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Introduction

Given any Dynkin diagram A of type A,,,D,,, Eg, E7, Eg, we may endow its edges with
an orientation; we obtain in this way a quiver (an oriented graph) 5, and the corresponding
path algebra k:ﬁ, where k is a field. We may consider the representations of A over k, or,
equivalently, the kA-modules. In case k is a finite field, one may define a multiplication
on the free abelian group with basis the isomorphism classes of kA-modules by counting
filtrations of modules; the ring obtained in this way is called the Hall algebra H(kA).

We denote by Z[v] the polynomial ring in one variable v, and we set ¢ = v2. Also, let
A= Zv,v71].

The free Z[g]-module H(A) with basis the isomorphism classes of kA-modules can
be endowed with a multiplication so that H(A)/(¢ — |k|) ~ H(kA), for any finite field

k of cardinality |k|, thus H(&) may be called the generic Hall algebra. The generic Hall
algebra satisfies relations which are very similar to the ones used by Jimbo and Drinfeld
in order to define a g-deformation U,(n4(A)) of the Kostant Z-form U(ny(A)). Here,
g(A)=n_(A)®h(A) @ n,(A) is a triangular decomposition of the complex simple Lie
algebra g(A) of type A. Note that Uy(n4(A)) is an A-algebra, and we can modify the
multiplication of H(A) ®zj4 A using the Euler characteristic on the Grothendieck group

Ko(kA) in order to obtain the twisted Hall algebra H, (A) with

Uy(ni(A)) =~ H.(A)

What is the advantage of the Hall algebra approach? Assume we have identified

—

Uy(ng(A)) with H.(A). Note that the ring Uy(ny(A)) is defined by generators and

relations, whereas H,(A) is a free A-module with a prescribed basis.

The presentation of U, (n4 (A)) gives us a presentation for the (twisted) Hall algebra,
and this may be interpreted as follows: the Jimbo-Drinfeld relations are the universal
relations for comparing the numbers of composition series of modules over algebras with
a prescribed quiver.

On the other hand, in H, (5), there is the prescribed basis given by the kA-modules,
and we obtain in this way a basis for Uy(n4(A)), thus normal forms for its elements,
and this makes calculations in U, (n4(A)) easier. Also, the basis elements themselves gain
more importance, more flavour. Since they may be interpreted as modules, one can discuss
about their module theoretical, homological or geometrical properties: whether they are
indecomposable, or multiplicityfree and so on.

The basis of Uy(n4(A)) obtained in this way depends on the chosen orientation of A,
and Lusztig has proposed a base change which leads to a basis which is independent of
such a choice and which he calls the canonical basis. This basis also was constructed by
Kashiwara and called the crystal basis of Uy(ny(A)).



Here is the list of the Dynkin diagrams A,,,D,,, Eg, E7, Eg:

Es o O o '}
Er o ..
Ex o .



0. Preliminaries

Consider the following polynomials in a variable T', where n,m € Ny and m <n

T — 1) (T — 1) (T — 1)

(T —1)" ’
(Tn _ 1>(Tn—1 _ 1) . (Tn—m—l—l _ 1)
(Tm —1)(T™ 1 —1)-- (T —1)

F™(T) := (

Gi(T) =

Note that the degree of the polynomial F"(T) is (%), the degree of G7,(T) is m(n — m).

Let k be a finite field, denote its cardinality by ¢x = |k|. The cardinality of the set
of complete flags in k" is just F"(qx), and for 0 < m < n, the number of m-dimensional
subspaces of k™ is G}, (qk)-

Let A = Q(v) be the rational function field over Q in one variable v, and let us
consider its subring A = Z[v,v™!]. We denote by ~: A’ — A’ the field automorphism with
T = v~ '; it has order 2, and it sends A onto itself.

We set ¢ = v?; we will have to deal with F"(q) and G (q). We define

A T
[?’L] — — Un—l + Un—3 et U—n—i—l’
v—ov1

thus [0] =0, [1] =1, 2] =v+0v7!, [3]=v?+1+v72 and so on. Let

)= T [m].

m=1

"] ::# where 0 <m < n.

There are the following identities:
— ,,—n+1 qn —1
)=t
nt = v~ G Fm (g)
] =vmeman ).

m



1. The definition of U,(n;(A))

Let A = (a;;);; be a symmetric (n x n)-matrix with diagonal entries a;; = 2, and with
off-diagonal entries 0 and —1. (Such a matrix is called a simply-laced generalized Cartan
matriz. )

Note that A defines a graph with n vertices labelled 1,2,...,n with edges {i,j}
provided a;; = —1. Often we will not need the labels of the vertices, then we will present the

vertices by small dots o. Of particular interest will be the Dynkin diagrams A,,, D,,, Eg, E7,
Es.

Given A, we define U;(ny(A)) as the A’-algebra with generators Ei,..., E, and
relations

We denote

m 1
E™ .= —_E"

[m]l "

Let Uy(ny (A)) be the A-subalgebra of U, (n, (A)) generated by the elements EZ-(m)
with 1 <7 <mnand m > 0.

We denote by ~: U/(n4(A)) — U/(ny(A)) the automorphism with 7 = v~' and
E; = E,; for all i.

We denote by Z™ the free abelian group of rank n with basis eq,...,e,. Given an
element d € Z", say d = ) _ d;e;, let |d| =) d;.

Note that the rings U;(n; (A)) and U;(ny (A)) are Z"-graded, where we assign to E;
the degree e;. Given d € Z", we denote by U,(n4(A))q the set of homogeneous elements
of degree d, thus

Uy(ny(A)) = @ Uy(ny(A))a-
d

Let A be of the form A,,, D,,, Eg, E7, or Eg. We denote by ® = ®(A) the corresponding
root system. We choose a basis ey, ..., e, of the root system, and denote by & the set of

positive roots (with respect to this choice). The choice of the basis yields a fixed embedding
of ® into Z".

