
Morphisms determined by objects:

The case of modules over artin algebras.

Claus Michael Ringel

Abstract. Let Λ be an artin algebra. In his Philadelphia
Notes, M. Auslander showed that any homomorphism be-
tween Λ-modules is right determined by a Λ-module C, but
a formula for C which he wrote down has to be modified.
The paper presents corresponding counter-examples, but also
provides a quite short proof of Auslander’s assertion that any
homomorphism is right determined by a module. Using the
same methods, we describe the minimal right determiner of a
morphism, as discussed in the book by Auslander, Reiten and
Smalø. In addition, we look at the role of indecomposable
projective direct summands of a minimal right determiner
and provide a detailed analysis of the kernel-determined mor-
phisms: these are those morphisms which are right deter-
mined by a module without any non-zero projective direct
summand. In this way, we answer a question raised in the
book by Auslander, Reiten and Smalø. What we encounter
is an intimate relationship to the vanishing of Ext2 .

Let Λ be an artin algebra, the modules which we consider are finitely
generated left Λ-modules. A morphism α : X → Y of Λ-modules is said to
be right determined by a Λ-module C provided the following condition is
satisfied: given any morphism α′ : X ′ → Y such that α′φ factors through α
for any φ : C → X ′, then α′ itself factors through α. This definition is due to
Auslander; the papers [A1] and [A2] are devoted to this concept. One of the
main assertions of Auslander claims that any morphism α : X → Y is right
determined by C = TrD(K) ⊕ P (Q), see [A2], Theorem 2.6; here K is the
kernel, Q the cokernel of α, and Tr(M) denotes the transpose, D(M) the dual
and P (M) the projective cover of a module M .

The aim of this note is to show that this assertion is not correct as stated
(in contrast to the weaker statements Theorem 3.17 (b) of [A1] and Corollary
XI.1.4 in [ARS]). In section 1, we will present corresponding examples. The
assertion has to be slightly modified: not the projective cover of Q is relevant,
but the projective cover of the socle socQ of Q.

Theorem 1. Let α : X → Y be a morphism. Let K be the kernel of α
and Q the cokernel of α. Then α is right determined by TrD(K)⊕P (socQ).

The modification of Auslander’s treatment is formulated in Lemma 1
below (this should replace [A2] Lemma 2.1.b). Auslander’s proof is somewhat
hidden in two rather long papers, but there is a second treatment of this topic
in the book by Auslander, Reiten, Smalø [ARS], see the last chapter. Still
we feel that it may be appreciated if we provide a complete (and quite short)
direct proof of Theorem 1. This will be done in section 2. In section 3 we
will use the same methods in order to describe the minimal right determiner
T (α) of α, as it was introduced in [ARS]. In section 4 we will discuss the
following question: given a simple submodule S of Cok(α), when is P (S) a
direct summand of T (α) ? The final section 5 is devoted to a detailed analysis
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of the structure of those maps α which are right determined by TrD(K), with
K the kernel of α, or, equivalently, by a module without an indecomposable
projective direct summand. The problem of characterizing this class was
raised in [ARS].

Auslander’s theory of morphisms being determined by modules has to be
considered as an exciting frame for working with the category of Λ-modules.
What Auslander has achieved is a clear description of the poset structure of
this category as well as a blueprint for interrelating individual modules and
families of modules. We refer to the survey [R] which outlines the general
setting and shows the wealth of these ideas by exhibiting many examples.

Acknowledgment. Our interest in these questions was stimulated by
a lecture of Henning Krause at the Shanghai Conference on Representation
Theory of Algebras, October 2011, where he stressed the relevance of Auslan-
der’s work, see also [K]. The author has to thank Hideto Asashiba for having
pointed out a wrong argument in a first version of the paper, as well as Idun
Reiten and Gordana Todorov for many helpful comments.

1. Two Examples.

Example 1. Consider the quiver of type A3 with linear orientation, say
with simple modules indexed by 1, 2, 3, such that S(1) is projective, S(3) is in-
jective. Let α : S(1) → P (3) be the inclusion map, thus the kernel is zero, and
the projective cover of the cokernel is again P (3). We claim that α is not right
determined by C = P (3). Consider the inclusion map α′ : P (2) → P (3). Obvi-
ously, α′ cannot be factored through α. However, we have Hom(C,P (2)) = 0,
and the only map φ : C → P (2) (the zero-map) has as composition with α′

the zero-map C → P (3). But the zero-map C → P (3) factors through α,
trivially.

Example 2. Actually, an even easier example is given by the quiver
A2, but here we deal with α being a zero map (some may consider this as a
degenerate case, thus we presented first another example). Denote the two
simple modules by S(1) and S(2), with S(1) being projective, S(2) being
injective. We take as α the zero-map 0 → P (2), its cokernel is P (2) and
already projective. But α is not right determined by C = P (2), since the
inclusion map α′ : S(1) → P (2) does not factor through α (after all, α is
zero), whereas for any map φ : C → S(1) (there is only the zero map) the
composition α′φ factors through α.

Remark. Let us stress that Auslander’s claim is correct in case Λ is
commutative, or, more generally, in case all the arrows of the quiver of Λ are
loops. Namely, in this case (and only in this case) addP (M) = addP (socM)
for any Λ-module M .

2. The proof of Theorem 1.

We start with the necessary amendment to Auslander’s treatment.

Given an indecomposable projective module P , we always will denote the
inclusion map radP → P by ι, the projection P → P/ radP by π.

