Cluster-additive functions on stable translation quivers

Claus Michael Ringel

Abstract. Additive functions on translation quivers have played an important role in the
representation theory of finite dimensional algebras, the most prominent ones are the hammock
functions introduced by S. Brenner. When dealing with cluster categories (and cluster-tilted
algebras), one should look at a corresponding class of functions defined on stable translation
quivers, namely the cluster-additive ones. We conjecture that the cluster-additive functions on
a stable translation quiver of Dynkin type A, D, ,Es,E7,Es are non-negative linear combinations
of cluster-hammock functions (with index set a tilting set). The present paper provides a first

study of cluster-additive functions and gives a proof of the conjecture in the case A,,.

A translation quiver is of the form I' = (I'g,I'1,7), where (I'g,I'1) is a locally finite
quiver say with my, arrows x — y, and 7: (o \ I'§) — T'g is an injective function defined
on the complement of a subset I’y C Ty, such that for any pair of vertices y, z € T'g, with
z ¢ 'y one has Mrsz,y = My, . The vertices in I'f are said to be the projective vertices, those
not in the image of 7 the injective vertices. If there are neither projective nor injective
vertices, then I' is said to be stable. A typical example of a translation quiver is the
Auslander-Reiten quiver of a finite-dimensional k-algebra A, where k is an algebraically
closed field. Such an Auslander-Reiten quiver is equipped with an additive function on
the set of vertices with values in the set of positive integers, its value at a vertex x is the
length of the corresponding A-module. Here, a function f: I'g — Z is said to be additive
provided

f2)+ flrz) =)

The importance of dealing with additive functions on translation quivers is well-known
since a long time, of particular relevance have been the hammock functions introduced by
Brenner [Br], see also [RV]; the hammock functions for the vertices of the translations quiv-
ers of the form I' = ZA with A a Dynkin diagram A,,,D,,, Eg, E7, Eg have been displayed
already by Gabriel [G] in 1980.

The present note is concerned with combinatorial features of cluster categories (in-
troduced by Buan, Marsh, Reineke, Reiten, Todorov [B-T]) and cluster-tilted algebras
(introduced by Buan, Marsh, Reiten [BMR]), and for simplicity we again will assume that

) my.f(y), forall zeTy\T}.
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we work over an algebraically closed field. The cluster categories are triangulated categories
with Auslander-Reiten triangles, thus we may consider the corresponding Auslander-Reiten
quivers: these are now stable translation quivers. Thus, let I' be a stable translation quiver.
Instead of looking at additive functions on I', we now will be interested in what we call
cluster-additive functions.

We use the following notation: Any integer z can be written as z = z+ — 2~ with non-
negative integers z*, 2~ such that 272z~ = 0 (thus z* = max{2,0} and 2z~ = max{—z,0}).
A function f: 'y — Z is said to be cluster-additive on I' provided

f(2)+frz) =)

my,f(y)*, for all z € Ty.

Linear combinations of cluster-additive functions usually are not cluster-additive. The-
orems 1 and 2 deal with this problem. Here, we assume that we deal with a stable trans-
lation quiver I" such that any vertex is starting point of an arrow (we call such a stable
translation quiver proper; in the terminology of Riedtmann [Rm], it means that we assume
that no component of I' has tree class A;). Theorem 1 provides a criterion for sums of
cluster-additive functions to be cluster-additive again: If f,g are cluster-additive func-
tions on T, then f + g is cluster-additive if and only if f(x)g(z) > 0 for all vertices x
(in this case, we say that f and g are compatible). Theorem 2 shows that the difference
f — g of cluster-additive functions f, g is cluster-additive if and only if g(x)™ < f(z)" and
g(z)™ < f(x)~ for all vertices x (if this is the case we write g < f).

The remaining parts of the paper will deal with translation quivers related to those
of the form ZA where A is a finite directed quiver. Recall that any locally finite directed
quiver A gives rise to a stable translation quiver ZA with vertex set A x Z, with arrows
(a,4): (§,1) = (n,7) and (a*,4): (n,7) — (§,i+ 1) for any arrow a: & — 1 in A and with
translation (§,7) — (§,7 — 1). Theorem 3 asserts that a cluster-additive function on ZA
with A a finite directed quiver is uniquely determined by its values on a slice and that these
values are arbitrary integers. Thus, if A has n vertices, we may identify in this way the set
of cluster-additive functions on I' with the set Z"; but note that this is just a set-theoretical
bijection!

Our main interest lies in the translation quivers ZA where A is a simply laced Dynkin-
quiver, thus of type A,,D,,Eg, E7, or Eg. Theorem 4 asserts that for A of type A,,, any
cluster-additive function on ZA is a non-negative linear combination of cluster-hammock
functions (they are introduced in section 5). We conjecture that the same assertion holds
for all Dynkin cases. This would be an analog of an old theorem of Butler [Bu] which asserts
that for a representation-finite algebra A, the additive functions on the Auslander-Reiten
quiver of A are the linear combinations of the hammock functions.

Cluster-additive functions arise naturally in the context of cluster categories and
cluster-tilted algebras (see section 10), thus one may be tempted to focus the attention
to cluster-additive functions on stable translation quivers I' such as the Auslander-Reiten
quiver of a cluster category, a typical example is ZA/F where A is a Dynkin quiver and
F = 771[1]. It may come as a surprise that instead of looking at ZA/F, we prefer to con-
sider cluster-additive functions on its cover ZA. After all, every cluster-additive function
on ZA/F lifts to a cluster-additive function on ZA, thus we deal with a setting which on
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a fist sight appears to be more general. But we conjecture that all the cluster-additive
functions on ZA actually are F-invariant, so that we would get the shift F' for free.

The experienced reader will observe that the cluster-additive functions exhibit a lot of
typical features known in cluster theory (as started by Fomin and Zelevinsky and developed
further by a large number of mathematicians): that negative numbers arise only seldom,
that they have to be ignored in some calculations, that there is a playing field which
concerns only non-negative numbers, and if the ball leaves the field, it is bounced back
immediately ... .