We will have to deal with maps a: ®+ — Ny. Given such a map «, we set

dima := Z a(a)ae Z"

a
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and call it its dimension vector. We denote by u(d) for d € Z™ the number of maps
a: &t — Ny with dima = d.

Consider the Q-Lie-algebra n (A) generated by Ej, ..., F, with relations

[Ei,Ej] =0 if Q5 = 0,
[Ei7 [EZ,EJ” =0 if A5 = —1.

(Usually, one deals with the corresponding C-algebra ny(A) ®q C; here, it will be more
convenient to consider the mentioned Q-form.)

The universal enveloping algebra U(n4 (A)) is the Q-algebra generated by the elements
Eq, ..., E, with relations

thus we see:

Proposition. We have

Un(A)) = Uy(ni(A)) @4 Qu,v™ "]/ (v - 1).

Of course, ni (A) and U(n4(A)) both are Z™-graded, where again we assign to E;
the degree e;. For any non-zero homogeneous element L of ny(A), we denote by dim L
its degree. It is well-known that n, (A) has a basis E, indexed by the positive roots, such
that dim F, = a. As a consequence, we obtain the following consequence:

Proposition. The Q-dimension of U(n4(A))q is u(d).

Proof: Use the theorem of Poincaré-Birkhoff-Witt.



2. Rings and modules, path algebras of quivers

Rings and modules.

Given a ring R, the R-modules which we will consider will be finitely generated right
R-modules. The category of finitely generated right R-modules will be denoted by mod R.

Let R be aring. The direct sum of two R-modules M7, My will be denoted by M; ® Mo,
the direct sum of ¢ copies of M will be denoted by tM. The zero module will be denoted
by Og or just by 0.

We write M ~ M’, in case the modules M, M’ are isomorphic, the isomorphism class
of M will be denoted by [M]. For any module M, we denote by s(M) the number of
isomorphism classes of indecomposable direct summands of M.

Let R be a finite dimensional algebra over some field k. Let n = s(Rpg), thus n is
the rank of the Grothendieck group Ky(R) of all finite length modules modulo split exact
sequences. Given such a module M, we denote its equivalence class in Ky(R) by dim M.
There are precisely n isomorphism classes of simple R-modules Sy, ..., S, and the elements
e; = dim S; form a basis of Ky(R). If we denote the Jordan-Holder multiplicity of S; in
M by [M :S;], then dim M =), [M : S;]e;.

We denote by supp M the support of M, it is the set of simple modules S with
[M : S] # 0. (In case the simple modules are indexed by the vertices of a quiver, we also
will consider supp M as a subset of the set of vertices of this quiver).

Path algebras of quivers

A quiver A = (50, A4, s,t) is given by two sets Ao, Aq, and two maps s,t: A — Ao.
The elements of Ag are called vertices, the elements of A, are called arrows; given f € 51,
then we say that f starts in s(f) and ends in ¢(f), and we write f: s(f) — t(f). An arrow
f with s(f) = t(f) is called a loop, we always will assume that A has no loops.

We denote by kA the path algebra of the quiver A over the field k. We will not
distinguish between representations of A over k and (right) kA-modules. Recall that a
representation M of A over k attaches to each vertex z of A a vector space M, over k,
and to each arrow f: s(f) — t(f) a k-linear map M,s) — M s). For any vertex x of A,

we can define a simple kA-module S (z) by attaching the one-dimensional k-space k to the
vertex x, the zero space to the remaining vertices, and the zero map to all arrows. We
stress that the number of arrows z — ¥ is equal to dimy, Ext'(S(z), S(y)). In case there is
precisely one arrow starting in z and ending in y, there exists up to isomorphism a unique
indecomposable representation of length 2 with top S(x) and socle S(y), we denote it by
S(x)

S(y)



In case A has as vertex set the set {1,2,...,n}, we define a corresponding (n x n)-
matrix A = (a;;);; as follows: let a;; = 2, for all 4, and let a;; be the number of arrows
between ¢ and j (take the arrows i — j as well as the arrows j — 4). In case there is at
most one arrow between ¢ and j we obtain a matrix as considered in section 1, and then
we will call A the underlying graph of A.

Let us assume that A is a finite quiver with n vertices, and let A = kA. We assume
in addition that A has no cyclic paths (a cyclic path is a path of length at least 1 starting
and ending in the same vertex). As a consequence, A is finite-dimensional, and there are
precisely n simple A-modules, namely the modules S(z), with = a vertex. Of course, if
M is a representation of A, then dim M = >, (dimy M) dim S(z) in the Grothendieck
group Ko(A).

It is easy to see that A is hereditary, thus we can define on K(y(A) a bilinear form via
(dim X, dimY') = dim;, Hom(X,Y) — dimy, Ext'(X,Y)

where X,Y are A-modules of finite length. The corresponding quadratic form will be
denoted by x; thus for d € Ky(A), we have x(d) = (d,d). Of course, we have the following
formula for all 7, j

Dynkin quivers

A quiver A whose underlying graph is of the form A,,, D,,, Eg, E7, Eg will be called
a Dynkin quiver. We recall some well-known results:

Gabriel’s Theorem. Let A be a Dynkin quiver. The map dim yields a bijection
between the isomorphism classes of the indecomposable kA-modules and the positive roots

for A.

Let A be a Dynkin quiver, and let A = kA. Given a positive root a for A, we denote
by M (a) or My (a) the corresponding A-module; thus M (a) = My (a) is an indecomposable
A-module with dim M (a) = a. Similarly, given a map a: ®+ — Ny, we denote by M («)
we denote the A-module

M(a) = My(a) = @ a(a)M(a).

a

We obtain in this way a bijection between the maps ®+ — Ny and the isomorphism classes
of A-modules of finite length (according to the Krull-Schmidt theorem).