Lemma 1. Let α : X → Y be a morphism with image α(X). Let
α′ : X ′ → Y be a morphism. Assume that for any simple submodule S of
the cokernel Q = Cok(α) and any map φ : P (S) → X ′ with α′φ(radP (S)) ⊆
α(X), the map α′φ factors through α. Then the image of α′ is contained in
α(X).
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Proof. We assume that the image of α′ is not contained α(X) and want
to derive a contradiction. Let us denote by γ : Y → Q the cokernel map for
α. By assumption, γα′ 6= 0. Let U be the image of γα′, with epimorphism
ǫ : X ′ → U and inclusion map µ : U → Q, thus µǫ = γα′. Since U is non-
zero, we may consider a simple submodule S of U , say with inclusion map
ν : S → U . Of course, S is a simple submodule of Q. Let π : P (S) → S be a
projective cover of S. Since P (S) is projective and ǫ is an epimorphism, we
can lift νπ and obtain a map φ : P (S) → X ′ with ǫφ = νπ. Note that

γα′φ = µǫφ = µνπ.

Since πι = 0, it follows that

γα′φι = µνπι = 0.

This shows that the image of α′φι is contained in the kernel of γ, but this is
α(X). In this way, we see that α′φ(radP (S)) ⊆ α(X).

Thus, we are in the situation mentioned in the statement of the Lemma:
there is given a map φ : P (S) → X ′, such that α′φ(radP (S)) ⊆ α(X) and by
the assumption of the Lemma, we know that the map α′φ factors through α,
say α′φ = αφ′ for some φ′ : P (S) → X. Therefore

µνπ = γα′φ = γαφ′ = 0,

since γ is the cokernel of α. But µν is a monomorphism, therefore π = 0, a
contradiction.

Let us continue, as promised, with the complete proof of Theorem 1. The
only prerequisite which we will use is the existence of almost split sequences.
To be precise: we will need for any indecomposable non-injective module M
a non-split short exact sequence

0 −→M
σ
−→ N

ρ
−→ TrD(M) −→ 0,

such that for any map ζ : M → N ′ which is not a split monomorphism, there
is ζ′ : N → N ′ with ζ = ζ′σ.

Lemma 2. Let α : X → Y be a morphism with kernel K and image α(X).
Let α′ : X ′ → Y be a morphism with image contained in α(X). Assume that
for any map φ : TrD(K) → X ′, the composition α′φ factors through α. Then
α′ factors through α.

Remark. Given a morphism α : X → Y , we may try to split off non-zero
direct summands of X which lie in the kernel of α. If this is not possible, then
α is said to be right minimal. In general, we may write X = X0 ⊕X1 with
X0 contained in the kernel of α and such that α|X1 is right minimal; then we
call the kernel of α|X1 the intrinsic kernel of α (note that it is unique up to
isomorphism). An indecomposable direct summand L of the kernel of α is a
direct summand of the intrinsic kernel, if and only if the composition of the
embeddings L ⊆ K ⊆ X is not a split monomorphism.

It will be of interest in section 3 that one may replace in Lemma 2 the
kernel K by the intrinsic kernel K ′, thus the assertion of Lemma 2 can be
strengthened as follows: Assume that for any map φ : TrD(K ′) → X ′, the
composition α′φ factors through α. Then α′ factors through α.

Proof of Lemma 2 (and its strengthening). We may assume that Y =
α(X), thus there is given the exact sequence η with epimorphism α : X → Y

3



and kernel µ : K → X . We form the induced exact sequence η′ with respect
to α′, thus there is the following commutative diagram with exact rows:

0 −−−−→ K
µ

−−−−→ X
α

−−−−→ Y −−−−→ 0 η
∥∥∥

xβ′

xα′

0 −−−−→ K
ν

−−−−→ W
β

−−−−→ X ′ −−−−→ 0 η′

If η′ is a split exact sequence, then α′ factors through α.
Let us assume that α′ does not factor through α, in order to derive a

contradiction, again. Thus η′ is not a split exact sequence. Write K =
⊕
Ki

with indecomposable modules Ki and projection maps πi : K → Ki. Since η
′

does not split, there is some index i such that the exact sequence induced
from η′ by the map πi does not split. This means that we have the following
commutative diagram with exact rows which do not split:

0 −−−−→ K
ν

−−−−→ W
β

−−−−→ X ′ −−−−→ 0 η′

πi

y π′

i

y
∥∥∥

0 −−−−→ Ki
νi−−−−→ Wi

βi

−−−−→ X ′ −−−−→ 0 η′i

Let us add here, that Ki has to be a direct summand of the intrinsic
kernel of α. This observation is necessary in order to see that the remark
made above is justified.

Since νi : Ki → Wi is a monomorphism which does not split, we see that
Ki cannot be injective, thus there is an almost split sequence

0 −→ Ki
σi−→ Vi

ρi
−→ TrD(Ki) −→ 0,

and νi can be factored as νi = ν′iσi for some ν′i : Vi → Wi. Thus we obtain
the following commutative square on the left, and therefore also the map
φ : TrD(Ki) → X ′ with a commutative square on the right:

0 −−−−→ Ki
νi−−−−→ Wi

βi

−−−−→ X ′ −−−−→ 0 η′i∥∥∥
xν′

i

xφ

0 −−−−→ Ki
σi−−−−→ Vi

ρi
−−−−→ TrD(Ki) −−−−→ 0 ωi

By assumption, the map φα′ : TrD(Ki) → Y factors through α, that means
there is φ′ : TrD(Ki) → X with αφ′ = α′φ. Now, W is the pullback of α, α′,
thus there is a map φ′′ : TrD(Ki) →W such that βφ′′ = φ and β′φ′′ = φ′. It
follows that

φ = βφ′′ = βiπ
′

iφ
′′.

But if φ factors through βi, then the exact sequence ωi induced from η′i by φ
has to split. This is a contradiction, since ωi is an Auslander-Reiten sequence,
thus non-split.

Proof of Theorem 1. Let α : X → Y be a morphism with kernel K and
cokernel Q and let C = TrD(K)⊕P (socQ). Let α′ : X ′ → Y be a morphism
such that α′φ factors through α for any map φ : C → X ′.