Acknowledgment. The paper was written during a stay at the Hausdorff Research
Institute for Mathematics, Bonn, January - April 2011, and is inspired by a number of
lectures on the combinatoric of cluster categories. The author has to thank Guo Lingyan
(Paris) for spotting several inaccuracies in the first version of the paper.

1. Preliminaries.

Let I' be a stable translation quiver. We compare additivity and cluster-additivity and
look for the image of a cluster-additive function.

(1) A function f on Ty with values in Ny is cluster-additive if and only if it is additive.

(2) If T is connected and T'y is not empty, then any function f: Ty — Z which is both
additive and cluster-additive takes values in Ny.

Proof: (1) is obvious. For the proof of (2), observe that a connected stable translation
quiver with at least one arrow has the property that any vertex yg is the starting point of
an arrow, say yo — 2. Now

FE) + F(r2) =Y myfy)T = my.f(y)

implies that »_ my.(f(y)t — f(y)) = 0. However we have f(y)* — f(y) > 0 for all y.
This shows that for m,, # 0 we must have f(y)™ = f(y). Since my, . # 0, we see that
f(yo)™ = f(yo). Thus f(yo) = 0.

In the case I' = ZA; with vertices z; (i € Z) such that 7x; = z;_1, the additive
functions are the cluster-additive functions, and these are the functions of the form f(x;) =
(—1)%a, where a is a fixed integer.

(3) Let f be cluster-additive. Let f(z) < 0. Then f(tz) > —f(z) > 0.

Proof: By definition, f(72)+ f(2) is a sum of positive numbers, thus non-negative.

This shows:

(4) Any cluster-additive function with only non-positive values is the zero function.

(5) Let I' = ZA with A of Dynkin type. Any cluster-additive function on T' with only
non-negative values is the zero function.



Proof. Let f be cluster-additive on I" with only non-negative values. Then f is additive,
but according to [HPR] any additive function on T' with only non-negative values is the
zero function.

It follows from (3) and (5) that there are many stable translation quivers without
non-zero cluster-additive functions. For example, if A is a Dynkin quiver, then the only
cluster-additive function f on I' = ZA/T is the zero function. Namely, (3) asserts that f
only takes non-negative values, thus f is additive. Therefore f gives rise to an additive
function on ZA with non-negative values. According to (5) this implies that f is the zero
function.

Another class of special cases should be mentioned, namely the stable translation
quivers I without arrows. In this case, a function f: I'g — Z is cluster-additive if and only
if f(t2) = —f(z) for all vertices z. If we consider the 7-orbit of the vertex z, then two
possibilities have to be distinguished: either the 7-orbit has an odd number of elements,
then we must have f(z) = 0 for any cluster-additive function on I, or else the 7T-orbit is
infinite or has an even number of elements, then f(z) is an arbitrary integer, and determines
the values of f on the complete 7-orbit. Note that this implies that in this special case,
the set of cluster-additive functions is closed under (pointwise) addition and subtraction.

Let us call a stable translation quiver I' proper, provided any vertex is starting point
of at least one arrow (in the terminology of Riedtmann [Rm)], this can be formulated as
follows: no component of I' is of tree class A;). The stable translation quivers we are
interested in will always be proper.

2. Sums of cluster-additive functions.

The sum of two cluster-additive functions usually will not be cluster-additive, a typical
example is the following:

Example. Let I' = ZA,.

As we have mentioned, if I is a stable translation quiver of tree class A, then the set
of cluster-additive functions on I' is closed under addition. Thus, let us assume now that
I' is proper.



Two cluster-additive functions f, g on I' are said to be compatible provided f(x)g(x) >
0 for all vertices z. Compatibility can be characterized in many different ways (the proof
is obvious):

Lemma. Let fi,..., fn be cluster-additive functions on I'. The following conditions
are equivalent:
(i) fi,..., fn are pairwise compatible.

(ii) If fi(x) <O for some index i and some vertex z, then f;(x) <0 for1 <j <n.
(iii) If fi(xz) > 0 for some index i and some vertex x, then f;(x) >0 for 1 < j <n.
(iv) Given a pair i # j, there is no vertex x with f;(z) <0 and f;(x) > 0.

Theorem 1. Let fi,..., f, be cluster-additive functions on a proper stable translation
quiver I'. Then >, f; is cluster-additive if and only if the functions are pairwise compatible.

Before we start with the proof, let us isolate a decisive property of the operator z + 2.

Lemma. Let aq,...,a, be integers. Then

(a) (X a)t <30
(b) Equality holds if and only if either all a; are non-negative or all are non-positive.

n

Proof: Let a; > 0for 1 <i<manda; <Oform+1<i<n,leta=>_,a; Then
S ar =" a; > " a; = a and therefore Y 1, a; > at. If we have equality, and
a>0,then 0 =a—>" af = Z?:mﬂ(—ai) shows that these a; = 0, since all —a; are
non-negative for m + 1 < ¢ < n. In this case all the a; are non-negative. If a < 0, then
221 a; = 0 shows that these a; = 0, since all a; are non-negative for 1 < i < m. In this
case, all a; are non-positive.

nAlso the converse holds: If. &.Lll a; are non—nengative., then E?:} a;r = 272:1 a; =
(3", a;)*. If all a; are non-positive, then also Y i, a; is non-positive, and > 1 | a; =

0= (X0 ai)*. i

Proof of Theorem 1: Since we assume that I' is proper, we know that for any vertex y
in I', there is a vertex z with m,, # 0.

