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Introduction

Given any Dynkin diagram ∆ of type An, Dn, E6, E7, E8, we may endow its edges with
an orientation; we obtain in this way a quiver (an oriented graph) ~∆, and the corresponding

path algebra k~∆, where k is a field. We may consider the representations of ~∆ over k, or,
equivalently, the k~∆-modules. In case k is a finite field, one may define a multiplication
on the free abelian group with basis the isomorphism classes of k~∆-modules by counting
filtrations of modules; the ring obtained in this way is called the Hall algebra H(k~∆).

We denote by Z[v] the polynomial ring in one variable v, and we set q = v2. Also, let
A = Z[v, v−1].

The free Z[q]-module H(~∆) with basis the isomorphism classes of k~∆-modules can

be endowed with a multiplication so that H(~∆)/(q − |k|) ≃ H(k~∆), for any finite field

k of cardinality |k|, thus H(~∆) may be called the generic Hall algebra. The generic Hall
algebra satisfies relations which are very similar to the ones used by Jimbo and Drinfeld
in order to define a q-deformation Uq(n+(∆)) of the Kostant Z-form U(n+(∆)). Here,
g(∆) = n−(∆) ⊕ h(∆) ⊕ n+(∆) is a triangular decomposition of the complex simple Lie
algebra g(∆) of type ∆. Note that Uq(n+(∆)) is an A-algebra, and we can modify the
multiplication of H(∆) ⊗Z[q] A using the Euler characteristic on the Grothendieck group

K0(k~∆) in order to obtain the twisted Hall algebra H∗(~∆) with

Uq(n+(∆)) ≃ H∗(~∆)

What is the advantage of the Hall algebra approach? Assume we have identified
Uq(n+(∆)) with H∗(~∆). Note that the ring Uq(n+(∆)) is defined by generators and

relations, whereas H∗(~∆) is a free A-module with a prescribed basis.
The presentation of Uq(n+(∆)) gives us a presentation for the (twisted) Hall algebra,

and this may be interpreted as follows: the Jimbo-Drinfeld relations are the universal
relations for comparing the numbers of composition series of modules over algebras with
a prescribed quiver.

On the other hand, in H∗(~∆), there is the prescribed basis given by the k~∆-modules,
and we obtain in this way a basis for Uq(n+(∆)), thus normal forms for its elements,
and this makes calculations in Uq(n+(∆)) easier. Also, the basis elements themselves gain
more importance, more flavour. Since they may be interpreted as modules, one can discuss
about their module theoretical, homological or geometrical properties: whether they are
indecomposable, or multiplicityfree and so on.

The basis of Uq(n+(∆)) obtained in this way depends on the chosen orientation of ∆,
and Lusztig has proposed a base change which leads to a basis which is independent of
such a choice and which he calls the canonical basis. This basis also was constructed by
Kashiwara and called the crystal basis of Uq(n+(∆)).
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Here is the list of the Dynkin diagrams An, Dn, E6, E7, E8:

An ◦ ◦ ◦ ◦ ◦........................................ ........................................ ......................... . . . ......................... ........................................

Dn

◦

◦

◦ ◦ ◦ ◦

.................................................

........
........
........
........
........
........
. ........................................ ......................... . . . ......................... ........................................

E6 ◦ ◦ ◦ ◦ ◦

◦
........................................ ........................................ ........................................ ........................................

.....

.....

.....

.....

.....

E7 ◦ ◦ ◦ ◦ ◦

◦

◦........................................ ........................................ ........................................ ........................................ ........................................
.....
.....
.....
.....
.....

E8 ◦ ◦ ◦ ◦ ◦

◦

◦ ◦........................................ ........................................ ........................................ ........................................ ........................................ ........................................
.....
.....
.....
.....
.....
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0. Preliminaries

Consider the following polynomials in a variable T , where n, m ∈ N0 and m ≤ n

Fn(T ) :=
(Tn − 1)(Tn−1 − 1) · · · (T − 1)

(T − 1)n
,

Gn
m(T ) :=

(Tn − 1)(Tn−1 − 1) · · · (Tn−m+1 − 1)

(Tm − 1)(Tm−1 − 1) · · · (T − 1)
.

Note that the degree of the polynomial Fn(T ) is
(
n
2

)
, the degree of Gn

m(T ) is m(n − m).

Let k be a finite field, denote its cardinality by qk = |k|. The cardinality of the set
of complete flags in kn is just Fn(qk), and for 0 ≤ m ≤ n, the number of m-dimensional
subspaces of kn is Gn

m(qk).

Let A′ = Q(v) be the rational function field over Q in one variable v, and let us
consider its subring A = Z[v, v−1]. We denote by : A′ → A′ the field automorphism with
v = v−1; it has order 2, and it sends A onto itself.

We set q = v2; we will have to deal with Fn(q) and Gn
m(q). We define

[n] :=
vn − v−n

v − v−1
= vn−1 + vn−3 + · · ·+ v−n+1,

thus [0] = 0, [1] = 1, [2] = v + v−1, [3] = v2 + 1 + v−2, and so on. Let

[n]! :=
n∏

m=1

[ m ],

[ n

m

]

:=
[n]!

[m]![n − m]!
where 0 ≤ m ≤ n.

There are the following identities:

[n] = v−n+1 qn − 1

q − 1

[n]! = v−(n

2)Fn(q)
[ n

m

]

= v−m(n−m)Gn
m(q).
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1. The definition of Uq(n+(∆))

Let ∆ = (aij)ij be a symmetric (n×n)-matrix with diagonal entries aii = 2, and with
off-diagonal entries 0 and −1. (Such a matrix is called a simply-laced generalized Cartan
matrix.)

Note that ∆ defines a graph with n vertices labelled 1, 2, . . . , n with edges {i, j}
provided aij = −1. Often we will not need the labels of the vertices, then we will present the
vertices by small dots ◦. Of particular interest will be the Dynkin diagrams An, Dn, E6, E7,
E8.

Given ∆, we define U ′
q(n+(∆)) as the A′-algebra with generators E1, . . . , En and

relations

EiEj − EjEi = 0 if aij = 0,

E2
i Ej − (v + v−1)EiEjEi + EjE

2
i = 0 if aij = −1.

We denote

E
(m)
i :=

1

[ m ]!
Em

i .

Let Uq(n+(∆)) be the A-subalgebra of U ′
q(n+(∆)) generated by the elements E

(m)
i

with 1 ≤ i ≤ n and m ≥ 0.

We denote by : U ′
q(n+(∆)) → U ′

q(n+(∆)) the automorphism with v = v−1 and

Ei = Ei for all i.

We denote by Zn the free abelian group of rank n with basis e1, . . . , en. Given an
element d ∈ Zn, say d =

∑
diei, let |d| =

∑
di.

Note that the rings Uq(n+(∆)) and U ′
q(n+(∆)) are Zn-graded, where we assign to Ei

the degree ei. Given d ∈ Zn, we denote by Uq(n+(∆))d the set of homogeneous elements
of degree d, thus

Uq(n+(∆)) =
⊕

d

Uq(n+(∆))d.