If S is a simple submodule of Q, then P (S) is a direct summand of
P (socQ), thus of C. Thus, for any map φ : P (S) → X ′, the composition
α′φ factors through α. Lemma 1 asserts that the image of α′ is contained in
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the image of α. Now we use that TrD(K) is a direct summand of C, thus for
any map φ : TrD(K) → X ′, the composition α′φ factors through α. Thus
we can apply Lemma 2 in order to see that α′ factors through α. This shows
that α is right determined by C.

Example 3. Let us add an example which may be illuminating, albeit
it is extremely special. Let Λ be the path algebra of a finite directed quiver.
Let b be a vertex of the quiver and assume that there are s arrows starting
in b, say b → ai with 1 ≤ i ≤ s, and that there are t arrows ending in b, say
cj → b with 1 ≤ j ≤ t. For any vertex x, we denote by S(x) the simple module
with support x, by P (x) the projective cover of S(x), by I(x) the injective
envelope of S(x).

Let α be a non-zero map X = P (b) → I(b) = Y , this is the homomor-
phism which we want to look at. Note that the image of α is S(x). The kernel
of α is the radical of P (b), thus the direct sum of the modules P (ai) with
1 ≤ i ≤ s. The cokernel of α is the factor module of I(b) modulo its socle,
thus it is the direct sum of the modules I(cj) with 1 ≤ j ≤ t. The projective
cover of the socle of I(cj) is P (cj). Altogether we see: the theorem asserts
that α is right determined by the module

C =
s⊕

i=1

TrD(P (ai))⊕
t⊕

j=1

P (cj).

But this module C is precisely the middle term of the almost split sequence
starting in P (b).

This should not come as a surprise. Namely, let X ′ be an indecomposable
module and assume that there is a non-zero map α′ : X ′ → Y = I(b). Then
there is a map β′ : P (b) → X ′ with composition α′β′ = α. Now either β′ is
invertible so that α′ factors through α, or else β′ is not invertible and α′ does
not factor through α. In the latter case, β′ factors through the minimal left
almost split map γ : P (b) → C starting in P (b), this means that there is some
φ : C → X ′ with β′ = φγ. But if we look at the composition of φ and α′, then
one should be aware that no non-zero map C → I(b) factors through α.

3. Minimal right determiners.

Taking into account the Remark after Lemma 2, the Theorem we discuss
can be strengthened as follows: Any morphism X → Y is right determined by
TrD(K ′) ⊕ P (socQ), where K ′ is the intrinsic kernel and Q the cokernel of
α. But one can do even better.

Let us call a module T = T (α) a minimal right determiner for α, pro-
vided T right determines α and is a direct summand of any module C which
right determines α. According to [ARS], Proposition XI.2.4, a minimal right
determiner for α exists and is the direct sum of all modules N which almost
factor through α, one from each isomorphism class. The aim of this section
is to present a proof of this result using the considerations of section 2.

We recall from [ARS] that an indecomposable module N is said to almost
factor through α : X → Y provided there is a morphism η : N → Y which does
not factor through α whereas for any radical map ψ : M → N , the composition
ηψ factors through α. Obviously, the latter condition can be replaced by the
condition that the map ηρ factors through α, where ρ is the minimal right
almost split map ending in N . Thus an indecomposable module N almost
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factors though α provided there exists a commutative diagram

M
ρ

−−−−→ N

η′

y
yη

X
α

−−−−→ Y

such that η does not factor through α (with ρ minimal right almost split).
Note that in case N = P is (indecomposable) projective, the minimal right
almost split map ending in P is just the map ι : radP → P .

Lemma 3. Let P be an indecomposable projective module which almost
factors through a map α. Then P is the projective cover of a simple submodule
of Cok(α).

Proof. Let η : P → Y be a map which does not factor through α : X → Y ,
whereas ηι factors through α. Consider the image U of η in Y and the factor
module S = (U +α(X))/α(X) ⊆ Y/α(X) = Cok(α). Since η(radP ) ⊆ α(X),
we see that S is either simple or zero. But if S = 0, then η(P ) ⊆ α(X) and
the projectivity of P implies that η factors through α. Since this is not the
case, S is simple and η provides an epimorphism P → S.

Lemma 4. Let α : X → Y be a morphism. Let K ′ be the intrinsic kernel
of α and P the direct sum of all indecomposable projective modules which
almost factor through α, one from each isomorphism class. Then α is right
determined by TrD(K ′)⊕ P.

Proof: Let α′ : X ′ → Y be a morphism which does not factor through
α. We have to find an indecomposable module C which is either of the form
TrD(L), where L is a direct summand of K ′ or a projective module which
almost factors through α, and a morphism φ : C → X ′ such that α′φ does not
factor through α. According to the strengthened Lemma 2, such a pair C, φ
exists if the image of α′ is contained in the image α(X) of α.

Thus we can assume that the image of α′ is not contained in α(X). Ac-
cording to Lemma 1, there is a simple submodule S of the cokernel Q of α
and a map φ : P (S) → X ′ with α′φ(radP (S)) ⊆ α(X) such that α′φ does not
factor through α. Write α = α2α1 with inclusion map α2 : α(X) → Y . Using
this notation, α′φι = φ′α2 for some φ′ (the restriction of φ). If φ′ = α1φ

′′,
then ια′φ = α2α1φ

′′ = αφ′′ together with the fact that α′φ does not factor
through α shows that P (S) almost factors through α, thus P (S), φ is the
required pair.

