomposable
modules, then dim Hom(Mrs ' M ij ) ;:£ 1, and dim Ext 1 (Mrs ' M ij ) ~ 1. We write
(rs, ij) = (dim M rs' dim Mij), it follows that -1 ~ (rs, ij) ~ 1, and for (r, s) =t= (i,j), we
have -1 ~ (rs, ij) + (ij, rs) ~ 1.

Given a pair of modules M ij , M rs with i < r or with i = r, and j < s, there are six
different cases to be considered.

Case (I): i = r <j < s. There exists an epimorphism M rs ~ M ij . Thus

(rs, ij) = 1, (ij, rs) = o.

Case (11): i < r < s <j. There are no homomorphisms and no extensions between
M rs and M ij , thus

(rs, ij) = 0, (ij, rs) = o.

Case (Ill): i < r <j = s. There exists an inclusion AIrs ~ M ij . Thus

(rs, ij) = 1, (ij, rs) = O.

Case (IV): i < r <j < s. There exists an exact sequence

in particular, we have a non-zero map M rs ~ A/rj ~ Mij. Thus

(rs, ij) = 1, (ij, rs) = - 1.

Case (V): i <j = r < s. There exists an exact sequence
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and Horn (Mrs ' Mij) = o. Thus

<rs, ij) = 0, <ij, rs) = -1.

Case (VI): i <j < r < s. There are no hornomorphisms and no extensions between
M rs and M ij , thus again

(rs, ij) = 0, (ij, rs) = o.

These considerations are sufficient for writing down the autornorphism lij = IdimMij.

The corresponding skew derivation <5ij = <5 <Mij) will be zero in the cases (I), (11), (Ill)
and (VI), thus it remains to consider the cases (IV) and (V). Since in these cases
dim Ext1 (Mij , M rs ) = 1, we see that <5 ij ( <Mrs ) ) will be a multiple of an element of our basis.

L ( ..) - d· M _. . Th <M) - -m(ij )+1[M]et m 1) - lm ij - ) - 1. us ij - V ij .

Case (IV). The exact sequence

shows that <5ij((Mrs») is a multiple of (Mis Ee M,.j). We determine the corresponding
coefficient. Obviously, the Hall polynomial is

thus the coefficient of [Mis EB M,.j] in [Mij] * [Mrs] is v<ij,rs) (q - 1) = v- 1 (q -1). Let us note
that there are no homomorphisms between M is and Mrj , thus dim End (Mis EB M,.j) = 2;
it follows that (Mis Ee M rj ) = v- m(ij)-m(rs)+2 [Mis EB M,.j]' and that (Mis EB M,.j) =
(Mis ) * (M,.j). On the other hand, we note that

<M
ij

) = V- m(ij)+1 [M
ij

] ,

Altogether, we see that

<M ) = v- m(rs)+1 [M ]
rs rs .

Case (V). The exact sequence

shows that bij ((Mrs» is a multiple of <Mis ). Here, the Hall polynomial <P~~~Mrs is equal to 1,
thus the coefficient of [M. ] in [M..] * [M ] is v<ij,rs) = V-I We have <M.. ) = V- m(ij)+l

I.S I.) rs . l) ,

( M ) = v- m(rs)+1 and (M. >= v- m(ij)-m(rs)+l Altogether we see thatrs lS .,

We use the notation Xij = <Mij>. We have shown that
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Xij * X rs = V • X rs * X ij , In case (I), (Ill),

Xij * X rs = X rs * X ij , (11), (VI),

Xij * X rs = X rs * Xij + (v - V-
1
)Xis * X rj , (IV),

Xij * X rs = V-I X rs * Xij + Xis, (V).

Condition (V) asserts that we may define Xij inductively by
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starting with X i,i+l = e i . These elements in U+ have been presented already by Jimbo in [J2]
(with v replaced by V-I). In order to rewrite these generators and relations in the form
presented by Yamane [Y1], [Y2], we have to adjoin a square root t of v (this element t is
denoted by q in Yamane; but of course, in our presentation, we have q = v2 = t4

; there is a
good reason to stick to the notation q = v2

, since in our approach, this q is usually evaluated
at prime powers, namely at the cardinality of some finite field).

Let Q (t) be the rational function field in one variable t, let v = t 2
, and consider

~ = Ye (8)Q(v) Q(t). We define

E.. = tj - i - 1 X .. (= t- j + i +1 [M..])
l) l) l) •

Then we obtain the following relations:

E ij * E rs = t 2
• E rs * E ij , in case (I), (Ill),

E ij * E rs = E rs * Eij' (11), (VI),

E ij * E rs = E rs * Eij + (t 2
- t- 2

)Eis * E rj , (IV),

t 2
E ij * E rs = E rs * E ij + t· Eis, (V)~

Proof The extra factors t j - i -1, t S
- r -1 cancel in all but the last equality. The last

equality can be written as follows: E ij * E rs = V-I. E ji * E rs + t- 1Eis, and this relation is
directly derived from the relations before.

Our identification of U+ and Ye yields an identification of U t+ = U+ Q9Q(v) Q (t) and~.
We have E i,i+1 = E i , and the last relation above shows that for j - i > 1, we have
E ij = t Ei,j-l * Ej-1,j - t- 1

Ej-1,j E i,j-l. This shows that the elements E ij of ut coincide
with the elements eij as introduced by Yamane.
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