Let ∆ be of the form An, Dn, E6, E7, or E8. We denote by Φ = Φ(∆) the corresponding
root system. We choose a basis e1, . . . , en of the root system, and denote by Φ+ the set of
positive roots (with respect to this choice). The choice of the basis yields a fixed embedding
of Φ into Zn.

We will have to deal with maps α : Φ+ → N0. Given such a map α, we set

dimα :=
∑

a

α(a)a ∈ Zn
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and call it its dimension vector. We denote by u(d) for d ∈ Zn the number of maps
α : Φ+ → N0 with dimα = d.

Consider the Q-Lie-algebra n+(∆) generated by E1, . . . , En with relations

[Ei, Ej] = 0 if aij = 0,

[Ei, [Ei, Ej]] = 0 if aij = −1.

(Usually, one deals with the corresponding C-algebra n+(∆) ⊗Q C; here, it will be more
convenient to consider the mentioned Q-form.)

The universal enveloping algebra U(n+(∆)) is the Q-algebra generated by the elements
E1, . . . , En with relations

[Ei, Ej] = 0 if aij = 0,

[Ei, [Ei, Ej]] = 0 if aij = −1,

thus we see:

Proposition. We have

U(n+(∆)) = Uq(n+(∆)) ⊗A Q[v, v−1]/(v − 1).

Of course, n+(∆) and U(n+(∆)) both are Zn-graded, where again we assign to Ei

the degree ei. For any non-zero homogeneous element L of n+(∆), we denote by dimL
its degree. It is well-known that n+(∆) has a basis Ea indexed by the positive roots, such
that dimEa = a. As a consequence, we obtain the following consequence:

Proposition. The Q-dimension of U(n+(∆))d is u(d).

Proof: Use the theorem of Poincaré-Birkhoff-Witt.
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2. Rings and modules, path algebras of quivers

Rings and modules.

Given a ring R, the R-modules which we will consider will be finitely generated right
R-modules. The category of finitely generated right R-modules will be denoted by mod R.

Let R be a ring. The direct sum of two R-modules M1, M2 will be denoted by M1⊕M2,
the direct sum of t copies of M will be denoted by tM. The zero module will be denoted
by 0R or just by 0.

We write M ≃ M ′, in case the modules M, M ′ are isomorphic, the isomorphism class
of M will be denoted by [M ]. For any module M , we denote by s(M) the number of
isomorphism classes of indecomposable direct summands of M.

Let R be a finite dimensional algebra over some field k. Let n = s(RR), thus n is
the rank of the Grothendieck group K0(R) of all finite length modules modulo split exact
sequences. Given such a module M, we denote its equivalence class in K0(R) by dimM.
There are precisely n isomorphism classes of simple R-modules S1, . . . , Sn, and the elements
ei = dimSi form a basis of K0(R). If we denote the Jordan-Hölder multiplicity of Si in
M by [M : Si], then dimM =

∑

i[M : Si]ei.

We denote by supp M the support of M , it is the set of simple modules S with
[M : S] 6= 0. (In case the simple modules are indexed by the vertices of a quiver, we also
will consider supp M as a subset of the set of vertices of this quiver).

Path algebras of quivers

A quiver ~∆ = (~∆0, ~∆1, s, t) is given by two sets ~∆0, ~∆1, and two maps s, t : ~∆1 → ~∆0.

The elements of ~∆0 are called vertices, the elements of ~∆1 are called arrows; given f ∈ ~∆1,
then we say that f starts in s(f) and ends in t(f), and we write f : s(f) → t(f). An arrow

f with s(f) = t(f) is called a loop, we always will assume that ~∆ has no loops.

We denote by k~∆ the path algebra of the quiver ~∆ over the field k. We will not
distinguish between representations of ~∆ over k and (right) k~∆-modules. Recall that a

representation M of ~∆ over k attaches to each vertex x of ~∆ a vector space Mx over k,
and to each arrow f : s(f) → t(f) a k-linear map Ms(f) → Mt(f). For any vertex x of ~∆,

we can define a simple k~∆-module S(x) by attaching the one-dimensional k-space k to the
vertex x, the zero space to the remaining vertices, and the zero map to all arrows. We
stress that the number of arrows x → y is equal to dimk Ext1(S(x), S(y)). In case there is
precisely one arrow starting in x and ending in y, there exists up to isomorphism a unique
indecomposable representation of length 2 with top S(x) and socle S(y), we denote it by
S(x)
S(y)

.

7



In case ~∆ has as vertex set the set {1, 2, . . . , n}, we define a corresponding (n × n)-
matrix ∆ = (aij)ij as follows: let aii = 2, for all i, and let aij be the number of arrows
between i and j (take the arrows i → j as well as the arrows j → i). In case there is at
most one arrow between i and j we obtain a matrix as considered in section 1, and then
we will call ∆ the underlying graph of ~∆.

Let us assume that ~∆ is a finite quiver with n vertices, and let Λ = k~∆. We assume
in addition that ~∆ has no cyclic paths (a cyclic path is a path of length at least 1 starting

and ending in the same vertex). As a consequence, ~∆ is finite-dimensional, and there are
precisely n simple Λ-modules, namely the modules S(x), with x a vertex. Of course, if

M is a representation of ~∆, then dimM =
∑

x(dimk Mx)dimS(x) in the Grothendieck
group K0(Λ).

It is easy to see that Λ is hereditary, thus we can define on K0(Λ) a bilinear form via

〈dimX,dimY 〉 = dimk Hom(X, Y ) − dimk Ext1(X, Y )

where X, Y are Λ-modules of finite length. The corresponding quadratic form will be
denoted by χ; thus for d ∈ K0(Λ), we have χ(d) = 〈d,d〉. Of course, we have the following
formula for all i, j

aij = 〈dimSi,dimSj〉 + 〈dimSj ,dimSi〉

Dynkin quivers

A quiver ~∆ whose underlying graph is of the form An, Dn, E6, E7, E8 will be called
a Dynkin quiver. We recall some well-known results:

Gabriel’s Theorem. Let ~∆ be a Dynkin quiver. The map dim yields a bijection
between the isomorphism classes of the indecomposable k~∆-modules and the positive roots
for ∆.

Let ~∆ be a Dynkin quiver, and let Λ = k~∆. Given a positive root a for ∆, we denote
by M(a) or MΛ(a) the corresponding Λ-module; thus M(a) = MΛ(a) is an indecomposable
Λ-module with dimM(a) = a. Similarly, given a map α : Φ+ → N0, we denote by M(α)
we denote the Λ-module

M(α) = MΛ(α) =
⊕

a

α(a)M(a).

We obtain in this way a bijection between the maps Φ+ → N0 and the isomorphism classes
of Λ-modules of finite length (according to the Krull-Schmidt theorem).

A finite dimensional k-algebra R is called representation directed provided there is only
a finite number of (isomorphism classes of) indecomposable R-modules, say M1, . . . , Mm,
and they can be indexed in such a way that Hom(Mi, Mj) = 0 for i > j.
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Proposition. Let ~∆ be a Dynkin quiver. Then k~∆ is representation directed.

Let Φ+ = { a1, . . . , am }, we will assume that the ordering is chosen so that

Hom(MΛ(ai), MΛ(aj)) 6= 0 implies i ≤ j.

