The representations of quivers of type \mathbb{A}_n . A fast approach.

Claus Michael Ringel

It is well-known that a quiver Q of type \mathbb{A}_n is representation-finite, and that its indecomposable representations are thin. By now, various methods of proof are known. The aim of this note is to provide a straight-forward arrangement of possible arguments in order to avoid indices and clumsy inductive considerations, but also avoiding somewhat fancy tools such as the Bernstein-Gelfand-Ponomarev reflection functors or bilinear forms and root systems. The proof we present deals with representations in general, not only finite-dimensional ones. We only will use first year linear algebra, namely the existence of bases of vector spaces V, W compatible with a given linear map $V \to W$, and the existence of a basis of a vector space which is compatible with two given subspaces.

Theorem. Any representation of a quiver of type \mathbb{A}_n is a direct sum of thin representations.

Proof. If n = 2, then we deal with a linear map $f: V \to W$. Any first year linear algebra course shows how to obtain a direct decomposition: Take a basis \mathcal{B} of the kernel of f, extend it by a family \mathcal{B}' to a basis of V. Now $\{f(b') \mid b' \in \mathcal{B}'\}$ is a basis of the image f(V) and we extend it by a family \mathcal{B}'' to a basis of W.

Thus, let $n \geq 3$ and use induction. We deal with a quiver Q with underlying graph

Let M be a representation of Q and x a vertex of Q. We call x a peak for M provided for any arrow $\alpha \colon y \to z$ the map M_{α} is injective in case d(x,z) = d(x,y) - 1, and surjective in case d(x,z) = d(x,y) + 1. Obviously, a thin indecomposable representation M of Q with $M_x \neq 0$ has x as a peak. Second, a direct sum of modules with x as a peak, has x as a peak. And third, if x is a peak for M, then also for any direct summand of M.

We assume now by induction that all representations of quivers of type \mathbb{A}_{n-1} are direct sums of thin representations. We first show:

(1) Given a vertex 1 < x < n of Q, then any representation A of Q can be written as a direct sum $A = B \oplus C \oplus D$, where B has x as a peak, the support of C is contained in $\{1, 2, \ldots, x-1\}$ and the support of D is contained in $\{x+1, x+2, \ldots, n\}$.

of A defined as follows: Its restriction to Q' is B', its restriction of Q'' is B''. Let C be the subrepresentation of A whose restriction to Q' is C' and $C_y = 0$ for $y \ge x$. Let D be the subrepresentation of A whose restriction to Q'' is D'' and $D_y = 0$ for $y \le x$. Then clearly $A = B \oplus C \oplus D$, with B having x as a peak, the support of C is contained in $\{1, 2, \ldots, x-1\}$ and the support of D is contained in $\{x+1, x+2, \ldots, n\}$.

Using (1) twice, first for x = 2, then for x = n - 1, we see:

(2) Any representation A of Q can be written as a direct sum $A = B \oplus C \oplus D \oplus E$, where B has both 2 and n-1 as peaks, the support of C is contained in $\{1\}$, the support of D is contained in $\{3, 4, \ldots, n-2\}$ and the support of E is contained in $\{n\}$.

Since by induction the representations C, D, E are direct sums of thin representations, we may assume that A=B, thus that A has both 2 and n-1 as peaks. But if 2 and n-1 both are peaks, all the maps A_{α} with α an arrow in-between 2 and n-1 are isomorphisms, thus, A is isomorphic to a representation where all these maps A_{α} are identity maps. It remains to look at the case n=3 and a representation with peak 2. We have to show:

Let Q be a quiver of type \mathbb{A}_3 with graph 1-2-3. Any representation of Q with peak 2 is the direct sum of thin representations. Three different orientations have to be discussed:

In the first case, we deal with a representation A such that both A_{α} and A_{β} are injective, thus up to isomorphism we may assume that A_{α} and A_{β} are inclusions of subspaces. Again any first year linear algebra course shows how to obtain a direct decomposition: Take a basis \mathcal{B} of the intersection $A_1 \cap A_3$, extend it by a family \mathcal{B}' to a basis of A_1 and by a family \mathcal{B}'' to a basis of A_3 . Then the disjoint union $\mathcal{B} \cup \mathcal{B}' \cup \mathcal{B}''$ is a basis of $A_1 + A_2$ and we can extend this by a family \mathcal{B}''' to obtain a basis of A_2 .

In the second case, we deal with a representation A such that A_{α} is injective, A_{β} is surjective. Thus up to isomorphism we may assume that A_{α} is the inclusion of a subspace and we denote by A'_3 the kernel of A_{β} . Similar to the first case, we construct a basis of A_2 which is compatible with the two subspaces A_1 and A'_3 , this yields the required direct decomposition of A.

Finally, in the third case, we deal with a representation A such that both A_{α} and A_{β} are surjective. Let A'_1 be the kernel of A_{α} and A'_3 the kernel of A_{β} . Again, as before, we construct a basis of A_2 which is compatible with the two subspaces A'_1 and A'_3 . This completes the proof.

Of course, as a consequence we obtain: Given two filtrations $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_m$ and $U'_1 \subseteq U'_2 \subseteq \cdots \subseteq U'_{m'}$ of a vector space V, there is a basis of V which is compatible with all these subspaces U_i, U'_j . Namely, look at the corresponding representation A of the following quiver of type $\mathbb{A}_{m+m'+1}$

$$\circ \xrightarrow{} \circ \xrightarrow{} \circ \xrightarrow{} \cdots \xrightarrow{} \circ \xrightarrow{} \circ \xrightarrow{} \circ \xleftarrow{} \cdots \xrightarrow{} \circ \xrightarrow{} \circ \xrightarrow{} \circ \atop n'}$$
with $A_{\omega} = V$, $A_i = U_i$ for $1 \le i \le m$ and $A_{j'} = U'_j$ for $1 \le j \le m'$.

e-mail: ringel@math.uni-bielefeld.de