A finite dimensional k-algebra R is called representation directed provided there is only
a finite number of (isomorphism classes of) indecomposable R-modules, say My, ..., M,,,

and they can be indexed in such a way that Hom(M;, M;) = 0 for ¢ > j.

8



Proposition. Let A bea Dynkin quiver. Then kA is representation directed.
Let @ = {aj,...,a,, }, we will assume that the ordering is chosen so that

Hom(Ma(a;), Ma(a;)) #0 implies 4 < j.

The subcategories C, D of mod A are said to be linearly separated provided for
modules C' in addC, and D in add D with dim C' = dim D, we have C' =0 = D.

Lemma. The subcategories add{M (ay), ..., M(as_1)} and add{M (ay),..., M(a,)}
are linearly separated.

3. The Hall algebra of a finitary ring.

Given a ring R, we will be interested in the finite R-modules; here a module M will be
said to be finite provided the cardinality of its underlying set is finite (not just that M is of
finite length). Of course, for many rings the only finite R-module will be the zero-module,
but for finite rings, in particular for finite-dimensional algebras over finite fields, all finite
length modules are finite modules. A ring R will be said to be finitary provided the group
Ext!(S1, Ss) is finite, for all finite simple R-modules Sy, Sy. (For a discussion of finitary
rings, see [R1]).

We assume that R is a finitary ring. We mainly will consider path algebras of finite
quivers over finite fields; of course, such a ring is finitary.

Given finite R-modules N1, No, ..., Ny and M, let .7-“11\\,41 ~, be the set of filtrations

.....

M=MyDM 2---2M =

such that M;_1/M; is isomorphic to N;, for all 1 < < ¢. The cardinality of f]]\\]/{ .....
be denoted by F]]\‘,{’.“’Nt or also by (N1 Ny ... Ny ¢ M). (These cardinalities are finite, since
we assume that R is finitary.)

Let H(R) be the free abelian group with basis the set of isomorphism classes [X] of
finite R-modules, with a multiplication which we denote by the diamond sign ¢

[N\ o [No] := ) Fn,[M] =) (NiN2 ¢ M)[M].
(M] [M]

Given an element = € H(R), we denote its t** power with respect to the diamond product
by x°t.

Proposition. H(R) is an associative ring with 1.

9



Proof: The associativity follows from the fact that

(IN] o [Na]) © [Ns] = Y Fi v, [M] = [Ni] o ([N2] © [N3)),
(M]

The unit element is just [0g|, with Or the zero module.

In case R is a finite-dimensional algebra over some finite field, we assign to the
isomorphism class [M] the degree dim M € Z". Let H(R)a be the free abelian group
with basis the set of isomorphism classes [M] of finite R-modules with dim M = d.

Proposition. H(R) = @4 H(R)a is a Z"-graded ring.

Proof: We only have to observe that for F]]\\]{Nz # 0, we have dim M = dim N; +
dim Ns.

From now on, let A be a lzynkm quiver, let k be a field. We consider A = kA. Let
{1,2,...,n} be the vertices of A, ordered in such a way that
Ext'(S;,S;) #0 implies i < j.
Let T = {ay,...,a, }, and we will assume that the ordering is chosen so that

Hom(Ma(a;), Ma(a;)) #0 implies i < j.

Hall polynomials

Proposition. Let a, 3,v: ®* — Ng. There exists a polynomial ¢§N(q) € Z[q] such
that for any finite field k of cardinality qy

Ma(B) _
Fr oinin(y) = Py (ar)-

For a proof, see [R1], Theorem 1, p.439.

The polynomials which arise in this way are called Hall polynomials.

Let A be a Dynkin quiver. Let H(A) be the free Z[g]-module with basis the set of
maps T — Ng. On H(A), we define a multiplication by

oz =Y ¢ ., B
5

—

Proposition. H(A) is an associative ring with 1, it is Z™-graded (the degree of
a: & — Ny being dima), and for any finite field k of cardinality qx, the map o —
(M, x ()] yields an isomorphism

—

H(R)/(q — i) ~ H(kA).

10



4. Loewy series.

Ford = (dy,...,d,) € N, let
w<><d) = [d151] Gt o [dnSn]

Note that the element w,(d) only depends on the semisimple module € d;S; and not on
the particular chosen ordering of the vertices of A, since [d;S;] [d;S;] = [d;S;] ¢ [d;S;] in
case Ext'(S;,5;) = 0 = Ext'(S;, S;).

Remark: Recall that the vertices {1,2,...,n} of A are ordered in such a way that
Ext!(S;, S;) # 0 implies that ¢ < j. Usually, there will be several possible orderings, for
example in the case of A3z with orientation

we have to take 1 = y but we may take 2 = x, 3 = z or else 2 = 2z, 3 = x. All possible
orderings are obtained from each other by a finite sequence of transpositions (i,7 + 1) in
case Eth(Si, Si-i-l) =0= Eth(Si—i—l, Sz)

Lemma. We have (wo(d) ¢ M) # 0 if and only if dim M = d; and, in this case,
(we(d) ¢ M) = 1.

The proof is obvious.
Given a map a: ®T — N, let
Wo () := we(a(ar)ay) o« - o we(a(am)an).
The element w,(«) does not depend on the chosen ordering of the positive roots.
Example. Consider the case As. Thus, there is given a hereditary k-algebra A with
two simple modules S7, S such that Extl(Sl, Sy) = k. There is a unique indecomposable
module of length 2, and we denote it by I. There are three positive roots ay, as, az, where

a; = a; + agz. If we assume that Sy = My (a;) and S; = My (a3), then the ordering is as
desired. For ar: T — Ny, we obtain the following element

we(a) = we(aay)ay) ¢ we(a(az)as) o we(a(as)as)
= [a(a1) 5] o [a(az)51] © [a(az) Sa] © [o(as) S1],

the corresponding A-module is My (a) = a(a1)Se @ a(az)l & a(asz)S.