First let us assume that fi,..., f, are pairwise compatible and let f = >_. f;. We
claim that for all vertices y of '

(%) ft =) fily”*

Let 7 be the set of vertices x € I'y such that f;(x) < 0 for at least one i. If y € T,
then f;(y) < 0 for all 1 < i < a, since we deal with pairwise compatible functions. It
follows that f(y) = >, fi(y) < 0 and therefore f(y)* = 0. But also f;(y)* = 0 for all 4,
this yields (%) in case y € T.

Now assume y ¢ 7. Then f;(y) > 0 for all ¢, thus f(y) =), fi(y) > 0, therefore

T =rw=_ i) = fiy"
and we see that (x) is satisfied also in this case.
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Now consider some vertex z.

Fra) +f(2) =) fir2) + Y filz) =) (filr2) + fi(2))
—Z (Z myzf’t ) )

where we use that all the functions f; are cluster-additive as well as the equality (x) for
all y. This shows that f is cluster-additive.

Now let us assume that f = > f; is cluster-additive. Let z be a vertex of I'. Then, as
above, we have

Fra) +f(2) =) firz) + ) filz) =) (filr2) + fi(2))
—Z (32, metit )+)
= Zymyzzifi Y7,
thus
0=f(rz) + f(z Z my. f(y
=D = filw) - Zy myzf(y>+
=3 me (30 ) - Fw)).

According to assertion (a) of the Lemma, all the brackets in the last line are non-negative,
thus all the summands my, (3, fi(y)™ — f(y)™) are non-negative. Since their sum is zero,
all these summands are zero.

It follows that for any y we have

> fiw)t = rw)*

(since there is z with m,,, # 0). According to the assertion (b) of the Lemma, we conclude
that all the values f;(y) for 1 < i < a are non-negative or all are non-positive. But this
means that the functions fi,..., f, are compatible.

3. Subtraction.

Let us introduce the following partial ordering on the set of cluster-additive functions
on I'. If f, g are cluster-additive functions on T', we write g < f provided g(x)* < f(z)"
as well as g(z)™ < f(x)~ for all vertices z of I.
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Theorem 2. Let f,g be cluster-additive functions on the proper stable translation
quiver I'. Then f — g is cluster-additive if and only if g < f.

Proof. First, let us assume that g < f. We claim that

(f=9)@)" = f(2)" —g(a

)"
for all vertices z. Namely, if g(x) > 0, then g(z) = g(z)* < f(x)*, and therefore f(z) =
f(z)™, thus g(z) < f(z) and therefore (f — g)(z) = f(x) — g(x) > 0, thus

(f =9)(@)" =(f —9)(@) = f(z) —g(x) = f(2)" —g(z)".

Also, if g(z) < 0, then g(z)™ =0, and 0 < —g(z) = g(z)~ < f(z)~, thus f(z)T = 0. Also,
f(x)™ = —f(z) and therefore g(z) > f(z), thus (f — g)(z) = f(z) — g(z) < 0. It follows

that
(f—9)@)" =0=f(x)" —g(a)".
Finally, if g(x) = 0, then also g(x)* = 0 and

(f =9)@)" = f(2)" = f(x)" —g(x)".

Let z be a vertex of I', then

(f =9)(72) + (f —9)(2) = f(72) = f(2) + 9(72) — 9(2)

=Y my f(y)T =) myeg(y)”
=Y my(f-9)y*

This shows that f — g is cluster-additive.

_l’_

Conversely, assume that f — g is cluster-additive. Since the sum f = (f —¢g) + ¢
of the cluster-additive functions f — g and g is cluster-additive, we know by Theorem 1
that f — g and g are compatible functions, thus (f — g)(z)g(z) > 0 for all vertices =z,
thus f(z)g(z) > g(x)g(z) for all x. If g(x) > 0, then this implies that f(x) > g(z) > 0,
thus f x)+ > g(z)* and f(xz)” = g(z)~. If g(z) < 0, then f(z) < g(x) < 0, therefore
g(x)” = —g(z) < —f(z) = f(z)” and g(x)* = 0 = f(x)*. Of course, if g(x) = 0, then
g(x)T =0< f(x)" and g(x)~ =0 < f(x)~. This shows that g < f.

4. The restriction of cluster-additive functions to a slice.

We consider now cluster-additive functions on a translation quiver I' = ZA, where A
is a finite directed quiver. The subset Ay x {0} is called a slice of I" (all the slices are
obtained by considering the subsets n(A{ x {0}), where n: ZA" — ZA is an isomorphisms
of translation quivers).

Theorem 3. Let A be a finite directed quiver. Any function f: Ay x {0} — Z can be
extended uniquely to a cluster-additive function on ZA.
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This may be reformulated as follows:

Corollary. The restriction furnishes a bijection between the set of cluster-additive
functions on ZA and the functions f: Ay x {0} — Z.

Proof of Theorem 3: Let & be a source in A. Then f is defined for (£,0) and all its
direct successors, thus we use the defining property of a cluster-additive function in order
to define f(&,1). Inductively we define in this way f(n,j) for all vertices n of A and all
j > 0. The dual procedure yields the values f(n,j) for j < 0.

Remark 1. Note that we need here that A is finite. For example, if A is the linearly
ordered quiver of type A, then any function f: ZA — Ny which is constant on the slices
A x {i} for all i € Z, is additive, thus cluster-additive and of course not determined by the
value taken on one of these slices.

We also may look at I' = ZA with A alocally finite (but not necessarily finite) directed
quiver. A slice S of I' may be said to be generating provided we obtain all vertices from
S of I using reflections at sinks and at sources. If A a finite, then any slice is generating,
but in general not. If I' = ZAZ, then a slice S is generating if and only if no arrow in
S belongs to an infinite path. The corollary can be generalized as follows: Let S be a
generating slice. Then the restriction function f v+ f|S is bijective.