Finally, we have to consider the case where φ′ does not factor through
α1. But then α2φ

′ does not factor through α (namely, α2φ
′ = αψ shows that

α2φ
′ = αψ = α2α1ψ, but α2 is injective, thus φ′ = α1ψ). Now α2φ

′ is a
morphism with image in α(X), thus as in the first part of the proof, there
is an indecomposable direct summand C of K ′ and a map η : C → radP
such that α2φ

′η does not factor through α. If we rewrite the composition
α2φ

′η = α′φιη = α′(φιη), then we see that we have achieved what we want,
namely the pair C, φιη.

It remains to be seen that we have obtained in this way a minimal right
determiner for α, at least up to multiplicities.

Lemma 5. Assume that α is right determined by a module C. Let L
be an indecomposable direct summand of the intrinsic kernel of α. Then L is
not injective, TrD(L) is isomorphic to a direct summand of C, and TrD(L)
almost factors through α.
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Proof: LetK be the kernel of α, say with inclusion map µ : K → X . Since
L is a direct summand of K, there is L′ with K = L ⊕ L′, and we denote
by µ′ : L → K the embedding. And we write α = α2α1 with α1 : X → α(X)
surjective, and α2 : α(X) → Y the inclusion map. Since µµ′ is an embedding
which does not split, we see that K is not injective, thus there is an almost
split sequence

0 −→ L
σ
−→M

ρ
−→ TrD(L) −→ 0,

and we can lift the map µµ′ to M : there is a map µ′′ : M → X with µ′′σ =
µµ′. Since ρ is the cokernel of σ, there is a map η : TrD(L) → Y such that
ηρ = αµ′′, thus we obtain the following commutative diagram:

0 −−−−→ L
σ

−−−−→ M
ρ

−−−−→ TrD(L) −−−−→ 0

µ′

y µ′′

y
yη

0 −−−−→ K
µ

−−−−→ X
α

−−−−→ Y

.

We claim that η does not factor through α. In order to prove this, we
recall that L is a direct summand of K, say K = L ⊕ L′, and we form the
induced exact sequence the given Auslander-Reiten sequence with the split
monomorphism µ′ : L→ K = L⊕L′. The induced sequence is the direct sum
of the Auslander-Reiten sequence and a sequence of the form 0 → L′ → L′ →
0 → 0, in particular non-split, see the diagram below. Since µ′′σ = µµ′, we
obtain a map β : M ⊕ L′ → X and then a map β′ : TrD(L) → α(X) such
that the following diagram is commutative:

0 −−−−→ L
σ

−−−−→ M
ρ

−−−−→ TrD(L) −−−−→ 0

µ′

y µ′′

y
∥∥∥

0 −−−−→ K
µ

−−−−→ M ⊕ L′ −−−−→ Y −−−−→ 0
∥∥∥ β

y
yβ′

0 −−−−→ K
µ

−−−−→ X
α1−−−−→ α(X) −−−−→ 0

Note that a comparison with the diagram above shows that η = α2β
′. From

the diagram we see that the horizontal middle sequence is induced from the
lower sequence by β′. Since the horizontal middle sequence does not split, we
see that β′ does not factor through α1. Now assume that η factors through
α, say η = αζ for some ζ : TrD(L) → X . Then

α2α1ζ = αζ = η = α2β
′,

implies that α1ζ = β′, since α2 is injective. But we know already that β′

does not factor through α1, thus η does not factor through α, as we wanted
to show.

Since C right determines α, and η : TrD(L) → Y does not factor through
α, there has to exist a morphism φ : C → TrD(L) such that also ηφ cannot
be factored through α. Now again we use that the upper sequence is an
Auslander-Reiten sequence. Assume that φ is not split epi. Then there is
φ′ : C →M such that ρφ′ = φ, and therefore

ηφ = ηρφ′ = αβµ′′φ′

is a factorization of ηφ through α, a contradiction. This shows that φ is split
epi, thus TrD(L) is isomorphic to a direct summand of C.
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Finally, we see that TrD(L) almost factors through α, since there is the
diagram

M
ρ

−−−−→ TrD(L)

µ′′

y
yη

X
α

−−−−→ Y

and η does not factor through α.

Lemma 6. Assume that α is right determined by a module C. Let P
be an indecomposable projective which almost factors through α. Then P is
isomorphic to a direct summand of C.

Proof: There exists a commutative diagram

radP
ι

−−−−→ P
y

yη

X
α

−−−−→ Y

such that η does not factor through α. Since C right determines α, there must
exist φ : C → P such that also ηφ does not factor through α. Now φ does not
map into radP , since otherwise ηφ would factor through α. But this means
that φ is surjective and therefore a split epimorphism.

Theorem 2. Let α : X → Y be given. Let T be the direct sum of modules
of the form TrD(L), where L is an indecomposable direct summand of the in-
trinsic kernel of α and of the indecomposable projective modules which almost
factor through α, one from each isomorphism class. Then T is a minimal
right determiner for α.

Proof. This is a direct consequence of the Lemmata 4, 5 and 6.

Corollary 1. Let α : X → Y be given. A non-projective indecomposable
module N almost factors through α if and only if N = TrD(L) for some
indecomposable direct summand L of the intrinsic kernel of α.

Proof. On the one hand, we have seen in Lemma 5 that the modules of the
form TrD(L) almost factor through α. On the other hand, it is clear that an
indecomposable module which almost factors through α is a direct summand
of any right determiner for α (see for example [ARS] Lemma XI.2.1), thus of
T (α).

Corollary 2. Let α : X → Y be given. An indecomposable module N
almost factors through α if and only if it is a direct summand of T (α).

4. The indecomposable projective direct summands of T (α).

Theorem 2 shows that T (α) has two kinds of indecomposable direct sum-
mands: First of all, there are those of the form TrD(L), where L is any direct
summand of the intrinsic kernel of α, and clearly they are never projective.
Second, there may be indecomposable projective modules. Here we want to
discuss these latter summands.