The subcategories C, D of mod Λ are said to be linearly separated provided for
modules C in add C, and D in addD with dimC = dimD, we have C = 0 = D.

Lemma. The subcategories add{M(a1), . . . , M(as−1)} and add{M(as), . . . , M(am)}
are linearly separated.

3. The Hall algebra of a finitary ring.

Given a ring R, we will be interested in the finite R-modules; here a module M will be
said to be finite provided the cardinality of its underlying set is finite (not just that M is of
finite length). Of course, for many rings the only finite R-module will be the zero-module,
but for finite rings, in particular for finite-dimensional algebras over finite fields, all finite
length modules are finite modules. A ring R will be said to be finitary provided the group
Ext1(S1, S2) is finite, for all finite simple R-modules S1, S2. (For a discussion of finitary
rings, see [R1]).

We assume that R is a finitary ring. We mainly will consider path algebras of finite
quivers over finite fields; of course, such a ring is finitary.

Given finite R-modules N1, N2, . . . , Nt and M, let FM
N1,...,Nt

be the set of filtrations

M = M0 ⊇ M1 ⊇ · · · ⊇ Mt = 0

such that Mi−1/Mi is isomorphic to Ni, for all 1 ≤ i ≤ t. The cardinality of FM
N1,...,Nt

will

be denoted by FM
N1,...,Nt

or also by 〈N1N2 . . .Nt ⋄| M〉. (These cardinalities are finite, since
we assume that R is finitary.)

Let H(R) be the free abelian group with basis the set of isomorphism classes [X ] of
finite R-modules, with a multiplication which we denote by the diamond sign ⋄

[N1] ⋄ [N2] :=
∑

[M ]

FM
N1N2

[M ] =
∑

[M ]

〈N1N2 ⋄| M〉[M ].

Given an element x ∈ H(R), we denote its tth power with respect to the diamond product
by x⋄t.

Proposition. H(R) is an associative ring with 1.
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Proof: The associativity follows from the fact that

([N1] ⋄ [N2]) ⋄ [N3] =
∑

[M ]

FM
N1N2N3

[M ] = [N1] ⋄ ([N2] ⋄ [N3]),

The unit element is just [0R], with 0R the zero module.

In case R is a finite-dimensional algebra over some finite field, we assign to the
isomorphism class [M ] the degree dimM ∈ Zn. Let H(R)d be the free abelian group
with basis the set of isomorphism classes [M ] of finite R-modules with dimM = d.

Proposition. H(R) =
⊕

d
H(R)d is a Zn-graded ring.

Proof: We only have to observe that for FM
N1N2

6= 0, we have dimM = dimN1 +
dimN2.

From now on, let ~∆ be a Dynkin quiver, let k be a field. We consider Λ = k~∆. Let
{ 1, 2, . . . , n } be the vertices of ~∆, ordered in such a way that

Ext1(Si, Sj) 6= 0 implies i < j.

Let Φ+ = { a1, . . . , am }, and we will assume that the ordering is chosen so that

Hom(MΛ(ai), MΛ(aj)) 6= 0 implies i ≤ j.

Hall polynomials

Proposition. Let α, β, γ : Φ+ → N0. There exists a polynomial φβ
α,γ(q) ∈ Z[q] such

that for any finite field k of cardinality qk

F
MΛ(β)
MΛ(α)MΛ(γ) = φβ

α,γ(qk).

For a proof, see [R1], Theorem 1, p.439.

The polynomials which arise in this way are called Hall polynomials.

Let ~∆ be a Dynkin quiver. Let H(~∆) be the free Z[q]-module with basis the set of

maps Φ+ → N0. On H(~∆), we define a multiplication by

α1 ⋄ α2 :=
∑

β

φβ
α1α2

(q) · β

Proposition. H(~∆) is an associative ring with 1, it is Zn-graded (the degree of
α : Φ+ → N0 being dimα), and for any finite field k of cardinality qk, the map α 7→
[M

k~∆(α)] yields an isomorphism

H(~∆)/(q − qk) ≃ H(k~∆).
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4. Loewy series.

For d = (d1, . . . , dn) ∈ Nn
0 , let

w⋄(d) := [d1S1] ⋄ · · · ⋄ [dnSn].

Note that the element w⋄(d) only depends on the semisimple module
⊕

diSi and not on

the particular chosen ordering of the vertices of ~∆, since [diSi] ⋄ [djSj ] = [djSj ] ⋄ [diSi] in
case Ext1(Si, Sj) = 0 = Ext1(Sj , Si).

Remark: Recall that the vertices { 1, 2, . . . , n } of ~∆ are ordered in such a way that
Ext1(Si, Sj) 6= 0 implies that i < j. Usually, there will be several possible orderings, for
example in the case of A3 with orientation

◦
y

ւ ց
◦
x

◦
z

we have to take 1 = y but we may take 2 = x, 3 = z or else 2 = z, 3 = x. All possible
orderings are obtained from each other by a finite sequence of transpositions (i, i + 1) in
case Ext1(Si, Si+1) = 0 = Ext1(Si+1, Si).

Lemma. We have 〈w⋄(d) ⋄| M〉 6= 0 if and only if dimM = d; and, in this case,
〈w⋄(d) ⋄| M〉 = 1.

The proof is obvious.

Given a map α : Φ+ → N0, let

w⋄(α) := w⋄(α(a1)a1) ⋄ · · · ⋄ w⋄(α(am)am).

The element w⋄(α) does not depend on the chosen ordering of the positive roots.

Example. Consider the case A2. Thus, there is given a hereditary k-algebra Λ with
two simple modules S1, S2 such that Ext1(S1, S2) = k. There is a unique indecomposable
module of length 2, and we denote it by I. There are three positive roots a1, a2, a3, where
a2 = a1 + a3. If we assume that S2 = MΛ(a1) and S1 = MΛ(a3), then the ordering is as
desired. For α : Φ+ → N0, we obtain the following element

w⋄(α) = w⋄(α(a1)a1) ⋄ w⋄(α(a2)a2) ⋄ w⋄(α(a3)a3)

= [α(a1)S2] ⋄ [α(a2)S1] ⋄ [α(a2)S2] ⋄ [α(a3)S1],

the corresponding Λ-module is MΛ(α) = α(a1)S2 ⊕ α(a2)I ⊕ α(a3)S1.
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Lemma. We have 〈w⋄(α) ⋄| M〉 6= 0 if and only if there exists a filtration

M = M0 ⊇ M1 ⊇ · · · ⊇ Mm = 0

such that dimMi−1/Mi = α(ai)ai.

The proof is obvious.

The set of maps Φ+ → N0 will be ordered using the opposite of the lexicographical
ordering: Given α, β : Φ+ → N0, we have β < α if and only if there exists some 1 ≤ j ≤ m
such that β(ai) = α(ai) for all i < j, whereas β(aj) > α(aj).

Theorem 1. Let α : Φ+ → N0. Then 〈w⋄(α) ⋄| M(α)〉 = 1. On the other hand, given
a module M with 〈w⋄(α) ⋄| M〉 6= 0, then M ≃ M(β) for some β ≤ α.