11



Lemma. We have (ws(a) $ M) # 0 if and only if there exists a filtration
M=My2M 2 2M,=0
such that dim M;_1 /M, = o(a;)a;.
The proof is obvious.

The set of maps ®+ — Ny will be ordered using the opposite of the lexicographical
ordering: Given a, 3: ®T — Ny, we have 3 < « if and only if there exists some 1 < j < m
such that §(a;) = a(a;) for all i < j, whereas B(a;) > a(a;).

Theorem 1. Let a: T — Ny. Then (wo(a) ¢ M(«)) = 1. On the other hand, given
a module M with (we(c) ¢ M) # 0, then M ~ M () for some § < a.

Before we present the proof, we need some preliminary considerations. Given ov: & —
No, let us define for 0 < ¢ < m, the submodule M;(a) = @, , a(a;)Ma(a;) of M(c). Thus
we obtain a sequence of submodules

M(a) = My(a) 2 My(a) 2 -+ 2 Mp,(a) = 0.

Lemma. Let U be a submodule of M' = M;_1(8) such that dim M'/U = u - a; for
some j. Then we have j > t. If j =t, then U O M, (and therefore u < (3(a;)), there is an
isomorphism M'/U ~ uM (a;), and U = M(B) ® U’, with U" ~ (B(a;) — u) M (a).

Proof. We can assume u > 0.

Let us first assume that M'/U ~ u - M(a;). First of all, we show that j > ¢. For
j < t, we have Hom(M (a;), M(a;) = 0 for all ¢ > ¢, thus Hom(M’, M(a;)) = 0, whereas
there is given a non-zero map M’ — M’'/U ~ u - M(a;). Now assume j = ¢. Using the
same argument, we see that the composition of the inclusion map M;(3) — M’ and the
projection map M’ — M'/U has to be zero, since Hom(M (a;), M (a;)) = 0 for ¢ > ¢. This
shows that U D M;, and consequently u < (3(a;). The canonical projection ((a;)M (a;) ~
M’ /My(B) — M’ /U splits, thus U/M;(3) ~ (B(a;) —u)M (a;). But then also the projection
U — U/M,(f3) splits (since Ext' (M (a;), M (a;)) = 0 for all i > t). This shows the existence
of a direct complement U’ in U to M;((3), and we have U’ ~ U/M(3) ~ (B(as) —u)M (as).

In general, we can write M'/U = M () for some v: ®+ — Ny. Choose s minimal with
v(as) > 0. Let U C V C M;_1(8) such that M;_1(8)/V = M(y). Then M;_1(5)/V =~
M () /Ms(v) ~ v(as)M (as), and we can apply the previous considerations. We see that
s > t,and if s = ¢, then y(a;) < B(a¢). By assumption, u-a; =dim M'/U =) vy(a;)a; =
> i>sv(ai)a;, with non-negative coefficients u and ~y(a;). We cannot have j < s, since
{M(ay),...,M(as_1)} and {M(as),..., M(a,,)} are linearly separated. This shows that
j > s > t. Now assume j = t, thus we have j = s = t. We must have v(a;) < u, and
thus we can write (u —~y(a¢))-a; = ), v(a;)a; with non-negative coefficients (u —(ay))
and y(a;). Now, we use that {M(ay),..., M(a;)} and {M(a;41),...,M(a,,)} are linearly

12



separated in order to conclude that u — vy(a;) = 0 and ~v(a;) = 0 for all ¢ > ¢. This shows
that M’ /U ~ v(a;) M (a;) and therefore our first considerations do apply.

Proof of Theorem 1: First of all, the sequence
M(a) = Mo(a) D My(a) 2 -+ D My (a) =0

shows that (we(a) ¢ M(a)) # 0.

Let as assume that (w,(a) ¢ M(B)) # 0 for some «, : &+ — Ny. Thus, we know
that there exists a sequence

M(B)=Mo2M; 2---2 M, =0

such that dim M;_,/M; = «a(a;)a;. Let 5(a;) = a(a;) for all i < j. By induction, we claim
that M; = M;((3) for i < j. Assume, we know that M; 1 = M;_1(f3). According to Lemma,
the only submodule Ml(: U) of Ml_l<ﬂ) with dim Ml_l(ﬁ)/MZ = ﬂ(al) is Mz = Ml(ﬁ)
In particular, we have M,_; = M;_1(3). Again, using Lemma, we see that we must have

a(aj) < f(a;), this shows that a > . Also, we see that for a = 3, we have M; = M;(3)
for all 4, thus (w,(a) ¢ M («)) = 1. This completes the proof.

5. The fundamental relations

Lemma. Let S;, S; be simple R-modules with
Ext'(S;,S;) =0, Ext'(S;,S;) =0.
Then we have
[Si] ¢ [S;] = [Sj] o [Sil-
The proof is obvious.

Lemma. Let k be a finite field of cardinality q. Let R be a k-algebra. Let S;, S; be
simple R-modules such that

EXt1<Si, Sz) = 0, Eth(Sj, SJ) = 0, Eth(SZ', S]) = ]{?, EXt1<Sj, Sz) = 0.
Then

[S,]°% o 1S;] — (g + 1)[S:i] © [S;] © [Si] + qr[S;] © [S;]°% =0,
[Si] © [8]°% — (qi + 1)[Si] © [Sj] © [Si] + qx[S5]°% o [Si] = 0.

13



Proof: Since Extl(Si, S;) = k, there exists an indecomposable module M of length
2 with top S; and socle S;. Taking into account the assumptions Ext'(S;,8;) = 0 =
Extl(Sj, Si), we see that there are just two isomorphism classes of modules of length three
with 2 composition factors of the form S; and one of the form S;, namely X = M & S;
and Y = 25; © §;. It is easy to check that

5172 ¢ [8;] = (ax + 1)[X]+(ax + 1)[Y],
[Si] o [Sj] o [Si] = [X]+(gx + D)[Y],
[S;] @ [8i]°% = (gx + 1)[Y].