Remark 2. The extension of a function f: Agx{i} — Z to a cluster-additive function
on I' can be achieved by using what one may call cluster-reflections. Given a locally finite
quiver A and a vertex x of A, which is a sink or a source, then the cluster-reflection o,
maps any function f: Ay — Z to the function o, f with (0. f)(y) = f(y) for y # = and
(02f) (@) = = f(x) + 32, May f(y)* and o, f should be considered as a function on (0,A)o,
where 0,A is obtained from A by changing the orientation of all the arrows involving z
(thus replacing a source by a sink and vice versa). Starting with a source x of A = A x {i},
then we may identify o,A with the slice obtained by deleting = and adding 7~ 'x; given
a function f: A — Z, and looking for its cluster-additive extension, then we have to use
o.f on the slice o, A.

Altogether we see that the restrictions of a cluster-additive function on I' to the various
slices of I' are obtained from each other by a sequence of cluster-reflections.

5. Cluster-hammock functions.

Here we introduce some basic cluster-additive functions. As before, we consider a
translation quiver I' = ZA, where A is a finite directed quiver.

Recall the definition of the left hammock function h; for a vertex p of I' (and that left
hammock functions with finite support are called hammock functions). First, h;,(p) = 1.
Second, if z is not a successor of p, then hj,(z) = 0. Third, assume that hj,(y) is defined
for all proper predecessors y of z; if there is an arrow y — z with h;(y) > 0, then

hoy(2) = —h(T2) + Zy my-h,(y),

otherwise h;,(z) = 0.



It is well-known that all the values h;(z) are non-negative; the support of h:’D will be
denoted by H,. If A is a Dynkin quiver (thus of type A,,D,,Es E7, or Eg), then H,
is finite and there is a unique vertex vp with h;(yp) # 0 such that any vertex y with
hy,(y) # 0 is a predecessor of vp; the map v: 'y — I'g is called the Nakayama shift (see
[G], where also typical hammock functions are displayed; but note that in contrast to the
definition given in this paper, but also in [Br] and [RV], Gabriel extends the function Ay, |H,
to an additive function on all of ZA). The shift v7! is usually denoted by [1], the shift
v7—2 by F.

We insert here that ZA may be interpreted as the Auslander-Reiten quiver of the
derived category D°(mod A), where A is the path algebra of the opposite quiver of A, see
[H]. Given an indecomposable A-module X, we denote by [X] the corresponding vertex
in ZA. In this interpretation, [1] corresponds to the shift functor of the derived category
and F to the functor [1]7~! (also denoted by F) which is used in order to define the
corresponding cluster category, see [B-T].

If A is connected and not one of these Dynkin diagrams, then the support H,, of h; is
infinite, for any vertex p of ZA.

For any vertex x of I', we now define a cluster-additive function h, as follows: Let S
be any slice containing x, let h,(x) = —1 and h,(y) =0 for y # x in S.

According to Theorem 3, we know that h, extends in a unique way to a cluster-
additive function h, on I' and this extension is independent of the choice of §. We call h,
the cluster-hammock function for the vertex z.

Proof of the independency: There is a slice 8’ with z the unique sink of &’ and a
slice 8" with x the unique source of 8”, and all other slices containing x are obtained
from S’ or also 8” by reflections at sinks or sources different from x. The corresponding
cluster-reflections o, do not change the value 0.

Note that the proof shows that h,(y) = 0 for all vertices y # = which belong to the
convex hull of §&’ and S”.

Lemma. Let I' = ZA with A a Dynkin quiver, then h, is F-invariant. The support
of hy consists of
e the F-orbit of x and h, takes the value —1 on these vertices, as well as
e the F'-shifts of the hammock H, -1, and here h, takes positive values, namely

ho(y) =M1, (y) for y€ Hoy.

Here is a schematic illustration, where we write p = 771z (the vertical dotted lines
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mark a fundamental domain for the action of F'):

We have mentioned that h, is F-invariant: h,(y) = hy,(Fy) for all y € I'. But this
means also that h, = hp,. Thus, when dealing with a set of cluster-hammock functions,

we may restrict to look at those indexed by elements in some fixed fundamental domain
for F.

Let us mention a property of the hammock functions h;) (and of h,,) which will be
used in the next section. If there is a sectional path from p to a vertex y, then h;(y) > 1
(or better: in this case, h;,(y) is the number of sectional paths from p to y).

We call a subset T of ZA confined provided there is a slice § such that 7 is contained
in the convex hull of S and 78[1]; note that this is the Auslander-Reiten quiver I'(A) of
a hereditary algebra A of type A, with S the indecomposable projective A-modules, and
7S8[1] the indecomposable injective A-modules.

We call a subset T of I" a tilting set provided we can identify I' as a translation quiver
with D®(mod A) for some hereditary algebra A such that 7 are just the positions of the
indecomposable direct summands of a tilting A-module. Subsets of tilting sets are called
partial tilting sets.

Lemma. Let X,Y be non-isomorphic indecomposable A-modules. Then Ext*(X,Y) =
0 if and only if hjy1([X]) = 0.

Proof: There is the Auslander-Reiten formula Ext'(X,Y) ~ DHom(r~Y,X) and
dimHom(77Y, X) = h’[T_ly]([X]) = hy([X]).

Corollary. A subsetT of I is partial tilting if and only if T is confined and h,(z') =0
for all pairs x # x' in T.

6. Non-negative linear combinations of cluster-hammock functions.
Again, we deal with a translation quiver I' = ZA, where A is a finite directed quiver.

Proposition 1. Consider a set hy, ..., hy, of cluster-hammock functions. These func-
tions are pairwise compatible if and only if there is a tilting set T such that any h; is of
the form h, with x € T.

Proof: Let 7 be a tilting set and z,2’ € 7. We have to show that h,,h, are
compatible. This is clear if h, = h,.. Thus assume that h, # h,, thus = and 2’ do not
belong to the same F-orbit of I'y. Let h,/(y) < 0, then y belongs to the F-orbit of 2/, thus
hy(y) = hy(2") = 0. This shows that h,(y)h,(y) = 0. Similarly, we see: if h,(y) < 0, then
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hz(y)hy (y) = 0. For the remaining vertices y we have both h,(y) > 0 and h,/ (y) > 0,
thus also h,(y)h. (y) > 0.

