# The Hall Algebra Approach to Quantum Groups

# **Claus Michael Ringel**

# E.L.A.M. LECTURES 1993

# Table of contents

Introduction

- 0. Preliminaries
- 1. The definition of  $U_q(\mathbf{n}_+(\Delta))$
- 2. Rings and modules, path algebras of quivers
- 3. The Hall algebra of a finitary ring
- 4. Loewy series
- 5. The fundamental relations
- 6. The twisted Hall algebra
- 7. The isomorphism between  $U_q(\mathbf{n}_+(\Delta))$  and  $\mathcal{H}_*(k\vec{\Delta})$  for  $\vec{\Delta}$  a Dynkin quiver
- 8. The canonical basis
- 9. The case  $\mathbb{A}_2$
- 10. The case  $\mathbb{A}_3$ References

## Introduction

Given any Dynkin diagram  $\Delta$  of type  $\mathbb{A}_n$ ,  $\mathbb{D}_n$ ,  $\mathbb{E}_6$ ,  $\mathbb{E}_7$ ,  $\mathbb{E}_8$ , we may endow its edges with an orientation; we obtain in this way a *quiver* (an oriented graph)  $\vec{\Delta}$ , and the corresponding path algebra  $k\vec{\Delta}$ , where k is a field. We may consider the representations of  $\vec{\Delta}$  over k, or, equivalently, the  $k\vec{\Delta}$ -modules. In case k is a finite field, one may define a multiplication on the free abelian group with basis the isomorphism classes of  $k\vec{\Delta}$ -modules by counting filtrations of modules; the ring obtained in this way is called the Hall algebra  $\mathcal{H}(k\vec{\Delta})$ .

We denote by  $\mathbb{Z}[v]$  the polynomial ring in one variable v, and we set  $q = v^2$ . Also, let  $A = \mathbb{Z}[v, v^{-1}]$ .

The free  $\mathbb{Z}[q]$ -module  $\mathcal{H}(\vec{\Delta})$  with basis the isomorphism classes of  $k\vec{\Delta}$ -modules can be endowed with a multiplication so that  $\mathcal{H}(\vec{\Delta})/(q - |k|) \simeq \mathcal{H}(k\vec{\Delta})$ , for any finite field k of cardinality |k|, thus  $\mathcal{H}(\vec{\Delta})$  may be called the *generic* Hall algebra. The generic Hall algebra satisfies relations which are very similar to the ones used by Jimbo and Drinfeld in order to define a q-deformation  $U_q(\mathbf{n}_+(\Delta))$  of the Kostant  $\mathbb{Z}$ -form  $U(\mathbf{n}_+(\Delta))$ . Here,  $\mathbf{g}(\Delta) = \mathbf{n}_-(\Delta) \oplus \mathbf{h}(\Delta) \oplus \mathbf{n}_+(\Delta)$  is a triangular decomposition of the complex simple Lie algebra  $\mathbf{g}(\Delta)$  of type  $\Delta$ . Note that  $U_q(\mathbf{n}_+(\Delta))$  is an A-algebra, and we can modify the multiplication of  $\mathcal{H}(\Delta) \otimes_{\mathbb{Z}[q]} A$  using the Euler characteristic on the Grothendieck group  $K_0(k\vec{\Delta})$  in order to obtain the *twisted* Hall algebra  $\mathcal{H}_*(\vec{\Delta})$  with

$$U_q(\mathbf{n}_+(\Delta)) \simeq \mathcal{H}_*(\vec{\Delta})$$

What is the advantage of the Hall algebra approach? Assume we have identified  $U_q(\mathbf{n}_+(\Delta))$  with  $\mathcal{H}_*(\vec{\Delta})$ . Note that the ring  $U_q(\mathbf{n}_+(\Delta))$  is defined by generators and relations, whereas  $\mathcal{H}_*(\vec{\Delta})$  is a free A-module with a prescribed basis.

The presentation of  $U_q(\mathbf{n}_+(\Delta))$  gives us a presentation for the (twisted) Hall algebra, and this may be interpreted as follows: the Jimbo-Drinfeld relations are the universal relations for comparing the numbers of composition series of modules over algebras with a prescribed quiver.