This yields the first equality. Similarly, there are the two isomorphism classes of modules
with 2 composition factors of the form S; and one of the form S;, namely X' = M & S;
and Y’ = S; @ 2S,. It is easy to check that

[Si] © [S5]°% = (g + 1)[X']+(qr + D[Y],
[Si] o [Sj] o [Si] (X1 4+(ar + D[Y],
[S;1%% o 5] (g +1)[Y].

This yields the second equality.
As an immediate consequence we obtain:

Proposition. The elements [S;] of H(&) satisfy the following relations: Let i < j. If
there is no arrow from i to j, then

[Si] o [Sj] = [S;] @ [Si] = 0,
if there is an arrow © — j, then

[Si]°% o [S;] — (¢ + 1)[Si] © [S;] © [Si] + q[S;] © [Si]°* = 0,
[Si] © [55]°% = (g 4 1)[Si] o [S5] o [Si] + q[5;]°% © [Si] = 0.

More general, if we start with simple modules S;, S; satisfying

Eth(SZ', SZ) = 0, Eth(Sj, SJ) = 0,
Ext!(S;, S;) = k', Ext'(S;,S;) = 0.
for some ¢, then we obtain relations which are similar to the Jimbo-Drinfeld relations

which are used to define quantum groups for arbitrary symmetrizable generalized Cartan
matrices. See [R3].
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6. The twisted Hall algebra

In the ring A = Z[v,v~!], we denote the element v? by ¢. In this way, we have fixed
an embedding of Z[g] into A. Consider the A-module

Ho(A) = H(A) @14 A
In H,(A), we introduce a new multiplication * by

[Nl] * [NQ] — Udimk Hom(N1,N3)—dimy, Eth(N1,N2)[N1] o [NQ]

_ U(dim N;,dim N3) [Nl] o [NQ]

where Ny, Ny are A-modules.

The following assertion is rather obvious:

Proposition. The free A-module H*(&) with the multiplication * is an associative
algebra with 1, and Z"-graded.

We call H, (A) (with this multiplication) the twisted Hall algebra of A. For any element
x, we denote its t™® power with respect to the % multiplication by z*(®).

Using induction, one shows that

[NY] % [Na] # - - [Ny = w2y BmNodimNd 1 Nt o [N

Example. Assume there is an arrow ¢ — j. Then

Si]ﬂsi@sj]),

5151 = oo 5] = v (| 5

[55] = [Si] = [Si @ 53],
thus 5
Proposition. The elements [S;] of H. (5) satisfy the following relations:

Si1+ (5] = [85] + [Si] = 0 i aij =0,
(S [8)] = (0 + 0[S % 18,1+ 1S+ 1851+ [P =0 if @iy = -1,
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Proof: In case a;; = 0, we must have Ext'(S;, S;) =0= Extl(Sj, Si), and therefore
we have (dim S;,dim S;) = 0 = (dim 5, dim S;).

Now assume a;; = —1. First, consider the case when ¢ < j, thus dimy, Ext'(S;, S;) =
and Ext' (S}, S;) = 0. In this case, we have

(dim S;,dim §;) = -1, and (dimS;,dimS;) =0
Also, (dim S;,dim S;) = 1, thus

[Si]*®) x [S] = 071 [Si]°? o [S;],
[Si] * [Sj] * [Si] = [Si] © [Sj] o [Si],
[S;] % [S:]*®) = v[S;] ¢ [S4]°2,

[Si]*(2)*[5j]—(v+v D[Si] * [S;] * [Si] + [S;] * [Si]*(2)
TSI 0 [S)] = (v +vTh)[Si] o [S] o [Si] +v[S;] o [S]°?

= v (1820 S)] = (a+ VIS o [Sy] o [Si] + alS] o [S:]°?)
=0.
Similarly, if j < 4, so that dimy Ext'(S;, S;) = 1, and Ext'(S;, S;) = 0, then
i@ [8] = (01 [8i] * (8] 18] + [8] * S
oIS o [S] = (v + v T[S o [Si] o [Si] + v [Sy] 0 1S
v (a8 0 [S5] = (a + DS o [S5] 18] + [85] 0 [S:]°%)
=0.

Also in general, the fundamental relations in H(A) give rise to the Jimbo-Drinfeld
relations in M, (A), see [R6].

Divided powers. Given an indecomposable module X, let

X] 0 = o [X]),

(]!
we claim that this is an element of H,(A). Namely:
(X)) = (&) [x7°®
= o) P (q)[tX]
= ! D)X,

16



t

(since F(q) = v(2)[t]!). Thus

X)) = ﬁm*(w — =D x]

Using divided powers, we can rewrite the fundamental relations
[S:17® % [S5] = (v + 0™ )[Si] * [S] * [Si] + [S5] * [S:]*®) = 0

as follows:

(S0 5 [5) = 181 () [8:] + 1851 52 = 0

Recall that the vertices {1,2,...,n} of A are ordered in such a way that
Ext'(S;,S;) #0 implies i < j.
In case M is semisimple, say M = @ d;S(i), we have
[M] = [dnSp] 0+ 0 [diS1] = [dnSn] * -+ - [d154],
since for i > j we have Hom(d;S;, d;S;) = 0 = Ext'(d;S;, d;S;). Also, recall that
[£S;] = v T D8],

thus
[M] = [dpSp] % -+ % [d1S1] = v~ 2o (i1 [g 10edn) 4o [g)](xdd0),

The words w,(d), w.(a).

Recall that {1,2,...,n} is the set of vertices vertices of A, ordered in such a way that
Ext'(S;,S;) #0 implies i < j.

Also, recall that ®* = {ay,...,a,, } is the set of positive roots and we assume that the
ordering is chosen so that

Hom(Ma(a;), Ma(a;)) #0 implies 4 < j.