Before we present the proof, we need some preliminary considerations. Given α : Φ+ →
N0, let us define for 0 ≤ t ≤ m, the submodule Mt(α) =

⊕

i>t α(ai)MΛ(ai) of M(α). Thus
we obtain a sequence of submodules

M(α) = M0(α) ⊇ M1(α) ⊇ · · · ⊇ Mm(α) = 0.

Lemma. Let U be a submodule of M ′ = Mt−1(β) such that dimM ′/U = u · aj for
some j. Then we have j ≥ t. If j = t, then U ⊇ Mt (and therefore u ≤ β(at)), there is an
isomorphism M ′/U ≃ uM(aj), and U = Mt(β) ⊕ U ′, with U ′ ≃ (β(at) − u)M(at).

Proof. We can assume u > 0.
Let us first assume that M ′/U ≃ u · M(aj). First of all, we show that j ≥ t. For

j < t, we have Hom(M(ai), M(aj) = 0 for all i ≥ t, thus Hom(M ′, M(aj)) = 0, whereas
there is given a non-zero map M ′ → M ′/U ≃ u · M(aj). Now assume j = t. Using the
same argument, we see that the composition of the inclusion map Mt(β) → M ′ and the
projection map M ′ → M ′/U has to be zero, since Hom(M(ai), M(at)) = 0 for i > t. This
shows that U ⊇ Mt, and consequently u ≤ β(at). The canonical projection β(at)M(at) ≃
M ′/Mt(β) → M ′/U splits, thus U/Mt(β) ≃ (β(at)−u)M(at). But then also the projection
U → U/Mt(β) splits (since Ext1(M(at), M(ai)) = 0 for all i > t). This shows the existence
of a direct complement U ′ in U to Mt(β), and we have U ′ ≃ U/Mt(β) ≃ (β(at)−u)M(at).

In general, we can write M ′/U = M(γ) for some γ : Φ+ → N0. Choose s minimal with
γ(as) > 0. Let U ⊆ V ⊂ Mt−1(β) such that Mt−1(β)/V = Ms(γ). Then Mt−1(β)/V ≃
M(γ)/Ms(γ) ≃ γ(as)M(as), and we can apply the previous considerations. We see that
s ≥ t, and if s = t, then γ(at) ≤ β(at). By assumption, u ·aj = dimM ′/U =

∑

i γ(ai)ai =
∑

i≥s γ(ai)ai, with non-negative coefficients u and γ(ai). We cannot have j < s, since
{M(a1), . . . , M(as−1)} and {M(as), . . . , M(am)} are linearly separated. This shows that
j ≥ s ≥ t. Now assume j = t, thus we have j = s = t. We must have γ(at) ≤ u, and
thus we can write (u−γ(at)) ·at =

∑

i>t γ(ai)ai with non-negative coefficients (u−γ(at))
and γ(ai). Now, we use that {M(a1), . . . , M(at)} and {M(at+1), . . . , M(am)} are linearly
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separated in order to conclude that u − γ(at) = 0 and γ(ai) = 0 for all i > t. This shows
that M ′/U ≃ γ(at)M(at) and therefore our first considerations do apply.

Proof of Theorem 1: First of all, the sequence

M(α) = M0(α) ⊇ M1(α) ⊇ · · · ⊇ Mm(α) = 0

shows that 〈w⋄(α) ⋄| M(α)〉 6= 0.
Let as assume that 〈w⋄(α) ⋄| M(β)〉 6= 0 for some α, β : Φ+ → N0. Thus, we know

that there exists a sequence

M(β) = M0 ⊇ M1 ⊇ · · · ⊇ Mm = 0

such that dimMi−1/Mi = α(ai)ai. Let β(ai) = α(ai) for all i < j. By induction, we claim
that Mi = Mi(β) for i < j. Assume, we know that Mi−1 = Mi−1(β). According to Lemma,
the only submodule Mi(= U) of Mi−1(β) with dimMi−1(β)/Mi = β(ai) is Mi = Mi(β).
In particular, we have Mj−1 = Mj−1(β). Again, using Lemma, we see that we must have
α(aj) ≤ β(aj), this shows that α ≥ β. Also, we see that for α = β, we have Mi = Mi(β)
for all i, thus 〈w⋄(α) ⋄| M(α)〉 = 1. This completes the proof.

5. The fundamental relations

Lemma. Let Si, Sj be simple R-modules with

Ext1(Si, Sj) = 0, Ext1(Sj , Si) = 0.

Then we have
[Si] ⋄ [Sj ] = [Sj] ⋄ [Si].

The proof is obvious.

Lemma. Let k be a finite field of cardinality qk. Let R be a k-algebra. Let Si, Sj be
simple R-modules such that

Ext1(Si, Si) = 0, Ext1(Sj , Sj) = 0, Ext1(Si, Sj) = k, Ext1(Sj , Si) = 0.

Then

[Si]
⋄2 ⋄ [Sj] − (qk + 1)[Si] ⋄ [Sj ] ⋄ [Si] + qk[Sj] ⋄ [Si]

⋄2 = 0,

[Si] ⋄ [Sj ]
⋄2 − (qk + 1)[Si] ⋄ [Sj ] ⋄ [Si] + qk[Sj]

⋄2 ⋄ [Si] = 0.
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Proof: Since Ext1(Si, Sj) = k, there exists an indecomposable module M of length
2 with top Si and socle Sj . Taking into account the assumptions Ext1(Si, Si) = 0 =
Ext1(Sj , Si), we see that there are just two isomorphism classes of modules of length three
with 2 composition factors of the form Si and one of the form Sj , namely X = M ⊕ Si

and Y = 2Si ⊕ Sj . It is easy to check that

[Si]
⋄2 ⋄ [Sj ] = (qk + 1)[X ]+(qk + 1)[Y ],

[Si] ⋄ [Sj] ⋄ [Si] = [X ]+(qk + 1)[Y ],

[Sj ] ⋄ [Si]
⋄2 = (qk + 1)[Y ].

This yields the first equality. Similarly, there are the two isomorphism classes of modules
with 2 composition factors of the form Sj and one of the form Si, namely X ′ = M ⊕ Sj

and Y ′ = Si ⊕ 2Sj. It is easy to check that

[Si] ⋄ [Sj ]
⋄2 = (qk + 1)[X ′]+(qk + 1)[Y ′],

[Si] ⋄ [Sj ] ⋄ [Si] = [X ′]+(qk + 1)[Y ′],

[Sj ]
⋄2 ⋄ [Si] = (qk + 1)[Y ′].

This yields the second equality.

As an immediate consequence we obtain:

Proposition. The elements [Si] of H(~∆) satisfy the following relations: Let i < j. If
there is no arrow from i to j, then

[Si] ⋄ [Sj] − [Sj] ⋄ [Si] = 0,

if there is an arrow i → j, then

[Si]
⋄2 ⋄ [Sj ] − (q + 1)[Si] ⋄ [Sj ] ⋄ [Si] + q[Sj ] ⋄ [Si]

⋄2 = 0,

[Si] ⋄ [Sj]
⋄2 − (q + 1)[Si] ⋄ [Sj ] ⋄ [Si] + q[Sj ]

⋄2 ⋄ [Si] = 0.