Conversely, assume that the functions hq, ..., h, are pairwise compatible. First, we
show that for h; # hj, and h; = h,, for some vertex y, then h;(y) = 0. Namely, h;(y)hy,(y) =
hi(y)h;(y) > 0, and hy(y) = —1 shows that h;(y) < 0. But h;(y) < 0 would imply that
hi = hy, a contradiction. Thus h;(y) = 0.

Now, let h; = h, for some x € T'y. Let S be the slice in I' such that 772F !z is the
unique source. Let S’ = S[1], this is the slice with unique source 7~ 'z. Clearly, the convex
hull F of § and &’ is a fundamental domain for F', thus h; = h,, for some x; € F. Since
71z is the unique source of &', we see that h,(z) > 0 for all 2 € §’. Assume that some x;
belongs to §’, then « # x;, thus h, # he, (since x, x; belong to the fundamental domain F
of F'), but then we know that h;(x;) = 0, a contradiction. In this way, we see that all the
vertices x; belong to the convex hull of S and 78" = 7S[1], thus the set T = {z1,...,2,}
is confined. Since also hy(z") = 0 for z # 2’ in T, we see that 7T is a tilting set.

Corollary. A linear combination h = 31 ngh, with positive integers ny is cluster-
additive if and only if T is a partial tilting set.
Proof. This is a direct consequence of Theorem 1 and Proposition 1.

Proposition 2. Let f = ) _-nzh, for some tilting set T and n, € Ny, then
f(x) = —ng forx € T and f(y) > 0 provided the intersection of T and the F-orbit of y is
empty. Thus

F=Y nahe==Y f@he=Y_ f@) ha=>_ flx) hs.

z€T z€T €T zel0

where T is the convex hull of some slice S and 7S[1].

Conjecture. Let I' = ZA where A is one of the Dynkin diagrams A, ,D,,, Eg, E7, Eg
and let f be cluster-additive on I'. Then f is a non-negative linear combination of cluster-
hammock functions (and therefore of the form

ZxGT nahs

for a tilting set 7 and integers n, € Ny, for all x € T).

If this conjecture is true, then any cluster-additive function satisfies the following
properties:

(a) f is F-invariant.
(b) {z € Ty | f(x) < 0} is the union of the F-orbits of a partial tilting set.

(¢) There is a partial tilting set T with

f= erTf(x)_hw

11



A proof of the conjecture in the case A, will be given in section 9. We also note that
it is not difficult to exhibit explicitely all the cluster-additive functions on ZA, where A is
a quiver of type Dy, thus verifying the conjecture also in this case.

7. The rectangle rule.

Lemma. Let f be cluster-additive on the following translation quiver with s > 1, t > 1:

Qs
,’/\\
. . .
T Y
bl .
e

Then fory = y(s,t) with f(z) <0, we have

F@)=f@)"+ > fla)” + fla)t+ D fb) + fb)?

1<i<s 1<5<t—-1

In particular, f(y) > f(x)” >0

Proof, by induction on s and ¢.

If s=t=1, then f(y) = f(a1)™ + f(b1)" — f(x).
Now assume that we know the formula for some s,t. Let us increase s by 1, thus we

deal with
Ag41

<i>

bt

For ¢t =1, we have 2’ = a; and ¢y’ = asy1, otherwise 2’ = y(s,t—1) and ¢/ = y(s+1,t—1).
Now, consider first the case t = 1. Then (since f(y) > 0):

FW") =)+ fly )— f( )

= flasg) T+ F@)"+ > fla)” + fla)T+ D )+ fb)T — flas)
1<i<s—1 1<j<t—1

= flass)T + f@)"+ D fla)™+ D fb)” + f(b)T
1<i<s 1<j<t—1

12



where the last equality comes from f(as)™ — f(as) = f(as)™.
Second, let t > 2. Then both f(y) >0, f(y') > 0, thus

fW") =)+ fly) — f(a)
= fl@)7 4+ D fla)T +flass)T+ D )T+ foeo)”

1<i<s 1<5<t—2
+ > fla) + fla)T D> )T+ f(by)
1<i<s—1 1<;<t—-1
—f@) = > fla) = fla)t = D flb)T = f(bimr)
1<i<s—1 1<5<t—-2
= fl@) + Y fla)” +flas)T+ D fb) T+ Fb)T,
1<i<s 1<j<t—1

as we want.
By symmetry, the same argument works, if we increase ¢ instead of s. This completes

the proof.

Extended version. Let f be cluster-additive on the following translation quiver with
s>1,t>1:

As,.........
//\\
al ’ 7/
/
T /
by
be

Then fory =y(s+ 1,t) with f(z) <0, we have
f)=1f@)"+ D> fla)™+ > flb)~ +f(b)".

1<i<s 1<j<t—1

Proof: We add a vertex as11 and arrows as — as11 and ags11 — d, so that we obtain
a rectangle. Also, we extend f to be defined on the rectangle by setting f(as11) = 0.
Then the extended function satisfies the cluster-additivity condition on all the meshes of

the rectangle and we can apply the lemma.
as—‘,—l

ay




There is also a corresponding double extended version for dealing with ZA where A
is of type As+t+1-

Double extended version. Let f be cluster-additive on the following translation
quiver with s > 1, t > 1:

8. Wings.

Let s > 0,t > 1, let y be a wing vertex of rank s + ¢ + 1, say with sectional paths
p[l] = p2] = - = pls+t+1] =y, y=I[s+t+1]g— - —[2]¢ = [l]q.
Lemma. Assume that
flpls])) <0, f(p[s+1i]) >0, for1 <i<t, f(p[s+t+1])<0.