17



Using the multiplication *, we define for d € N} and a: & — Ny

W 4 (d) = [Sl]*(dl) ¥ oe .ok [Sn]*(dn)7

wy (@) = wy(a(ag)ay) - x wi(alan)an).

Lemma. We have

w, (@) =" Yw,(a), with r(a):= — dimy Ma(a) + dimg End (M ()

Proof: We have for d = " d;e;
we(d) =[] 5 -k [S,] M)
— 2o di=y [d1S1] * -+ * [dnSh]
_ gAY i G oo [dyS,]
= X D=[g, 8] 6 - 0 [dnSh],

= pX(D=ldly (d)

where we have used that Hom(d;S;,d;S;) = 0 for i > j and dimy Ext'(d;S;, d;S;) = d;d;
for i — j. We apply this for d = a(a;)a;. We note that

x(a(a;)a;) = dimg End(Mj (a(a;)a;)),

and
|a(ai)ai\ = dlIIl]C MA(oz(aZ-)aZ-),
therefore
w,(a(a;)a;) = pdimk End(Ma (a(ai)a;))—dimg MA(O‘(ai)ai)wo(a(ai)ai).
On the other hand,
wi(a) = wy(a(ar)ay) * - - x we(a(am)an)
= 0" w,(a(ar)ar) o - 0w, (a(am)am)

with

r = Z(a(ai)ai: a(aj)a;)
— Zdimk Hom(a(a;)Ma(a;), a(a;) My (a;))

= dimy, rad End(M (),

18



here we use that for i < j, we have Ext'(a(a;)Ma(a;), v(a;)Ma(a;)) = 0, and that for
i > j, we have Hom(a(a;) Ma(a;), a(a;)Ma(a;)) = 0. Altogether, we see that

w, (Oé) — Udimk rad End(MA(a))w*(

a(ar)ar) o ows(a(ay)ay,) = v ws(a),
with

r=r'+Y dim,End(M,(a(ay)a;)) — Y  dimy, My (a(a;)a;)
= dimy, End(My () — dimy, My ().
This completes the proof.

By definition, H.(A) is the free A-module with basis elements the isomorphism classes
[M] of the finite A-modules. It seems to be worthwhile to consider besides these elements
[M] also their multiples

<M> =y dimy M+dimy End(M) [M]

Example.

<§j. > =v T [ g} = o7 (0 [S:] # [S;] = [S;] * [Si]) = [Si] % [S5] — v [S)] * [Si].

Theorem 1’.

wi(a) = (Ma(@)) + > gap(Ma(B)) with gag € A

B<a

Proof: This is a direct consequence of Theorem 1.

Lemma.

(Ma()) = (afar)Ma(ar)) * - - ((am) Ma(am))

Proof:
(a(a1)Ma(a1) * -+ (aan) Ma(an))
= um 2 eledn R @ (ag) M an)] # -+ -+ [a(an) Ma (@)

— o~ L latead+ 1 am)? iy rad End(M(0) [ () M (a1)] © - -+ © (@) M ()]
v dimg M (a)+dimy End(M (@) [MA(Oé)]

= (M (@)

19



Example. Let us consider the explicit expression for w,(d), where d € N{.

wo(d) = Y v O(MA(B)) with §(8) := dimy Ext' (Ma(B3), MA(B)).
dim g=d

Proof: We have

w, (d) = XD~y (d) = XD -ldl Z [M(B)],
dim =d

since any module My () with dim 3 = d has a unique filtration of type w,(d). But

x(d) — |d| = dimy, End(M(3)) — dimy, Ext' (M, (8), Ma(5)) — |d]
= —0(8) +7(B).

Thus,

w,(d) = X 71N [y ()]

dim 8=d

= Z I RNECIYNE)

dim 8=d

= Y v O(M(B)).

dim 8=d

More generally, given o, 8: @™ — Ny, we have to consider

§(B;a) = dimy, Ext' (M (3), M(3)) — dimy Ext' (M (), M (a))
= dimy, End(M(«)) — dimy, End(M(3)),

of course, we have 6(3) = 6(3;0).

20



7. The isomorphism between U,(n,(A)) and H,(kA) for A a Dynkin quiver

Proposition. The elements [Si]*(t) with 1 < i < n and t > 1 generate H*(ﬁ) as a
A-algebra.

Proof: Let H’ be the A-algebra generated by the elements [S;]*®) with 1 <i < n and
t > 1. By induction on dim «, we show that (M (a)) belongs to H'.
If the support of o contains more than one element, then we use the formula

(Ma(a)) = (a(ar)Ma(a1)) * - -+ (@(am) Ma(am)).

By induction, all the elements («(a;) My (a;)) belong to H', thus also (Mx(«)), and thefore
[Mj(«)] belong to H'.

In case the support of « consists of the unique element a;, let d = «a(a;)a;, thus
My () = Ma(d), and we know that

we(d) = (Ma(a)) + Y v (MA(B)).
dim 8=d
B
The support of any § with dim § = d and 3 # « contains more than one element; as we
have seen, this implies that the corresponding elements (Mx()) belong to H’. Since also
w,(d) is in H’, we conclude that (M («)) belongs to H'.
Of course, with (M («)) also [Ma(«)] belongs to H’'. This completes the proof.

The fundamental relations show that we may define a ring homomorphism

—

n: Ug(ni(A)) — Ha(A)

by n(E;) = [S;]. The Lemma above shows that this map is surjective.

Theorem. The map 1: Uy(ny(A)) — H.(A) is an isomorphism.

We have to show that 7 is also injective. Let A” = Q[v,v™'], and U” = U/ (ny(A))
the A”-subalgebra of U, (n; (A)) generated by the elements Ei(t) with1 <i<nandt>0.
Also, let H”(A) = H.(A) @4 A”. Of course, the map 7 extends in a unique way to a

map 1" : U” — H”(A) (thus n"|Uq(ny(A)) = n). It remains to be seen that n” is injective.