More general, if we start with simple modules Si, Sj satisfying

Ext1(Si, Si) = 0, Ext1(Sj, Sj) = 0,

Ext1(Si, Sj) = kt, Ext1(Sj, Si) = 0.

for some t, then we obtain relations which are similar to the Jimbo-Drinfeld relations
which are used to define quantum groups for arbitrary symmetrizable generalized Cartan
matrices. See [R3].
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6. The twisted Hall algebra

In the ring A = Z[v, v−1], we denote the element v2 by q. In this way, we have fixed
an embedding of Z[q] into A. Consider the A-module

H∗(~∆) = H(~∆) ⊗Z[q] A.

In H∗(~∆), we introduce a new multiplication ∗ by

[N1] ∗ [N2] := vdimk Hom(N1,N2)−dimk Ext1(N1,N2)[N1] ⋄ [N2]

= v〈dim N1,dimN2〉[N1] ⋄ [N2]

where N1, N2 are Λ-modules.

The following assertion is rather obvious:

Proposition. The free A-module H∗(~∆) with the multiplication ∗ is an associative
algebra with 1, and Zn-graded.

We call H∗(~∆) (with this multiplication) the twisted Hall algebra of ~∆. For any element
x, we denote its tth power with respect to the ∗ multiplication by x∗(t).

Using induction, one shows that

[N1] ∗ [N2] ∗ · · · ∗ [Nm] = v

∑

i<j
〈dim Ni,dimNj〉[N1] ⋄ [N2] ⋄ . . . ⋄ [Nm].

Example. Assume there is an arrow i → j. Then

[Si] ∗ [Sj ] = v−1[Si] ⋄ [Sj] = v−1
([

Si

Sj

]

+ [Si ⊕ Sj ]
)

,

[Sj ] ∗ [Si] = [Si ⊕ Sj ],

thus [
Si

Sj

]

= v [Si] ∗ [Sj ] − [Si ⊕ Sj ] = v [Si] ∗ [Sj ] − [Sj ] ∗ [Si].

Proposition. The elements [Si] of H∗(~∆) satisfy the following relations:

[Si] ∗ [Sj] − [Sj] ∗ [Si] = 0 if aij = 0,

[Si]
∗(2) ∗ [Sj ] − (v + v−1)[Si] ∗ [Sj] ∗ [Si] + [Sj] ∗ [Si]

∗(2) = 0 if aij = −1.
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Proof: In case aij = 0, we must have Ext1(Si, Sj) = 0 = Ext1(Sj , Si), and therefore
we have 〈dimSi,dimSj〉 = 0 = 〈dimSj ,dimSi〉.

Now assume aij = −1. First, consider the case when i < j, thus dimk Ext1(Si, Sj) = 1,
and Ext1(Sj, Si) = 0. In this case, we have

〈dimSi,dimSj〉 = −1, and 〈dimSj ,dimSi〉 = 0.

Also, 〈dimSi,dimSi〉 = 1, thus

[Si]
∗(2) ∗ [Sj ] = v−1[Si]

⋄2 ⋄ [Sj ],

[Si] ∗ [Sj ] ∗ [Si] = [Si] ⋄ [Sj ] ⋄ [Si],

[Sj] ∗ [Si]
∗(2) = v[Sj ] ⋄ [Si]

⋄2,

thus

[Si]
∗(2) ∗ [Sj ] − (v+v−1)[Si] ∗ [Sj ] ∗ [Si] + [Sj ] ∗ [Si]

∗(2)

= v−1[Si]
⋄2 ⋄ [Sj] − (v + v−1)[Si] ⋄ [Sj ] ⋄ [Si] + v[Sj ] ⋄ [Si]

⋄2

= v−1
(

[Si]
⋄2 ⋄ [Sj ] − (q + 1)[Si] ⋄ [Sj ] ⋄ [Si] + q[Sj ] ⋄ [Si]

⋄2
)

= 0.

Similarly, if j < i, so that dimk Ext1(Sj , Si) = 1, and Ext1(Si, Sj) = 0, then

[Si]
∗(2) ∗ [Sj ] − (v+v−1)[Si] ∗ [Sj ] ∗ [Si] + [Sj ] ∗ [Si]

∗(2)

= v[Si]
⋄2 ⋄ [Sj] − (v + v−1)[Si] ⋄ [Sj ] ⋄ [Si] + v−1[Sj ] ⋄ [Si]

⋄2

= v−1
(

q[Si]
⋄2 ⋄ [Sj ] − (q + 1)[Si] ⋄ [Sj ] ⋄ [Si] + [Sj ] ⋄ [Si]

⋄2
)

= 0.

Also in general, the fundamental relations in H(~∆) give rise to the Jimbo-Drinfeld

relations in H∗(~∆), see [R6].

Divided powers. Given an indecomposable module X , let

[X ]∗(t) :=
1

[ t ]!
[X ]∗(t),

we claim that this is an element of H∗(Λ). Namely:

[X ]∗(t) = v(t

2)[X ]⋄(t)

= v(t

2)F t(q)[tX ]

= vt(t−1)[ t ]![tX ],
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(since F t(q) = v(t

2)[ t ]!). Thus

[X ](∗(t)) =
1

[ t ]!
[X ]∗(t) = vt(t−1)[tX ]

.

Using divided powers, we can rewrite the fundamental relations

[Si]
∗(2) ∗ [Sj] − (v + v−1)[Si] ∗ [Sj ] ∗ [Si] + [Sj ] ∗ [Si]

∗(2) = 0

as follows:

[Si]
(∗2) ∗ [Sj] − [Si] ∗ [Sj ] ∗ [Si] + [Sj ] ∗ [Si]

(∗2) = 0

Recall that the vertices { 1, 2, . . . , n } of Λ are ordered in such a way that

Ext1(Si, Sj) 6= 0 implies i < j.

In case M is semisimple, say M =
⊕

diS(i), we have

[M ] = [dnSn] ⋄ · · · ⋄ [d1S1] = [dnSn] ∗ · · · ∗ [d1S1],

since for i > j we have Hom(diSi, djSj) = 0 = Ext1(diSi, djSj). Also, recall that

[tSi] = v−t(t−1)[Si]
(∗t),

thus

[M ] = [dnSn] ∗ · · · ∗ [d1S1] = v−
∑

di(di−1)[Sn](∗dn) ∗ · · · ∗ [S1]
(∗d1).

The words w∗(d), w∗(α).

Recall that { 1, 2, . . . , n } is the set of vertices vertices of Λ, ordered in such a way that

Ext1(Si, Sj) 6= 0 implies i < j.

Also, recall that Φ+ = { a1, . . . , am } is the set of positive roots and we assume that the
ordering is chosen so that

Hom(MΛ(ai), MΛ(aj)) 6= 0 implies i ≤ j.
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Using the multiplication ∗, we define for d ∈ Nn
0 and α : Φ+ → N0

w∗(d) := [S1]
∗(d1) ∗ · · · ∗ [Sn]∗(dn),

w∗(α) := w∗(α(a1)a1) ∗ · · · ∗ w∗(α(am)am).

Lemma. We have

w∗(α) = vr(α)w⋄(α), with r(α) := −dimk MΛ(α) + dimk End(MΛ(α))

.