On the other hand, in  $\mathcal{H}_*(\Delta)$ , there is the prescribed basis given by the  $k\Delta$ -modules, and we obtain in this way a basis for  $U_q(\mathbf{n}_+(\Delta))$ , thus normal forms for its elements, and this makes calculations in  $U_q(\mathbf{n}_+(\Delta))$  easier. Also, the basis elements themselves gain more importance, more flavour. Since they may be interpreted as modules, one can discuss about their module theoretical, homological or geometrical properties: whether they are indecomposable, or multiplicityfree and so on.

The basis of  $U_q(\mathbf{n}_+(\Delta))$  obtained in this way depends on the chosen orientation of  $\Delta$ , and Lusztig has proposed a base change which leads to a basis which is independent of such a choice and which he calls the *canonical* basis. This basis also was constructed by Kashiwara and called the *crystal* basis of  $U_q(\mathbf{n}_+(\Delta))$ . Here is the list of the Dynkin diagrams  $\mathbb{A}_n, \mathbb{D}_n, \mathbb{E}_6, \mathbb{E}_7, \mathbb{E}_8$ :



## 0. Preliminaries

Consider the following polynomials in a variable T, where  $n, m \in \mathbb{N}_0$  and  $m \leq n$ 

$$F^{n}(T) := \frac{(T^{n} - 1)(T^{n-1} - 1)\cdots(T - 1)}{(T - 1)^{n}},$$
$$G^{n}_{m}(T) := \frac{(T^{n} - 1)(T^{n-1} - 1)\cdots(T^{n-m+1} - 1)}{(T^{m} - 1)(T^{m-1} - 1)\cdots(T - 1)}$$

Note that the degree of the polynomial  $F^n(T)$  is  $\binom{n}{2}$ , the degree of  $G^n_m(T)$  is m(n-m).

Let k be a finite field, denote its cardinality by  $q_k = |k|$ . The cardinality of the set of complete flags in  $k^n$  is just  $F^n(q_k)$ , and for  $0 \le m \le n$ , the number of m-dimensional subspaces of  $k^n$  is  $G^n_m(q_k)$ .

Let  $A' = \mathbb{Q}(v)$  be the rational function field over  $\mathbb{Q}$  in one variable v, and let us consider its subring  $A = \mathbb{Z}[v, v^{-1}]$ . We denote by  $\overline{}: A' \to A'$  the field automorphism with  $\overline{v} = v^{-1}$ ; it has order 2, and it sends A onto itself.

We set  $q = v^2$ ; we will have to deal with  $F^n(q)$  and  $G^n_m(q)$ . We define

$$[n] := \frac{v^n - v^{-n}}{v - v^{-1}} = v^{n-1} + v^{n-3} + \dots + v^{-n+1},$$

thus [0] = 0, [1] = 1,  $[2] = v + v^{-1}$ ,  $[3] = v^2 + 1 + v^{-2}$ , and so on. Let

$$\begin{split} [n]! &:= \prod_{m=1}^{n} [m], \\ \begin{bmatrix} n \\ m \end{bmatrix} &:= \frac{[n]!}{[m]![n-m]!} \quad \text{where} \quad 0 \leq m \leq n. \end{split}$$

There are the following identities:

$$[n] = v^{-n+1} \frac{q^n - 1}{q - 1}$$
$$[n]! = v^{-\binom{n}{2}} F^n(q)$$
$$\binom{n}{m} = v^{-m(n-m)} G^n_m(q)$$

# **1.** The definition of $U_q(\mathbf{n}_+(\Delta))$

Let  $\Delta = (a_{ij})_{ij}$  be a symmetric  $(n \times n)$ -matrix with diagonal entries  $a_{ii} = 2$ , and with off-diagonal entries 0 and -1. (Such a matrix is called a *simply-laced generalized Cartan matrix*.)

Note that  $\Delta$  defines a graph with *n* vertices labelled  $1, 2, \ldots, n$  with edges  $\{i, j\}$  provided  $a_{ij} = -1$ . Often we will not need the labels of the vertices, then we will present the vertices by small dots  $\circ$ . Of particular interest will be the Dynkin diagrams  $\mathbb{A}_n$ ,  $\mathbb{D}_n$ ,  $\mathbb{E}_6$ ,  $\mathbb{E}_7$ ,  $\mathbb{E}_8$ .