Then
f(ltle) = — min f(pls + ).
Also, f is non-negative on all vertices between p[s + 1] and [1 + t]q different from y.

Here is a sketch which exhibits the vertices in question in case s > 1:

p[l] AAAAAAAAAA ............ [1]q




The case s = 0 looks as follows:

ot}

L (Mg

In particular

w=pls], z=[tlg, bi=pls +1], a; =71 ""p[s — .

Note that we have added the vertex as to the wing, (with additional arrows as_1 — as
and a; — b}) and we put f(as) = 0, as in the proof of the extended rectangle rule.

Using the new labels, the assumptions read:
flx) <0, f(bi) =0, for 1<i<t,  f(y) <0

and the assertion is that f is non-negative on the shaded area (the vertices between b; and
a? different from y) and that

f(2) = —min(f(b;) | 1< <t).

The rectangle rule asserts that f is bounded below by f(z)~ on the rectangle between

771z and a/ = b}. By assumption, f is non-negative on the vertices by,...,b;. Thus,

15



concerning the non-negativity assertion, it remains to show that f is non-negative on the
vertices af, ..., al.
The rectangle rule asserts that

Flal) = F(@)+ 3 flag)™ + Fa) ™+ 3 5(b)" + F0)*

Since f(y) < 0 and f(a})
that we know that f(al)

flaiyy) + flap) =

> 0, we have f(a}) = f(a}) — f(bs) > 0. Assume by induction
= f(al) — F(b) > 0, then we gei

flad)™ + flaj) "
= flai) + flaip)
flay) = f(be) + flaiiy)

and therefore
flaiiy) = f(aisr) — f(be).
By the rectangle rule for a;,; we see that f(a; ;) — f(bs) > 0 provided i + 1 < s.

It remains to calculate the value f(z).
Using induction on 7, we show that

F@F) = f(bi) —min(f(b;) | 1 < j <)

for ¢ > 2.
The rectangle rule for b yields

F(0)) +Zfag + flag)t 4+ Fb) 7+ f(be)T

~ Z fla;)™ + f(ba),

since f(as) = 0 and all f(b;) > 0. Similarly, for 0], we get:

s—1

FWin) = f@)”+ > fla)” + f(bisa),

thus
fbigr) = F(05) = f(bis1) — f(bi).
For ¢ = 2, we have
F(0) = f(b) — f(bY),
since f(b5) > 0, thus
f(b5) = f(b5) — f(b)) = f(b2) — f(b1) = f(b2) —min(f(bj) |1 <j<2),

16



as we have claimed.
Similarly, we have for all ¢ > 2

By induction, we may assume that

fi) = f(bs) —min(f(b;) |1 <5 <),

and we have to distinguish two cases:
First, assume that f(b)) < 0. Then f(b))" =0 and f(b;) <min(f(b;) |1 <j <), so
that min(f(b;) |1 <j <1i) = f(b;). Thus
FO) = FONT + fbira) — f(bi)
= 0+ f(bit1) —min(f(b;) [ 1 <j < 1),
as we want to show.
In the second case, f(b) > 0, thus f(b))" = f(b/) and f(b;) > min(f(b;) | 1 < j < 1),
so that min(f(b;) | 1 <j <4) = min(f(b;) | 1 <j < i). Thus
F@OF1) = FO) T + fbir) — f(b2)
= f(b;) —min(f(b;) [ 1 <j <)+ f(bit1) — f(bs)
— min(f(by) | 1< < 1)+ F(binn).

Thus we see that

FOO)T = f(be) —min(f(bs) |1 <i < t).

On the other hand, the calculations in the first part of the proof had shown that f(a”) > 0
and that

flag) = flag) = —f ().
It follows that

f(2) = )T + fa)) — fay) = fFO))T + f(al)™ = flay)
= )T = f(be) = f(b) —min(f(b;) | 1 <i<t)— f(by)
= —min(f(b;) |1 <i< 1)

This completes the proof.

9. The case I' = ZA,,
Consider now the case I' = ZA with A of type A,,.

17



Theorem 4. Let I' = ZA with A of type A,,. Then any cluster-additive function on
I' is a non-negative linear combination of cluster-hammock functions.

If n = 1, then any cluster-additive function on I' is a non-negative multiple of one of
the two cluster-hammock functions. Thus, we can assume that n > 2.
Let f be a cluster-additive function on TI'.

(1) If z is a vertex of T with f(z) <0, then there is a vertex 2’ # z with f(2') <0 and
a sectional path from z to 2’ or from 2’ to z.

Proof: Since n > 2, there is an arrows a; — ag = z. Choose m maximal such that
there exists a sectional path

Am — - —> a1 — Ap = 2.

If f(a;) <0 for some 1 < ¢ < m, then let 2 = a;. Otherwise we consider the wing with
corners
p[l] = am, 2z, [1] T ",

q =
<0 (even f(2') <0) for 2/ =77 1a;.
= f(Fz) and

The wing lemma (with s = 0) asserts that f(2’
(2) If f(2) < 0 for some vertez z, then f(z

f(z)"h. < f.

)
)

Proof: According to (1), there is a vertex y = 2z’ with f(y) < 0 and a sectional path
from z to y or from y to z. Up to duality, we can assume that there is a sectional path
from y to z (otherwise we consider instead of I' the opposite translation quiver). Also, we
can assume that we choose y such that the path from y to z is of smallest possible length
(thus f is positive on all the vertices between y and z). Consider the wing with corners

p[l], Y, [1](]7

thus there are sectional paths
p[l] = p[2] = -+ = p[m] =y, y=[mlg— - —[2]¢g— [1]q

and z is one of the vertices [i|¢g with 1 < j < m. Let s > 0 be maximal with f(p[s]) <0
and t =m — s — 1. We claim that ¢ > 1 and that z = [t]q.

First of all, for t = 0, the rectangle rule would imply that f([j]¢) > 0 for 1 < j < m,
but z is of the form [j]q and f(z) < 0.