Proof: We have for d =
∑

diei

w∗(d) = [S1]
(∗d1) ∗ · · · ∗ [Sn](∗dn)

= v
∑

d2

i−
∑

di [d1S1] ∗ · · · ∗ [dnSn]

= v

∑
d2

i−
∑

di−
∑

i→j
didj [d1S1] ⋄ · · · ⋄ [dnSn]

= vχ(d)−|d|[d1S1] ⋄ · · · ⋄ [dnSn],

= vχ(d)−|d|w⋄(d)

where we have used that Hom(diSi, djSj) = 0 for i > j and dimk Ext1(diSi, djSj) = didj

for i → j. We apply this for d = α(ai)ai. We note that

χ(α(ai)ai) = dimk End(MΛ(α(ai)ai)),

and
|α(ai)ai| = dimk MΛ(α(ai)ai),

therefore

w∗(α(ai)ai) = vdimk End(MΛ(α(ai)ai))−dimk MΛ(α(ai)ai)w⋄(α(ai)ai).

On the other hand,

w∗(α) = w∗(α(a1)a1) ∗ · · · ∗ w∗(α(am)am)

= vr′

w∗(α(a1)a1) ⋄ · · · ⋄ w∗(α(am)am)

with

r′ =
∑

i<j

〈α(ai)ai, α(aj)aj〉

=
∑

i<j

dimk Hom(α(ai)MΛ(ai), α(aj)MΛ(aj))

= dimk rad End(MΛ(α)),
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here we use that for i < j, we have Ext1(α(ai)MΛ(ai), α(aj)MΛ(aj)) = 0, and that for
i > j, we have Hom(α(ai)MΛ(ai), α(aj)MΛ(aj)) = 0. Altogether, we see that

w∗(α) = vdimk radEnd(MΛ(α))w∗(α(a1)a1) ⋄ · · · ⋄ w∗(α(am)am) = vrw⋄(α),

with

r = r′ +
∑

i

dimk End(MΛ(α(ai)ai)) −
∑

i

dimk MΛ(α(ai)ai)

= dimk End(MΛ(α)) − dimk MΛ(α).

This completes the proof.

By definition, H∗(Λ) is the free A-module with basis elements the isomorphism classes
[M ] of the finite Λ-modules. It seems to be worthwhile to consider besides these elements
[M ] also their multiples

〈M〉 := v− dimk M+dimk End(M)[M ].

Example.

〈
Si

Sj

〉

= v−2+1

[
Si

Sj

]

= v−1(v [Si] ∗ [Sj ] − [Sj ] ∗ [Si]) = [Si] ∗ [Sj ] − v−1[Sj ] ∗ [Si].

Theorem 1′.

w∗(α) = 〈MΛ(α)〉 +
∑

β<α

gαβ〈MΛ(β)〉 with gαβ ∈ A

Proof: This is a direct consequence of Theorem 1.

Lemma.

〈MΛ(α)〉 = 〈α(a1)MΛ(a1)〉 ∗ · · · ∗ 〈α(am)MΛ(am)〉

Proof:

〈α(a1)MΛ(a1)〉 ∗ · · · ∗ 〈α(am)MΛ(am)〉

= v−
∑

|α(ai)ai|+
∑

α(ai)
2

[α(a1)MΛ(a1)] ∗ · · · ∗ [α(am)MΛ(am)]

= v−
∑

|α(ai)ai|+
∑

α(ai)
2

vdimk rad End(M(α))[α(a1)MΛ(a1)] ⋄ · · · ⋄ [α(am)MΛ(am)]

= v− dimk M(α)+dimk End(M(α))[MΛ(α)]

= 〈MΛ(α)〉
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Example. Let us consider the explicit expression for w∗(d), where d ∈ Nn
0 .

w∗(d) =
∑

dim β=d

v−δ(β)〈MΛ(β)〉 with δ(β) := dimk Ext1(MΛ(β), MΛ(β)).

Proof: We have

w∗(d) = vχ(d)−|d|w⋄(d) = vχ(d)−|d|
∑

dim β=d

[MΛ(β)],

since any module MΛ(β) with dimβ = d has a unique filtration of type w⋄(d). But

χ(d) − |d| = dimk End(MΛ(β)) − dimk Ext1(MΛ(β), MΛ(β)) − |d|

= −δ(β) + r(β).

Thus,

w∗(d) = vχ(d)−|d|
∑

dim β=d

[MΛ(β)]

=
∑

dim β=d

v−δ(β)vr(β)[MΛ(β)]

=
∑

dim β=d

v−δ(β)〈MΛ(β)〉.

More generally, given α, β : Φ+ → N0, we have to consider

δ(β; α) = dimk Ext1(M(β), M(β))− dimk Ext1(M(α), M(α))

= dimk End(M(α)) − dimk End(M(β)),

of course, we have δ(β) = δ(β; 0).
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7. The isomorphism between Uq(n+(∆)) and H∗(k~∆) for ~∆ a Dynkin quiver

Proposition. The elements [Si]
∗(t) with 1 ≤ i ≤ n and t ≥ 1 generate H∗(~∆) as a

A-algebra.

Proof: Let H′ be the A-algebra generated by the elements [Si]
∗(t) with 1 ≤ i ≤ n and

t ≥ 1. By induction on dimα, we show that 〈MΛ(α)〉 belongs to H′.
If the support of α contains more than one element, then we use the formula

〈MΛ(α)〉 = 〈α(a1)MΛ(a1)〉 ∗ · · · ∗ 〈α(am)MΛ(am)〉.

By induction, all the elements 〈α(ai)MΛ(ai)〉 belong to H′, thus also 〈MΛ(α)〉, and thefore
[MΛ(α)] belong to H′.

In case the support of α consists of the unique element ai, let d = α(ai)ai, thus
MΛ(α) = MΛ(d), and we know that

w∗(d) = 〈MΛ(α)〉 +
∑

dim β=d

β 6=α

v−δ(β)〈MΛ(β)〉.

The support of any β with dimβ = d and β 6= α contains more than one element; as we
have seen, this implies that the corresponding elements 〈MΛ(β)〉 belong to H′. Since also
w∗(d) is in H′, we conclude that 〈MΛ(α)〉 belongs to H′.

Of course, with 〈MΛ(α)〉 also [MΛ(α)] belongs to H′. This completes the proof.

The fundamental relations show that we may define a ring homomorphism

η : Uq(n+(∆)) → H∗(~∆)

by η(Ei) = [Si]. The Lemma above shows that this map is surjective.

Theorem. The map η : Uq(n+(∆)) → H∗(~∆) is an isomorphism.

We have to show that η is also injective. Let A′′ = Q[v, v−1], and U ′′ = U ′′
q (n+(∆))

the A′′-subalgebra of U ′
q(n+(∆)) generated by the elements E

(t)
i with 1 ≤ i ≤ n and t ≥ 0.

Also, let H′′
∗(~∆) = H∗(~∆) ⊗A A′′. Of course, the map η extends in a unique way to a

map η′′ : U ′′ → H′′
∗(~∆) (thus η′′|Uq(n+(∆)) = η). It remains to be seen that η′′ is injective.