Recall that if S is a simple module such that P (S) is a direct summand of
T (α), then, according to Lemma 3, S is a simple submodule of Cok(α). But
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the converse does not hold. Not every module P (S) with S a simple submodule
of Cok(α) almost factors through α.

Example 4. This example has been exhibited in the book of Auslander,
Reiten, Smalø [ARS], after Proposition XI.1.6. Let Λ be a local uniserial
ring with the unique simple module S, and let α : P → Y be a morphism
with P the indecomposable projective module and Y also indecomposable.
If P = P (S) almost factors through α, then α = 0, and therefore α is right
determined by TrD(Ker(α)).

Actually, for any artin algebra with global dimension at least 2 there do
exist corresponding examples, as the following basic observation shows:

Example 5. Let δ : P1 → P0 be a minimal presentation of a simple
module S. If P (S)(= P0) almost factors through δ, then δ is injective, thus
the projective dimension of S is at most 1. Proof: Write δ = ιǫ, where
ι : radP0 → P9 is the inclusion map. If P0 almost factors through δ, there is
η : P0 → P0 not factoring through δ and η′ : radP0 → P1 such that ηι = δη′,
whereas η does not factor through δ. Then δ does not map into radP0,
therefore η has to be invertible, and ηι = ιǫη′ implies that ι = η−1ιǫη′, thus
1radP0

= ǫη′. But this means that ǫ is split epimorphism, thus an isomorphism
(since it is a projective cover).

Here are three sufficient conditions for P (S) to be a direct summand of
T (α).

Proposition 1. Let α : X → Y be a monomorphism with cokernel Q. If
S is a simple submodule of Q, then P (S) almost factors through α.

Proof. We may assume that α is an inclusion map. Since S is a submodule
of Y/X , there is a map η : P (S) → Y, such that the composition of η with
Y → Y/X maps onto S. But then η(radP (S)) ⊆ X. Thus P (S) almost
factors through α.

Proposition 2. Let α : X → Y be a morphism. If S is a simple submod-
ule of Y with S ∩ α(X) = 0, then P (S) almost factors through α.

Proof: Let S is a simple submodule of Y , and let η : P (S) → Y be a
morphism with image S. Then ηι = 0. Thus the following diagram commutes:

radP (S)
ι

−−−−→ P (S)

0

y
yη

X
α

−−−−→ Y

.

Since S ∩ α(X) = 0, we see that η does not factor through α.

Proposition 3. Let α : X → Y be a morphism with cokernel Q. Let S be
a simple submodule of Q. If the projective dimension of S is at most 1, then
P (S) almost factors through α.

Proof. Let π : P (S) → S be a projective cover and ν : S → Q the
inclusion map. Let γ : Y → Q be the cokernel map. The projectivity of P (S)
yields a map η : P (S) → Y such that γη = νπ. Here, we denote the projection
Y → Y/α(X) = Q by γ. Then γηι = νπι = 0, thus η maps radP (S) into
α(X). This shows that we have the following commutative diagram

radP (S)
ι

−−−−→ P (S)

η′

y
yη

α(X)
α2−−−−→ Y

,
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as before we write α = α2α1 where α2 : α(X) → Y is the canonical inclu-
sion of α(X) = α(X) into Y . Since the projective dimension of S is at
most 1, we know that radP (S) is projective, thus we can lift η′ and obtain
η′′ : radP (S) → X with α1η

′′ = η′, thus there is the commutative diagram

radP (S)
ι

−−−−→ P (S)

η′′

y
yη

X
α

−−−−→ Y

.

Of course, η does not factor through α since γη 6= 0.

It follows that for a hereditary artin algebra, the projective cover P (S) of
any simple submodule of Cok(α) is a direct summand of T (α).

Finally, there is the following characterization:

Proposition 4. Let S be a simple module. Then P (S) is a direct sum-
mand of T (α) if and only if there exists a module J with submodule X and
J/X = S and a morphism α̃ : J → Y such that its restriction to X is α and
the kernels of α and α̃ coincide.

The condition that the kernels of α and α̃ coincide is equivalent to the
condition that the image of α is properly contained in the image of α̃.

Proof: First, let us assume that there exists a module J with submodule
X and J/X = S and a morphism α̃ : J → Y such that its restriction to X is α
and such that the image of α is a properly contained in the image of α̃. Denote
the projection map J → J/X = S by ǫ. Let π : P (S) → S be a projective
cover and lift it to J, thus we obtain π′ : P (S) → J such that ǫπ′ = π. Since
ǫπ′(radP (S)) = π(radP (S)) = 0, we have π′(radP (S)) ⊆ X . Let us denote
by π′′ : radP (S) → X the restriction of π′ to radP (S). Then the diagram

radP (S)
ι

−−−−→ P (S)

π′′

y
yα̃π′

X
α

−−−−→ Y

commutes, since α̃|X = α.
It remains to be seen that α̃π′ does not factors through α. Assume for the

contrary that α̃π′ = αζ, for some map ζ : P (S) → X. Now J = X+π′(P (S)),
thus

α̃(J) = α̃(X + π′(P (S))) = α(X) + α̃π′(P (S))

= α(X) + αζ(P (S)) = α(X),

contrary to our assumption.
Conversely, assume that P (S) almost factors through α, thus we have a

diagram of the following form

radP (S)
ι

−−−−→ P (S)

η′

y
yη

X
α

−−−−→ Y

and η does not factor through α, thus the image of η is not contained in the
image of α. Starting with the exact sequence with monomorphism ι, we form
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the sequence induced by η′ and obtain the following commutative diagram
with exact rows:

0 −−−−→ radP (S)
ι

−−−−→ P (S)
π

−−−−→ S −−−−→ 0

η′

y
yη′′

∥∥∥

0 −−−−→ X
ι′

−−−−→ J −−−−→ S −−−−→ 0

Since ηι = αη′, there is a map α̃ : J → Y such that α = α̃ι′ and η = α̃η′′.
Thus, we see that α has an extension α̃ to J. Since η = α̃η′′, the image of η is
contained in the image of α̃. This shows that the image of α̃ cannot be equal
to the image of α, since otherwise the image of η would be contained in the
image of α, in contrast to our assumption. This concludes the proof.