—

Both U” and H//(A) are Z™-graded, and n” respects this graduation, thus, for d € Z",

—

there is the corresponding map nj: U] — H!/(A)q4, and we show that all these maps nj
are injective.

The A”-module Uy is torsionfree (since it is a submodule of U;(ny(A))) and finitely
generated. Since A” is a principal ideal domain, we see that U] is a free A”-module. In
order to calculate its rank, we consider the factor module UJ /(v — 1). As we have seen in
section 1, we can identify U] /(v — 1) with U(n4+(A))q, thus it has Q-dimension u(d). It
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—

follows that Uj is a free A”-module of rank u(d). On the other hand, H/(A)q is the free
A"-module with basis the set of maps a: ®+ — Nj satisfying dim« = d, thus it also is
a free A”-module of rank u(d). But any surjective map between free A”-modules of equal
rank has to be an isomorphism. This completes the proof.

In our further considerations, it sometimes will be useful to identify Uy(ny(A)) and

H*(&) via the map n. Under this identification, the generator E; corresponds to the
isomorphism class [S;].
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8. The canonical basis

For any pair 8 < « of maps ®T — Ny, Theorem 1’ gives an element g,3 € A. Let
Jaa = 1, and gop = 0 in the remaining cases. We may consider g = (gag)ap as a matrix
using some total ordering of the indices; it is the base change matrix between the basis
given by the elements (Mx(«)) and the basis given by the elements w,(a). Note that we
may assume that ¢ is a unipotent lower triangular matrix. Let g be obtained from g by
applying the automorphism ~, and ¢’ the inverse of §. Since w,(a) = wy(a), we see that

w*(a) = w*(oz) = Z@(MA(ﬁ)%

B

thus

(Mp(0)) = ghpwe(B) =D ghpgsy(Ma())-
B 8

Let us denote by h = g’ g the matrix product, then h is again a unipotent lower triangular
matrix, and h = A~ L.

There exists a unique unipotent lower triangular matrix u = (4a3)a,s With off-diagonal
entries in Z[v™!] without constant term, such that u = wh (see [L6], 7.10, or also [D], 1.2).

The desired basis is

C(a):= (Mp(a)) + Z Uas(Ma(B))  with wuag € v 1Zv™1]

B<a

this is called the canonical basis of H.(A) or also of U,(ny(A)).

Note that by construction the elements of the canonical basis are invariant under the
automorphism —, since

Cla) =) Tap(Ma(B))
B
= Uaghp, (Ma(y))

By
= uap(Ma(B)) = Cla).
B

23



In fact, the element C'(«) is characterized by the two properties

Cla) = (Mp(a)) + Y tap(Ma(B)) with uag € v 'Z[v™"],

B<a

and

In particular, any monomial will satisfy the second property, thus in order to show
that a monomial belongs to the canonical basis, we only have to verify the first property.

9. The case A,

We consider the quiver
1 — 2.

There are three positive roots a; = (1,0), a; = (1,1), az = (0,1), with corresponding
indecomposable modules S; = M(1,0), M(1,1), Sy = M (0, 1). (For simplicity, we sometimes
will denote the isomorphism class [S1] by 1, the isomorphism class [S3] by 2.)

The Auslander-Reiten quiver is of the form

M(1,1)
/! N
M(0,1) M(1,0)

Let
M(c,r,s) =cM(0,1)®rM(1,1) & sM(1,0),

note that M(c,r, s) has dimension vector (¢ + r,r + s), it is given by a linear map

M(e,r,s) = k*T" — K" = M(c, 1, 5),

of rank r (thus, s is the dimension of its kernel, ¢ the dimension of its cokernel). We may
visualize M (¢, r, s) as follows:

]_ Q-+« 0 QO-++-+-0
2 0--+0 ©0--:0



Let e(c,r, s) = dimg End M (¢, r, s), thus
elc,r,s) =c2 +ri+ s>+ cr+rs,
and for 0 <7 <,
e(c+i,r—i,s+1i)—ele,r,s) =i(i +c+s).
Claim: ‘
([eSa) o [(r + 8)S1] o [rSa] ¢ M(c+i,r —i,s+1)) = GST.

Proof: We take an r-dimensional subspace U of the (¢ 4 r)-dimensional space M(c,r, s)2
such that U contains a fixed (r — ¢)-dimensional subspace V' (the image of the given map
M(c+i,7 —i,s+1i)y — M(c+i,7 —1i,8+ i)2), thus in the (¢ 4 i)-dimensional space
M(c+i,r —i,s+1)2/V, we choose an arbitrary i-dimensional subspace.

Similarly:
([rS1] o [(c4+7)S2] o [sS1] ¢ M(c+i,7r—i,54+14)) = Gt

Proof: Here, we take an s-dimensional subspace in the (s + i)-dimensional kernel of the

map M(c+i,r—i,8+1i)y — M(c+i,7 — 4,5+ i)z, and the number of such subspaces is
GsTe.

It follows that

2]y 10ty 9(m) = N il FD G M (e 4,7 — 4, 5 + 1))
1=0

and

1070 (leAm) (o) = N " A G M (e 4,7 — i, 5+ 1))
1=0

Note that in both expressions, the coefficient of (M (c,r,s)) itself is 1. Consider the
coefficients of the summands with index i > 0. Since G has degree ic, we see that
for ¢ < s, the coefficient v~ (te+s) G helongs to v~!Z[v~!], similarly, for ¢ > s, the
coefficient v~ (iT¢+$) G+ belongs to v~ Z[v ™.

Let us consider the formulae in case ¢ = s. In this case, the right hand sides coincide,
since G5 = G5+, Thus, we see:

9(x5) 4 1 (<(r+5)) 4 9(+r) — (1) o(x(s+r)) , 1(+9)
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This shows the following:

Proposition. The canonical basis of Uy(ny(Az)) consists of the following elements:
take the monomials 2x¢) x 1T +8) 5 207) wyith ¢ < s and the monomials 1+7) x2(x(c+1)) ;1 (xs)
with ¢ > s.