Both U ′′ and H′′
∗(~∆) are Zn-graded, and η′′ respects this graduation, thus, for d ∈ Zn,

there is the corresponding map η′′
d

: U ′′
d
→ H′′

∗(~∆)d, and we show that all these maps η′′
d

are injective.
The A′′-module U ′′

d
is torsionfree (since it is a submodule of U ′

q(n+(∆))) and finitely
generated. Since A′′ is a principal ideal domain, we see that U ′′

d
is a free A′′-module. In

order to calculate its rank, we consider the factor module U ′′
d
/(v − 1). As we have seen in

section 1, we can identify U ′′
d
/(v − 1) with U(n+(∆))d, thus it has Q-dimension u(d). It
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follows that U ′′
d

is a free A′′-module of rank u(d). On the other hand, H′′
∗(~∆)d is the free

A′′-module with basis the set of maps α : Φ+ → N0 satisfying dimα = d, thus it also is
a free A′′-module of rank u(d). But any surjective map between free A′′-modules of equal
rank has to be an isomorphism. This completes the proof.

In our further considerations, it sometimes will be useful to identify Uq(n+(∆)) and

H∗(~∆) via the map η. Under this identification, the generator Ei corresponds to the
isomorphism class [Si].
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8. The canonical basis

For any pair β < α of maps Φ+ → N0, Theorem 1′ gives an element gαβ ∈ A. Let
gαα = 1, and gαβ = 0 in the remaining cases. We may consider g = (gαβ)αβ as a matrix
using some total ordering of the indices; it is the base change matrix between the basis
given by the elements 〈MΛ(α)〉 and the basis given by the elements w∗(α). Note that we
may assume that g is a unipotent lower triangular matrix. Let g be obtained from g by
applying the automorphism , and g′ the inverse of g. Since w∗(α) = w∗(α), we see that

w∗(α) = w∗(α) =
∑

β

gαβ〈MΛ(β)〉,

thus
〈MΛ(α)〉 =

∑

β

g′
αβw∗(β) =

∑

β

∑

γ

g′
αβgβγ〈MΛ(γ)〉.

Let us denote by h = g′g the matrix product, then h is again a unipotent lower triangular
matrix, and h = h−1.

There exists a unique unipotent lower triangular matrix u = (uαβ)α,β with off-diagonal
entries in Z[v−1] without constant term, such that u = uh (see [L6], 7.10, or also [D], 1.2).

The desired basis is

C(α) := 〈MΛ(α)〉 +
∑

β≺α

uαβ〈MΛ(β)〉 with uαβ ∈ v−1Z[v−1]

.
this is called the canonical basis of H∗(~∆) or also of Uq(n+(∆)).

Note that by construction the elements of the canonical basis are invariant under the
automorphism , since

C(α) =
∑

β

uαβ〈MΛ(β)〉

=
∑

β,γ

uαβhβγ〈MΛ(γ)〉

=
∑

β

uαβ〈MΛ(β)〉 = C(α).
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In fact, the element C(α) is characterized by the two properties

C(α) := 〈MΛ(α)〉 +
∑

β≺α

uαβ〈MΛ(β)〉 with uαβ ∈ v−1Z[v−1],

and

C(α) = C(α)

.
In particular, any monomial will satisfy the second property, thus in order to show

that a monomial belongs to the canonical basis, we only have to verify the first property.

9. The case A2

We consider the quiver
1 −→ 2.

There are three positive roots a1 = (1, 0), a2 = (1, 1), a3 = (0, 1), with corresponding
indecomposable modules S1 = M(1, 0), M(1, 1), S2 = M(0, 1). (For simplicity, we sometimes
will denote the isomorphism class [S1] by 1, the isomorphism class [S2] by 2.)

The Auslander-Reiten quiver is of the form

M(1, 1)
ր ց

M(0, 1) · · · M(1, 0)

Let
M(c, r, s) = cM(0, 1) ⊕ rM(1, 1)⊕ sM(1, 0),

note that M(c, r, s) has dimension vector (c + r, r + s), it is given by a linear map

M(c, r, s)1 = ks+r −→ kr+c = M(c, r, s)2

of rank r (thus, s is the dimension of its kernel, c the dimension of its cokernel). We may
visualize M(c, r, s) as follows:

1 ◦ · · · ◦ ◦ · · · ◦
↓ · · · ↓

2 ◦ · · · ◦ ◦ · · · ◦

︸ ︷︷ ︸

c

︸ ︷︷ ︸

r

︸ ︷︷ ︸

s
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Let ǫ(c, r, s) = dimk EndM(c, r, s), thus

ǫ(c, r, s) = c2 + r2 + s2 + cr + rs,

and for 0 ≤ i ≤ r,
ǫ(c + i, r − i, s + i) − ǫ(c, r, s) = i(i + c + s).

Claim:
〈[cS2] ⋄ [(r + s)S1] ⋄ [rS2] ⋄| M(c + i, r − i, s + i)〉 = Gc+i

i .

Proof: We take an r-dimensional subspace U of the (c + r)-dimensional space M(c, r, s)2
such that U contains a fixed (r − i)-dimensional subspace V (the image of the given map
M(c + i, r − i, s + i)1 → M(c + i, r − i, s + i)2), thus in the (c + i)-dimensional space
M(c + i, r − i, s + i)2/V, we choose an arbitrary i-dimensional subspace.

Similarly:

〈[rS1] ⋄ [(c + r)S2] ⋄ [sS1] ⋄| M(c + i, r − i, s + i)〉 = Gs+i
s .

Proof: Here, we take an s-dimensional subspace in the (s + i)-dimensional kernel of the
map M(c + i, r − i, s + i)1 → M(c + i, r − i, s + i)2, and the number of such subspaces is
Gs+i

s .

It follows that

2(∗c) ∗ 1(∗(r+s)) ∗ 2(∗r) =

r∑

i=0

v−i(i+c+s)Gc+i
i 〈M(c + i, r − i, s + i)〉

and

1(∗r) ∗ 2(∗(c+r)) ∗ 1(∗s) =
r∑

i=0

v−i(i+c+s)Gs+i
s 〈M(c + i, r − i, s + i)〉

Note that in both expressions, the coefficient of 〈M(c, r, s)〉 itself is 1. Consider the
coefficients of the summands with index i > 0. Since Gc+i

i has degree ic, we see that
for c ≤ s, the coefficient v−i(i+c+s)Gc+i

i belongs to v−1Z[v−1], similarly, for c ≥ s, the
coefficient v−i(i+c+s)Gs+i

s belongs to v−1Z[v−1].

Let us consider the formulae in case c = s. In this case, the right hand sides coincide,
since Gs+i

i = Gs+i
s . Thus, we see:

2(∗s) ∗ 1(∗(r+s)) ∗ 2(∗r) = 1(∗r) ∗ 2(∗(s+r)) ∗ 1(∗s)
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This shows the following:

Proposition. The canonical basis of Uq(n+(A2)) consists of the following elements:
take the monomials 2(∗c)∗1(∗(r+s))∗2(∗r) with c ≤ s and the monomials 1(∗r)∗2(∗(c+r))∗1(∗s)

with c > s.