Proposition 4 (but also already Proposition 3) show that the obstructions
for the projective cover P (S) of a simple submodule of Cok(α) to be a direct
summand of T (α) are elements of Ext2, namely the equivalence classes of the
exact sequences

(∗) 0 −→ K −→ X −→ J −→ S −→ 0,

where K is the kernel of α and J = γ−1(S) (here γ is the cokernel map
Y → Cok(α)) and where the composition of the mapX → J with the inclusion
map J → Y is just α. Thus we have:

Corollary. Let α : X → Y be a morphism with kernel K and cokernel Q.
If S is a submodule of Q and Ext2(S,K) = 0, then P (S) is a direct summand
of T (α).

5. Kernel-determined morphisms.

Since any morphism α is right determined by the direct sum of the module
TrD(Ker(α)) and a projective module P , one may ask for a characterization
of those morphisms α for which one of these two summands already right
determines α.

First, let us deal with the morphisms which are right determined by a
projective module. Here, the answer is well-known and easy to obtain: A
morphism α is right determined by a projective module if and only if α is
injective (see Theorem 1 and Lemma 5).

Also, an inclusion map X → Y is right determined by the projective
module P , if and only if P generates the socle of Y/X. (If P generates the
socle of Y/X , then P right determines α according to Theorem 1. Conversely,
assume that P right determines α, and let S be a simple submodule of Y/X .
According to Proposition 1, P (S) almost factors through α, thus Theorem 2
asserts that P (S) is a direct summand of P . This shows that P generates
the socle of Y/X .) There is the following consequence: If we fix a projective
module P 6= 0, and consider any module X, then there are morphisms α : X →
Y with Y of arbitrarily large length, such that α is right determined by P (just
take the inclusion maps of the form X → Y with Y the direct sum of X and
arbitrarily many copies of P/ rad(P )). If Λ is representation-infinite, then
there are even such examples with Y indecomposable.

The second case are the morphisms α which are right determined by
TrD(Ker(α)), we call them kernel-determined morphisms. This is the topic
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of the considerations in this section. Note that the problem of characterizing
these maps has been raised in [ARS], 368-369.

Lemma 7. Let α be a morphism. The following conditions are equivalent:
(i) α is right determined by TrD(K), where K is the kernel of α.
(ii) α is right determined by TrD(K ′), where K ′ is the intrinsic kernel of α.
(iii) α is right determined by a module C without an indecomposable projective

direct summand.

Proof. Clearly (ii) =⇒ (i) =⇒ (iii). Now assume (iii). According
to Theorem 2, any indecomposable projective module P which almost factors
through α is a direct summand of C, thus there are no such modules P . Using
again Theorem 2, we see that (ii) is satisfied.

Note that α is kernel-determined if and only if the equivalent conditions of
lemma 7 are satisfied. Let us first show that for a kernel-determined morphism
α : X → Y , the length of Y is bounded by a number which only depends on
X . We denote by |M | the length of the module M .

Lemma 8. If α : X → Y is kernel-determined, then Y is an essential
extensions of α(X); in particular, |Y | ≤ q|X | where q is the maximal length
of an indecomposable injective module.

If Y is an essential extension of N = α(X), then we may assume that Y
is a submodule of I(N) with N ⊆ Y.

Proof of lemma 8. According to Proposition 2, there is no simple submod-
ule S of Y with S ∩ α(S) = 0, this jut means that Y is an essential extension
of α(X). Thus Y can be considered as a submodule of the injective envelope
I of α(X). But then |I| ≤ q|α(X)| ≤ q|X |.

Given a module M , letM be a module havingM as an essential submod-
ule with M/M semisimple and such thatM is of maximal possible length; we
call M a small envelope of M . We can construct M as follows:

M = ω−1(soc I(M)/M),

where I(M) is an injective envelope of M and ω : I(M) → I(M)/M is the
canonical projection map (thus, if necessary, we will assume that M is a
submodule of I(M) which containsM). Clearly, any homomorphism φ : M →
N gives rise to an extension φ : M → N (by this we mean a homomorphism
whose restriction to M is just φ). Let us stress that usually φ is not uniquely
determined (the construction M 7→ M is not functorial). But there is the
following unicity result which is of interest for the further considerations:

Lemma 9. Let ǫ : X → N be an epimorphism, and choose an injective
envelope I(N) of N . Then there is a (uniquely determined) submodule N ⊆
Iǫ(N) ⊆ I(N) with the following property: If X is a small envelope of X and
ǫ : X → I(N) is an extension of ǫ, then ǫ(X) = Iǫ(N).

Proof: If we deal with two extensions of ǫ, say ǫ1, ǫ2 : X → I(N), then the
difference ǫ2 − ǫ1 vanishes on X and its image is a semisimple module. But
any semisimple submodule of I(N) is contained in N and N = ǫ(X) ⊆ ǫ1(X).
Thus, ǫ2 = ǫ1 + (ǫ2 − ǫ1) shows that

ǫ2(X) ⊆ ǫ1(X) + (ǫ2 − ǫ1)(X) ⊆ ǫ1(X) +N ⊆ ǫ1(X).

Of course, by symmetry we also have ǫ2(X) ⊆ ǫ1(X), and therefore equality.
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Clearly, the submodule Iǫ(N) incorporates the information about the van-
ishing in Ext2 of the exact sequences of the form (∗), where K → X is the
kernel map for ǫ : X → N .