10. The case Aj.

Consider the following quiver

/ \

o (0]

denote the source by 2, the sinks by 1 and 3, respectively.
The indecomposable representations have the following dimension vectors

a = (100),
b=(001),
c=(111),
d = (011),
e = (110),
f = (010).
The Auslander-Reiten quiver is of the form
a d
N / N\
¢ f
/ N /
b e

Consider the dimension vector (zyz), with positive integers x,y, z. Let a: ® — Ny
with

M(a)=M(c)® (x—1)M(a)® (y — 1)M(f) ® (2 — 1) M (b).
We want to determine C'(a).
Let 3,3, v: ® — Ny with

M(B) = M(d) ® xM(a) ® (y — 1)M(f) & (z = 1)M (b),
M(B) = M(e) ® (x — 1)M(a) © (y — 1)M(f) © 2M(b),
M(y) = xM(a) & yM(f) & zM(b)



We have

cla) =2 —ax+y* —y+2°2 -2 +1,
eB)=a?+y  —y+22—2+1,
«(B)=a*—z+y* —y+2"+1,
e(y) =a® +y* + 2
Thus, we see that
e(B) — () =z,
e(f) — e(a) = z,

On the other hand,

([S2] o [x51] ¢ [255] o [(y — 1)S2] ¢ (M(B))) =1

([S2] o [x51] o [2S3] o [(y — 1)Sa] ¢ (M(B))) =1

([S2] o [xS51] 0 [2S5] o [(y — 1)Sa] $ (M (7)) = G} _4.
It follows that

2% 10%) 5 302) y 2C: (=) — (M ()) + v~ (M(B)) + v (M (B)) + v~ T [y (M (7)).

The two coefficients v=%, v~% belong to v Z[v!]. In case z+2z > y, also the last coefficient

v~ @*+2)[y] belongs to v~ Z[v~']. Thus we see:

If x4+ 2>y, then C(a)=2x 16:) 4 3(+2) 4 9(+(y—1))

In case x + z < y, we use the following equality
vy = [y — 2 — 2] + v Ve + 2],
in order to see that

9 % 10:%) 4 3(x2) 4 o(x(y=1)) _ [y —z — 2]1(*90) % 30+2) 4 9(xy)
= (M(a)) + 07" (M(B)) + v (M(B)) + v [z + 2[(M(7))-

Note that the last coefficient v=¥[x + z] belongs to v~Z[v™1].

For x4z <y, OCfa)=2x10® 4302 4o0w=0) _ 1 _ 5 21102) 4 36:2) 4 90v)
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Lemma. If ¢ > a+d, ¢ > b+ e, then 1*(®) 5 3%(1) 4 2+(c) 4 1%(d) 4 3%(€) pelongs to the
canonical basis.

Proof: Let w, = 1*(@) x3*(b) 4 9%(c) 4 1*(d) *3*(6), and w, = 1°(0) ¢3°(0) 90(c) 10(d) ,30(e)
Let M = M(d, ¢, e) be the generic module with dimension vector (d, ¢, ), let S = aS1®bSs3.
Since d < a+d < ¢, we see that Hom(M, S1) = 0. Similarly, Since e < b+e < ¢, we see that
Hom(M, S3) = 0. Thus Hom(M, S) = 0. Let N = S & M. It follows that (w, ¢ N) = 1.

Now, consider any module N’ with (w ¢ N’) # 0. It follows that N’ maps surjectively
to S, and, since S is projective, S is a direct summand of N’. Let 7, j be maximal so that
S’ = (a+1)S1® (b+ 7)S3 is a direct summand of N, say N' = S" @& M’. Note that we
have Hom(M’,S”) = 0. Let M” be the generic module with dimension vector equal to the
dimension vector of M’. Let €, €, €’ be the dimension of the endomorphism rings of N, N’,
and N” = S" @& M" respectively. Then € > ¢”.

Note that

¢' = dimg End(S’) 4+ dimy End(M") + dimg Hom(S’, M")
=q(8") +q(M") + (5", M")
— (5 © M") — (M", 8"}
=q(a+d,c,b+e) + dim Ext' (M", 5"

where we first have used that Hom(M", S’) = 0, then that Ext'(S’, M") = 0, and finally
again that Hom(M"”,S") = 0.

Let us show that dimy, Ext'(M”,S") = (a+4)(c —d + i) + (b+ j)(c — e + j). Note
that M" has no direct summand of the form S; or S3, thus the number of indecomposable
direct summands in any direct decomposition is just dimy Mo = ¢, whereas the number of
indecomposable direct summands with dimension vector (111) or (110) is dimg M; = d —1.
Thus, the number of indecomposable direct summands with dimension vector (011) or (010)
is ¢ — d +i. It follows that dimy, Ext'(M”,S;) = ¢ — d + i. Similarly, dim; Ext'(M", Sy) =
c—e+i.

As a consequence,

€' = qla+d,c,b+ e) + dimy, Ext' (M", ")
q(atd,c,b+e)+(ati)(c—d+i)+(b+j)(c—e+]).

In particular, we also see that
e=qla+d,c,b+e)+alc—d)+blc—e).
Therefore,

€ —e>"—e=(a+i)c—d+i)+(b+j)c—e+j)—alc—d)—blc—e)
=ilatc—d+i)+jb+c—d+1i)>i(2a+1)+j(20+ j),
since we assume that ¢ > a + d, and ¢ > b+ d. In particular, in case (i,7) # (0,0), we see

that
€ —e > 2(ai + bj).
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On the other hand, we clearly have
(wé N') =Gyt
and this is a polynomial of degree 2(ai + bj). The coefficient of w, = 1*(®) % 3*(0) 5 2#(c) &

1% 5 3%() at (N') is v~ T¢G@HGYH | thus it belongs to v~ 'Z[v~!]. This completes the
proof.
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