10. The case A3.

Consider the following quiver

◦
ւ ց

◦ ◦

denote the source by 2, the sinks by 1 and 3, respectively.
The indecomposable representations have the following dimension vectors

a = (100),

b = (001),

c = (111),

d = (011),

e = (110),

f = (010).

The Auslander-Reiten quiver is of the form

a · · · d
ց ր ց

c · · · f
ր ց ր

b · · · e

Consider the dimension vector (xyz), with positive integers x, y, z. Let α : Φ → N0

with
M(α) = M(c) ⊕ (x − 1)M(a) ⊕ (y − 1)M(f)⊕ (z − 1)M(b).

We want to determine C(α).

Let β, β′, γ : Φ → N0 with

M(β) = M(d) ⊕ xM(a) ⊕ (y − 1)M(f)⊕ (z − 1)M(b),

M(β′) = M(e) ⊕ (x − 1)M(a) ⊕ (y − 1)M(f)⊕ zM(b),

M(γ) = xM(a)⊕ yM(f)⊕ zM(b).
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We have

ǫ(α) = x2 − x + y2 − y + z2 − z + 1,

ǫ(β) = x2 + y2 − y + z2 − z + 1,

ǫ(β′) = x2 − x + y2 − y + z2 + 1,

ǫ(γ) = x2 + y2 + z2.

Thus, we see that

ǫ(β) − ǫ(α) = x,

ǫ(β′) − ǫ(α) = z,

ǫ(γ) − ǫ(α) = x + y + z − 1.

On the other hand,

〈[S2] ⋄ [xS1] ⋄ [zS3] ⋄ [(y − 1)S2] ⋄| 〈M(β)〉〉 = 1

〈[S2] ⋄ [xS1] ⋄ [zS3] ⋄ [(y − 1)S2] ⋄| 〈M(β′)〉〉 = 1

〈[S2] ⋄ [xS1] ⋄ [zS3] ⋄ [(y − 1)S2] ⋄| 〈M(γ)〉〉 = Gy
y−1.

It follows that

2 ∗ 1(∗x) ∗ 3(∗z) ∗ 2(∗(y−1)) = 〈M(α)〉 + v−x〈M(β)〉 + v−z〈M(β′)〉 + v−(x+z)[y]〈M(γ)〉.

The two coefficients v−x, v−z belong to v−1Z[v−1]. In case x+z ≥ y, also the last coefficient
v−(x+z)[y] belongs to v−1Z[v−1]. Thus we see:

If x + z ≥ y, then C(α) = 2 ∗ 1(∗x) ∗ 3(∗z) ∗ 2(∗(y−1))

In case x + z < y, we use the following equality

v−(x+z)[y] = [y − x − z] + v−y[x + z],

in order to see that

2 ∗ 1(∗x)∗3(∗z) ∗ 2(∗(y−1)) − [y − x − z]1(∗x) ∗ 3(∗z) ∗ 2(∗y)

= 〈M(α)〉+ v−x〈M(β)〉 + v−z〈M(β′)〉 + v−y[x + z]〈M(γ)〉.

Note that the last coefficient v−y[x + z] belongs to v−1Z[v−1].

For x + z < y, C(α) = 2 ∗ 1(∗x) ∗ 3(∗z) ∗ 2(∗(y−1)) − [y − x − z]1(∗x) ∗ 3(∗z) ∗ 2(∗y)
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Lemma. If c ≥ a + d, c ≥ b + e, then 1∗(a) ∗ 3∗(b) ∗ 2∗(c) ∗ 1∗(d) ∗ 3∗(e) belongs to the
canonical basis.

Proof: Let w∗ = 1∗(a)∗3∗(b)∗2∗(c)∗1∗(d)∗3∗(e), and w⋄ = 1⋄(a)⋄3⋄(b)⋄2⋄(c)⋄1⋄(d)⋄3⋄(e)

Let M = M(d, c, e) be the generic module with dimension vector (d, c, e), let S = aS1⊕bS3.
Since d ≤ a+d ≤ c, we see that Hom(M, S1) = 0. Similarly, Since e ≤ b+e ≤ c, we see that
Hom(M, S2) = 0. Thus Hom(M, S) = 0. Let N = S ⊕ M. It follows that 〈w⋄ ⋄| N〉 = 1.

Now, consider any module N ′ with 〈w ⋄| N ′〉 6= 0. It follows that N ′ maps surjectively
to S, and, since S is projective, S is a direct summand of N ′. Let i, j be maximal so that
S′ = (a + i)S1 ⊕ (b + j)S3 is a direct summand of N ′, say N ′ = S′ ⊕ M ′. Note that we
have Hom(M ′, S′) = 0. Let M ′′ be the generic module with dimension vector equal to the
dimension vector of M ′. Let ǫ, ǫ′, ǫ′′ be the dimension of the endomorphism rings of N, N ′,
and N ′′ = S′ ⊕ M ′′ respectively. Then ǫ′ ≥ ǫ′′.

Note that

ǫ′′ = dimk End(S′) + dimk End(M ′′) + dimk Hom(S′, M ′′)

= q(S′) + q(M ′′) + 〈S′, M ′′〉

= q(S′ ⊕ M ′′) − 〈M ′′, S′〉

= q(a + d, c, b + e) + dim Ext1(M ′′, S′)

where we first have used that Hom(M ′′, S′) = 0, then that Ext1(S′, M ′′) = 0, and finally
again that Hom(M ′′, S′) = 0.

Let us show that dimk Ext1(M ′′, S′) = (a + i)(c − d + i) + (b + j)(c − e + j). Note
that M ′′ has no direct summand of the form S1 or S3, thus the number of indecomposable
direct summands in any direct decomposition is just dimk M2 = c, whereas the number of
indecomposable direct summands with dimension vector (111) or (110) is dimk M1 = d− i.
Thus, the number of indecomposable direct summands with dimension vector (011) or (010)
is c− d + i. It follows that dimk Ext1(M ′′, S1) = c− d + i. Similarly, dimk Ext1(M ′′, S2) =
c − e + i.

As a consequence,

ǫ′′ = q(a + d, c, b + e) + dimk Ext1(M ′′, S′)

= q(a + d, c, b + e) + (a + i)(c − d + i) + (b + j)(c − e + j).

In particular, we also see that

ǫ = q(a + d, c, b + e) + a(c − d) + b(c − e).

Therefore,

ǫ′ − ǫ ≥ ǫ′′ − ǫ = (a + i)(c − d + i) + (b + j)(c − e + j) − a(c − d) − b(c − e)

= i(a + c − d + i) + j(b + c − d + i) ≥ i(2a + i) + j(2b + j),

since we assume that c ≥ a + d, and c ≥ b + d. In particular, in case (i, j) 6= (0, 0), we see
that

ǫ′ − ǫ > 2(ai + bj).

28



On the other hand, we clearly have

〈w ⋄| N ′〉 = Ga+i
a Gb+j

b ,

and this is a polynomial of degree 2(ai + bj). The coefficient of w∗ = 1∗(a) ∗ 3∗(b) ∗ 2∗(c) ∗

1∗(d) ∗ 3∗(e) at 〈N ′〉 is v−ǫ′+ǫGa+i
a Gb+j

b , thus it belongs to v−1Z[v−1]. This completes the
proof.
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