Theorem 3. Let ǫ : X → N be an epimorphism. Consider a submodule
N ⊆ Y ⊆ I(N) and denote by ν : N → Y the inclusion map. Let α = νǫ.
Then α : X → Y is kernel-determined if and only if Y ∩ Iǫ(N) = N.

Proof. We fix some notation. Let D = Y ∩ Iǫ(N). Let ν′ : N → D,
ν′′ : D ⊆ Y , ν′′′ : Y → I(N), κ : D → Iǫ(N), and µ : X → X be the inclusion
maps. Thus we have ν = ν′′ν.

The inclusion map κν′ : X → Iǫ(N) is part of the following commutativity
relation:

(1) κν′ǫ = ǫ1µ,

where we denote by ǫ1 the epimorphism part of an extension ǫ of ǫ.
First, let us assume that ν′ : N ⊂ D = Y ∩ Iǫ(N) is a proper inclusion.

Then there exists an indecomposable projective module P and a homomor-
phism η : P → D such that the image of η does not lie inside N . Now
ǫ1 : X → Iǫ(N) is surjective, thus we can lift the map κη : P (S) → Iǫ(N) to
X and obtain η′ : P (S) → X such that

(2) ǫ1η
′ = κη

Also note that η′ι maps into the radical of X, thus into X . This shows
that there is η′′ : radP (S) → X such that

(3) µη′′ = η′ι.

Altogether, we deal with the following diagram:

radP (S) P (S) D

X X

N Iǫ(N)

..................................................................... ............ .................................................................................................. ............

.................................................................................................. ............

.................................................................................................................................................................................................................................. ............

................................................................................................................................................................................

.....
..
.....
.....
..

......................................................................

.....
..
.....
.....
..

....................................................................................................................... ......
......

................

.....
..
.....
.....
.. ................

.....
..
.....
.....
..

........

........

........

........

........

........

........

........

ι

η′′

ǫ

η′

κ

κν′

ǫ1

µ

η

(1)

(2)
(3)

Using the three equalities (1), (3), (2), we see:

κν′ǫη′′ = ǫ1µη
′′ = ǫ1η

′ι = κηι.

but κ is injective, thus ν′ǫη′′ = ηι, and therefore

αη′′ = ν′′ν′ǫη′′ = ν′′ηι.

This asserts that the following diagram commutes

radP
ι

−−−−→ P

η′′

y
yν′′η

X
α

−−−−→ Y
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Since by construction the right map ν′′η does not map into N , it does not
factor through ǫ, thus also not through α = ν′′ν′ǫ, therefore we see that P
almost factors through α. But this shows that α is not kernel-determined.

Conversely, let us assume that α = ν′′νǫ is not kernel-determined, thus
there is an indecomposable projective module P and a commutative diagram

radP
ι

−−−−→ P

ψ′

y
yψ

X
α

−−−−→ Y

such that ψ does not factor through α = νǫ, thus ψ(P ) is not contained in N .
Let us form a pushout of ι and ψ′, say

radP
ι

−−−−→ P

ψ′

y
yψ′′

X
ι′

−−−−→ J

,

we obtain a map β : J → Y such that βψ′′ = ψ and βι′ = α. Since Y is a
submodule of I(N), the image β(J) of β is a submodule of Y , thus of I(N).

Let us show that ι′ does not split and its cokernel is simple. The cokernel
of ι′ is isomorphic to the cokernel of ι, thus simple.

Let us show that the kernel of β is just ι(K), where K is the kernel of
α. Since βι = α, we see that ι(K) is contained in the kernel of β, thus it
remains to show that |Ker(β)| ≤ |Ker(α)| (note that ι is injective). Since
α = βι, the image N of α is contained in the image of β. This must be
a proper inclusion. Otherwise, we use ψ = βψ′′ in order to obtain that
Im(ψ) ⊆ Im(β) = Im(α) = N , a contradiction. Thus | Im(β)| ≥ | Im(α)| + 1.
Therefore

|Ker(β)| = |J | − | Im(β)| ≤ |X |+ 1− | Im(α)| − 1 = |Ker(α)|.

It follows that ι′ does not split. Otherwise we have J = ι(X)⊕S. Now the
kernel of β is ι(K) = ι(K)⊕ 0, and therefore β would provide an embedding
of X/K ⊕ S into Y . However, by assumption, Y is an essential extension of
N = X/K, a contradiction.

Thus we have shown that ι′ is a monomorphism with simple cokernel, and
it does not split. Therefore, we may assume that J is a submodule of X, If we
compose β with ν′′′ : Y → I(N), we obtain the following commutative square

X
ι′

−−−−→ J

ǫ

y
yν′′′β

N
ν′′′ν

−−−−→ I(N)

which shows that ν′′′β is part of an extension ǫ : X → I(N) of ǫ. As a conse-
quence, the image of β is contained in Iǫ(N). But the image β(J) of β is also
a submodule of Y , that β(J) ⊆ D.

Since βψ′′ = ψ, the image of β contains the image of ψ, thus β(J) is not
contained in N .

Altogether we see that β(J) ⊆ Y ∩Iǫ(N), and β(J) 6⊆ N , thus Y ∩Iǫ(N) 6=
N. This completes the proof.
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Example 4, continued. Again, let Λ be a local uniserial ring. Let X,Y
be indecomposable Λ-modules and α : X → Y a morphism. We have noted
above that if X is projective and α 6= 0, then α is kernel-determined. On the
other hand, if α is surjective, then again, α is kernel-determined.