Given  $\Delta$ , we define  $U'_q(\mathbf{n}_+(\Delta))$  as the A'-algebra with generators  $E_1, \ldots, E_n$  and relations

$$E_i E_j - E_j E_i = 0 \quad \text{if} \quad a_{ij} = 0,$$
  
$$E_i^2 E_j - (v + v^{-1}) E_i E_j E_i + E_j E_i^2 = 0 \quad \text{if} \quad a_{ij} = -1.$$

We denote

$$E_i^{(m)} := \frac{1}{[m]!} E_i^m.$$

Let  $U_q(\mathbf{n}_+(\Delta))$  be the A-subalgebra of  $U'_q(\mathbf{n}_+(\Delta))$  generated by the elements  $E_i^{(m)}$  with  $1 \leq i \leq n$  and  $m \geq 0$ .

We denote by  $\overline{}: U'_q(\mathbf{n}_+(\Delta)) \to U'_q(\mathbf{n}_+(\Delta))$  the automorphism with  $\overline{v} = v^{-1}$  and  $\overline{E_i} = E_i$  for all i.

We denote by  $\mathbb{Z}^n$  the free abelian group of rank *n* with basis  $\mathbf{e}_1, \ldots, \mathbf{e}_n$ . Given an element  $\mathbf{d} \in \mathbb{Z}^n$ , say  $\mathbf{d} = \sum d_i \mathbf{e}_i$ , let  $|\mathbf{d}| = \sum d_i$ .

Note that the rings  $U_q(\mathbf{n}_+(\Delta))$  and  $U'_q(\mathbf{n}_+(\Delta))$  are  $\mathbb{Z}^n$ -graded, where we assign to  $E_i$  the degree  $\mathbf{e}_i$ . Given  $\mathbf{d} \in \mathbb{Z}^n$ , we denote by  $U_q(\mathbf{n}_+(\Delta))_{\mathbf{d}}$  the set of homogeneous elements of degree  $\mathbf{d}$ , thus

$$U_q(\mathbf{n}_+(\Delta)) = \bigoplus_{\mathbf{d}} U_q(\mathbf{n}_+(\Delta))_{\mathbf{d}}$$

We will have to deal with maps  $\alpha \colon \Phi^+ \to \mathbb{N}_0$ . Given such a map  $\alpha$ , we set

$$\dim \alpha := \sum_{\mathbf{a}} \alpha(\mathbf{a}) \mathbf{a} \in \mathbb{Z}^n$$

Let  $\Delta$  be of the form  $\mathbb{A}_n$ ,  $\mathbb{D}_n$ ,  $\mathbb{E}_6$ ,  $\mathbb{E}_7$ , or  $\mathbb{E}_8$ . We denote by  $\Phi = \Phi(\Delta)$  the corresponding root system. We choose a basis  $\mathbf{e}_1, \ldots, \mathbf{e}_n$  of the root system, and denote by  $\Phi^+$  the set of positive roots (with respect to this choice). The choice of the basis yields a fixed embedding of  $\Phi$  into  $\mathbb{Z}^n$ .

and call it its *dimension vector*. We denote by  $u(\mathbf{d})$  for  $\mathbf{d} \in \mathbb{Z}^n$  the number of maps  $\alpha \colon \Phi^+ \to \mathbb{N}_0$  with  $\dim \alpha = \mathbf{d}$ .

Consider the Q-Lie-algebra  $\mathbf{n}_+(\Delta)$  generated by  $E_1, \ldots, E_n$  with relations

$$[E_i, E_j] = 0 \quad \text{if} \quad a_{ij} = 0, \\ [E_i, [E_i, E_j]] = 0 \quad \text{if} \quad a_{ij} = -1.$$

(Usually, one deals with the corresponding  $\mathbb{C}$ -algebra  $\mathbf{n}_+(\Delta) \otimes_{\mathbb{Q}} \mathbb{C}$ ; here, it will be more convenient to consider the mentioned  $\mathbb{Q}$ -form.)

The universal enveloping algebra  $U(\mathbf{n}_{+}(\Delta))$  is the Q-algebra generated by the elements  $E_1, \ldots, E_n$  with relations

$$[E_i, E_j] = 0 \quad \text{if} \quad a_{ij} = 0, [E_i, [E_i, E_j]] = 0 \quad \text{if} \quad a_{ij} = -1,$$

thus we see:

**Proposition.** We have

$$U(\mathbf{n}_{+}(\Delta)) = U_q(\mathbf{n}_{+}(\Delta)) \otimes_A \mathbb{Q}[v, v^{-1}]/(v-1).$$