This means that we can use the wing lemma, it asserts that

f([tlg) = —min{f(p[s +i]) [ 1 <i <t}

and that f([jlg) > 0 for 1+t < j < s+ t. Since f(z) < 0, with z of the form [j]¢ and
j < s+t, it follows that 7 < ¢t. On the other hand, we know that f is positive on all
vertices between y and z, thus we see that j = t.
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Let x = p[s], b; = p[s + ], and z = [t]q and note that we have f(z) <0, f(y) <0, and
f(b;) > 1 for 1 < i < t. This yields the upper wing in the following picture, namely the
wing with corners

p[1], v, [g.

According to the wing lemma, we know that

f(z) = —min(f(b;) |1 <i<t)<0
But starting with z and y, we may also look at the wing with corners

[nlg, @, pln],

and use the dual argument: the dual of the wing lemma concerns the vertex F'~1z (as well
as the vertices between F~1z and z), it yields

F(F™12) = —min(f(b) [ 1 <@ < 1),
This shows that
f(z) = f(F~12).

Also, the rectangle rule for F =1z (or the dual rectangle rule for ) assert that f is bounded
from below by f(2)~ = —f(z) on the rectangle starting with 7=1F~!2z and ending with
7z (the shaded area).

Using induction as well as duality, we see that f(F*z) = f(z) for all a € Z. Also, it
follows that

f(z)"h. < f.

Proof of Theorem 4. Choose some slice S. Given a function g on the set of vertices of

I', we write
gls = > lg(@)l.
zeS
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thus |gls = 0 if and only if g(x) = 0 for all x € S. In case g is cluster-additive, we know
from section 1 that |g|s = 0 if and only if g is the zero function.

We want to show any cluster-additive function f on I' is a non-negative linear combi-
nation of cluster-hammock functions. We use induction on |f|s. If |f|s = 0, then f is the
zero function.

Now assume that |f|s > 0. According to the assertion (5) in section 1, there is some
vertex z with f(z) < 0.

According to Theorem 2 and (2), we know that h, < f(z)"h, < f. We see by
Theorem 2 that f — h, is cluster-additive again, and |f — h.|s < |f|s. Thus, by induction,
f — h. is a non-negative linear combination of cluster-hammock functions and then also
f = (f—h.)+h. is a non-negative linear combination of cluster-hammock functions. This
completes the proof.

10. Cluster-tilted algebras.

Let A be a finite-dimensional hereditary k-algebra (k an algebraically closed field).
Let T be a tilting A-module, T the set of isomorphism classes of indecomposable direct
summands of T, and FT the union of the F-orbits which contain elements of 7. Let B
be the opposite endomorphism ring of T in the cluster category C = D(mod A)/F (see
[B-T]), thus B is a cluster-tilted algebra.

Define a function dr on the Auslander-Reiten quiver I' of D®(mod A) as follows: Con-
sider the projection

Db(mod A) — D®(mod A)/F = C4 — C4/(T) = mod B,

and denote it by .

Let y be a vertex of I', thus the isomorphism class of an indecomposable object in
DP(mod A). If y is not in F'T, then 7(y) is the isomorphism class of an indecomposable
B-module and we denote by dr(y) its k-dimension. On the other hand, if the F-orbit of y
contains an element x of 7, and z = [X], where X is an indecomposable direct summand
of T, then let dr(z) = —n,, where n, is the Krull-Remak-Schmidt multiplicity of X in T,
note that this is also the k-dimension of the corresponding simple B-module S,. In this
way we obtain a function

dr: I'y = Z

which obviously is F-invariant.
Of course, instead of looking at the k-dimension of the B-modules, one may also
consider their length. In this way, one similarly defines the function

Ir: I'o > Z
with I (y) the length of 7(y) in case y is not in F'T, and with I7(y) = —1 otherwise. If the
tilting module T is multiplicity-free, then I = dp. For a general tilting module T', let T’

be multiplicity-free with the same indecomposable direct summands as 7T, then Ip = dp.
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Lemma. The function dr on I is cluster-additive and we have
dT = ZxGT nth

Proof: Let us consider the mesh of ZA ending in z, say with arrows y; — 2, 1 < i < s.
We assume that the vertices y,11,...,ys belong to F'T, and y1, ..., ¥y, not.

First, consider the case that neither z nor 7z belong to F'T, thus we may consider
the Auslander-Reiten sequence ending in Z. By the assumption on the y;, we see that the
Auslander-Reiten sequence has the form

0—7Z - PY™ =70,
i=1
with indecomposable B-modules Z and Y; such that [Z] = z, [Y;] = y; and where m; =
my, . It follows that

dr(z) +dr(rz) =dim Z + dim 772

= Zm dimY; = imyi,sz(w)
i=1 =1

S
= my, =dr(y:)
=1

since dr(y;) <0 forr+1<1i<s.

Next, let 7z belong to F'T, thus z is a projective vertex, say z = [Z] for some inde-
composable projective B-module Z. By the assumption on the y;, the radical of Z has the
form rad Z = @;_, ;™" and Z/rad Z has dimension n,,. This means

dr(z) +dp(rz) =dim Z — dim Z/rad Z = dimrad Z

= Zm dimY; = imyi,sz(yi)
i=1 1=1

S
= Z myusz(yi)_'—'
=1

Finally, we have to consider the case where z belongs to FT. This case is dual to the
previous one, now 7z = [X| for some indecomposable injective B-module X and the socle
of X has dimension n,.

The Jordan-Hélder theorem for mod B shows that dp is just the sum of the various
functions n,h, with x € T namely, if y is a vertex of I, such that 7(y) is the isomorphism
class of an indecomposable B-module N, then h,(y) is just the Jordan-Holder multiplicity
of the simple B-module S, in N.