But also the converse is true: If α : X → Y is kernel-determined, then
either α 6= 0 and X is projective, or else α is surjective. Here is the proof:
Assume that α is kernel-determined. According to Proposition 2, we must
have α 6= 0. Assume that X is not projective, thus also not injective. Write
α = νǫ, where ǫ is surjective and ν : N → Y is the inclusion of a non-zero
submodule N of Y . Since X is not injective, X is a proper submodule of
N . Let ǫ : X → N be an extension of ǫ. Then also ǫ is surjective. But this
means that Iǫ(N) = N , and therefore Theorem 3 asserts that Y = N , thus α
is surjective.

Corollary. Let ǫ : X → N be an epimorphism and N ⊆ Y an inclusion
map with semisimple cokernel such that the composition X → N → Y is
kernel-determined. Then there is an inclusion map Y → Z such that the
composition X → Y → Z has semisimple cokernel, is kernel-determined and
satisfies

|Z| = |N |+ |N | − |Iǫ(N)|.

In particular, the length of Z only depends on ǫ.

Proof: We can assume that Y is a submodule of N . Choose N ⊆ Z ⊆ N
maximal with Z ∩ Iǫ(N) = N. According to Theorem 3, the composition
X → Y → Z (which is the composition of ǫ and the inclusion map N → Z)
is kernel-determined. The maximality of Z implies that Z + Iǫ(N) = N . The
stated equality comes from the formula

|Z|+ |ǫ(X)| = |Z ∩ ǫ(X)|+ |Z + ǫ(X)|.

Summary. The kernel-determined morphisms can be characterized as
suitable prolongations of epimorphisms. Here, we call the composition X →
Y → Z a prolongation of X → Y provided the map Y → Z is an inclusion
map; the prolongation is said to be proper provided the map Y → Z is a
proper inclusion map.

(a) Any epimorphism X → N is kernel-determined.

(b) If the map X → Y has a prolongation X → Y → Y ′ which is kernel-
determined, then X → Y is kernel-determined and Y → Y ′ is an essential
extension.

(c) Let X → N be an epimorphism, and N ⊆ Y ⊆ I(N). If X → N →
Y ∩N is kernel-determined, also X → N → Y is kernel-determined.

(d) Any kernel-determined mapX → Y has a maximal kernel-determined
prolongation X → Y → Y ′.

(e) If X → N is an epimorphism, and N ⊆ Y ⊆ I(N), then X → N → Y
is kernel-determined if and only if Y ∩ Iǫ(N) = N.

(f) If X → N is an epimorphism and X → N → Y is a maximal kernel-
determined prolongation, then

| soc(Y/N)| = | soc(I(N)/N)| − |Iǫ(N)/N |;

in particular, the length of soc(Y/N) is determined by ǫ.
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Thus, if X → N is an epimorphism and X → N → Y and X → N → Y ′

are maximal kernel-determined prolongations, then soc(Y/N) and soc(Y ′/N)
have the same length, but Y and Y ′ may have different length, as the following
example shows:

Example 6. Consider the representations of the following quiver with
relations over the field k:

◦ ◦ ◦ ◦
1 2 3 4a

b

c

d
.............................................................................................................. ..............................................................................................................

................
.....
....................
..........
.................

.........................................................

.................................
........................................................................

..........
.........
.

.
..... . . . . . .

.

. .
. . . . .. .....

We denote the simple, projective, or injective module corresponding to the
vertex x by S(x), P (x), I(x), respectively. The full subquiver with vertices 2, 3
is the Kronecker quiver, the representations with support in this subquiver
will be said to be Kronecker modules. The 2-dimensional indecomposable
Kronecker module which is annihilated by λ1b + λ2c (not both λ1, λ2 equal
to zero) will be denoted by R(λ1b+λ2c). For example, I(1)/S(1) = R(c) and
radP (4) = R(b).

Let X = P (2) and N = S(2) and ǫ : X → N the canonical projection
P (2) → S(2). Then X = I(1) is indecomposable with composition factors
S(1), S(2), S(3). The module N has length 3, namely one composition factor
S(2) and two composition factors S(3), it is just the indecomposable injective
Kronecker module of length 3 and Iǫ(N) = R(c).

In view of Theorem 3, we are interested in the submodules Y of N which
satisfy Y ∩ Iǫ(N) = N, thus Y ∩ R(c) = N. Besides N itself, these are the
Kronecker modules of the from R(b + λc) with λ ∈ k. The modules Z =
R(b+λc) provide the maximal kernel-determined prolongations X → Y → Z
of X → N inside N .

Now only the map X → N → R(b) has a proper kernel-determined pro-
longation, namely X → R(b) → P (4). The other maps X → N → R(b+ λc)
with λ 6= 0 have no proper kernel-determined prolongation.

6. References.

[A1] Auslander, M.: Functors and morphisms determined by objects. In: Rep-
resentation Theory of Algebras. Lecture Notes in Pure Appl. Math. 37.
Marcel Dekker, New York (1978), 1-244. Also in: Selected Works of Mau-
rice Auslander, Amer. Math. Soc. (1999).

[A2] Auslander, M.: Applications of morphisms determined by objects. In: Rep-
resentation Theory of Algebras. Lecture Notes in Pure Appl. Math. 37.
Marcel Dekker, New York (1978), 245-327. Also in: Selected Works of
Maurice Auslander, Amer. Math. Soc. (1999).

[ARS] Auslander, M., Reiten, I., Smalø, S.: Representation Theory of Artin Al-
gebras. Cambridge Studies in Advanced Mathematics 36. Cambridge Uni-
versity Press. 1997.

[K] Krause, H.: Morphisms determined by objects in triangulated categories.
arXiv:1110.5625.

[R] Ringel, C. M.: The Auslander bijections: How morphisms are determined
by modules. arXiv:1301.1251

Claus Michael Ringel
Department of Mathematics, Shanghai Jiao Tong University
Shanghai 200240, P. R. China, and

16



King Abdulaziz University,
P O Box 80200, Jeddah, Saudi Arabia.
e-mail: ringel@math.uni-bielefeld.de

17