In the Dynkin case, we can use the cluster-algebras in order to prove our conjecture
for an F-invariant cluster-additive function f provided two conditions on the position of

the vertices x with f(x) < 0 are satisfied.
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Proposition. Let f be a cluster-additive function on I' = ZA with A a Dynkin
quiver. Assume that f is F-invariant and that there is a tilting set T with the following
two properties:

(a) If x belongs to T, then f(z) <O0.
(b) If f(x) < 0, then x belongs to the F-orbit of an element of T.

Then f is a non-negative linear combination of cluster-hammock functions.

Proof: We identify I' = ZA with the Auslander-Reiten quiver of D?(mod A) where A
is a finite-dimensional hereditary algebra and where T is a tilting A-module such that 7
is the set of isomorphism classes of indecomposable direct summands of T. Let B be the
opposite endomorphism ring of 7' in C4 = D?(mod A)/F. We form the factor category
DP(mod A)/(F'T | i € Z), this is the module category of a Galois cover B of B (with
Galois group Z). Thus, the Auslander-Reiten quiver IV = F(é) of mod B is the translation
subquiver obtained from I' by deleting the F-orbits of the vertices in T.

Denote by f’ the restriction of f to I'. By assumption (b), f’ takes values in Ny,

is cluster-additive, thus additive on I'(B) and F-invariant; thus it induces an additive
function f” on I = T'(B) = I'(B)/F = I'"/F with values in No. According to Butler [Bu],
f" is additive on all exact sequences, thus it is a linear combination of the “hammock
functions” hg for mod B, where p runs through the set of indecomposable projective B-
modules. If we compose these functions h;; with the projection I — I""/F = TI"", we obtain
just the restriction of h; to I'', where p = 7'z for some = € T. Thus, there are integers
n, such that

"o § : 7
f - nph'p7
p

and therefore

fIT = f"=> nphy|T”.
p

If P’ is an indecomposable projective B-module with isomorphism class p’ and S’ is its
top (a simple B-module), then

ny =y _nphl([S]) = £'([S]) > 0

(here we use that f’ takes values in Ny), thus all the coefficients n, are non-negative.

We have seen that f and h = Ep nph;7 coincide on IV, it remains to show that they
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also coincide on 7. Let z € T, thus p = 7'z is in T’y and

f(x) =—f(p)+ Z my,pf(y)+

y€lo

- _f(p) + Z my,p(s)f(y>+

yely

= —h(p) + Z my,p(S)h(y)+

y€F6

= —h(p) + Z my,p(S)h(y)+

y€lo

= h(z),

where we have used that both f and h are cluster-additive, that the coincide on I and
have positive values only on vertices in I'j, (condition (a)). This completes the proof that

f=h

If a cluster-additive function on I' is a non-negative linear combination of cluster-
hammock functions, then also the following properties are satisfied:

(d) Always, f = dp for some partial tilting module 7.

(e) If f takes values in {—1}UNj, then f = dr for some multiplicity free partial tilting
module T, if f takes values in Z \ {0}, then f = dp for some tilting module 7.

We end this section by giving an interpretation of the exchange property of cluster-
tilting objects in a cluster category in terms of the cluster-hammock functions. Thus,
suppose that we deal with a tilting set T in ZA, where A is a Dynkin quiver. Let us look
at the hammock h, for some z € 7. Let 7' =T \ {z}. We claim that there are precisely
two F-orbits of vertices of I" which are not in the support of any function h, with y € 7".
Of course, one of these vertices is x itself, since h,(z) = 0 for all y € 7". In order to find
the other orbit, we only have to consider the vertices z which do not belong to F'T. As
above, we know that 7(z) is the isomorphism class [N] of an indecomposable B-module,
say N. Now either [N] = [S,], then indeed hy(z) = 0 for all y € 7’ (since N has no
composition factor of the form S,), or else IV is not isomorphic to S,, but then N has
at least one composition different from S,, say S, with y € 7', and therefore h,(z) # 0.
This shows that the second orbit consists of the vertices z such that 7(z) = [S,]. (But a
warning is necessary: the position of z with 7(z) = [S,] in the support of h, does not only
depend on h, itself, as already the case Ay shows.)

11. Final Remarks.

1. The main results and conjectures of this note concern the translation quivers
ZA with A a simply laced Dynkin diagram. But there is no problem to extend the
considerations to the case of an arbitrary (not necessarily simply laced) Dynkin diagram.
In order to do so, we need the notion of a valued translation quiver.
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A walued translation quiver T' = (Tg,T'1,7,m,m’) is given by a translation quiver
(T'g,T'y, 7) with the property that there is at most one arrow = — y for any pair x,y of
vertices and two functions m, m’: I'1 — Ny such that

m(rz,y) =m/(y,z) and m'(7z,y) = m(y, z),

for any arrow y — z in I' with 2z a non-projective vertex. In case m = m/, then we may
consider (I'g,T'1, 7,m, m’) as an ordinary translation quiver by replacing any arrow x — y
by m(z,y) arrows.

For example, the valued translation quiver ZB3 has the following form (in such pictures
it is sufficient to add the pair of numbers (m(x,y), m/(z,y)) to an arrow x — y only in
case at least one of the numbers is greater than 1):

AAAAAAA o R o S SN e e SR
.......... NN T N T N T
I ERIR) NE SR NCS TR NG R\

AAAAAAA OOOOO

The valued translation quiver I' = (T'g, Ty, 7,m, m’) is said to be stable, if (T'y,T1,7)
is stable.

Given a stable valued translation quiver I', a function f: I'g — Z should be called
cluster-additive provided

f(z)+ f(r2) = Z m(y, 2)f(y)*T, forall z€T.

y€lo

2. We should stress that cluster-additive functions are definitely also of interest when
dealing with stable translation quivers which are not related to translation quivers of the
form ZA with A a finite directed quiver. Examples of cluster-additive functions on the
translation quiver ZDo, (as well as on ZAZY) have been exhibited in [R].
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