Of course,  $\mathbf{n}_{+}(\Delta)$  and  $U(\mathbf{n}_{+}(\Delta))$  both are  $\mathbb{Z}^{n}$ -graded, where again we assign to  $E_{i}$  the degree  $\mathbf{e}_{i}$ . For any non-zero homogeneous element L of  $\mathbf{n}_{+}(\Delta)$ , we denote by  $\dim L$  its degree. It is well-known that  $\mathbf{n}_{+}(\Delta)$  has a basis  $E_{\mathbf{a}}$  indexed by the positive roots, such that  $\dim E_{\mathbf{a}} = \mathbf{a}$ . As a consequence, we obtain the following consequence:

**Proposition.** The  $\mathbb{Q}$ -dimension of  $U(\mathbf{n}_+(\Delta))_{\mathbf{d}}$  is  $u(\mathbf{d})$ .

Proof: Use the theorem of Poincaré-Birkhoff-Witt.

### 2. Rings and modules, path algebras of quivers

#### Rings and modules.

Given a ring R, the R-modules which we will consider will be finitely generated right R-modules. The category of finitely generated right R-modules will be denoted by  $\mod R$ .

Let R be a ring. The direct sum of two R-modules  $M_1, M_2$  will be denoted by  $M_1 \oplus M_2$ , the direct sum of t copies of M will be denoted by tM. The zero module will be denoted by  $0_R$  or just by 0.

We write  $M \simeq M'$ , in case the modules M, M' are isomorphic, the isomorphism class of M will be denoted by [M]. For any module M, we denote by s(M) the number of isomorphism classes of indecomposable direct summands of M.

Let R be a finite dimensional algebra over some field k. Let  $n = s(R_R)$ , thus n is the rank of the Grothendieck group  $K_0(R)$  of all finite length modules modulo split exact sequences. Given such a module M, we denote its equivalence class in  $K_0(R)$  by  $\dim M$ . There are precisely n isomorphism classes of simple R-modules  $S_1, \ldots, S_n$ , and the elements  $\mathbf{e}_i = \dim S_i$  form a basis of  $K_0(R)$ . If we denote the Jordan-Hölder multiplicity of  $S_i$  in M by  $[M:S_i]$ , then  $\dim M = \sum_i [M:S_i] \mathbf{e}_i$ .

We denote by supp M the support of M, it is the set of simple modules S with  $[M:S] \neq 0$ . (In case the simple modules are indexed by the vertices of a quiver, we also will consider supp M as a subset of the set of vertices of this quiver).

#### Path algebras of quivers

A quiver  $\vec{\Delta} = (\vec{\Delta}_0, \vec{\Delta}_1, s, t)$  is given by two sets  $\vec{\Delta}_0, \vec{\Delta}_1$ , and two maps  $s, t: \vec{\Delta}_1 \to \vec{\Delta}_0$ . The elements of  $\vec{\Delta}_0$  are called *vertices*, the elements of  $\vec{\Delta}_1$  are called *arrows*; given  $f \in \vec{\Delta}_1$ , then we say that f starts in s(f) and ends in t(f), and we write  $f: s(f) \to t(f)$ . An arrow f with s(f) = t(f) is called a *loop*, we always will assume that  $\vec{\Delta}$  has no loops.

We denote by  $k\vec{\Delta}$  the path algebra of the quiver  $\vec{\Delta}$  over the field k. We will not distinguish between representations of  $\vec{\Delta}$  over k and (right)  $k\vec{\Delta}$ -modules. Recall that a representation M of  $\vec{\Delta}$  over k attaches to each vertex x of  $\vec{\Delta}$  a vector space  $M_x$  over k, and to each arrow  $f: s(f) \to t(f)$  a k-linear map  $M_{s(f)} \to M_{t(f)}$ . For any vertex x of  $\vec{\Delta}$ , we can define a simple  $k\vec{\Delta}$ -module S(x) by attaching the one-dimensional k-space k to the vertex x, the zero space to the remaining vertices, and the zero map to all arrows. We stress that the number of arrows  $x \to y$  is equal to  $\dim_k \operatorname{Ext}^1(S(x), S(y))$ . In case there is precisely one arrow starting in x and ending in y, there exists up to isomorphism a unique indecomposable representation of length 2 with top S(x) and socle S(y), we denote it by S(x)S(y). In case  $\vec{\Delta}$  has as vertex set the set  $\{1, 2, \ldots, n\}$ , we define a corresponding  $(n \times n)$ matrix  $\Delta = (a_{ij})_{ij}$  as follows: let  $a_{ii} = 2$ , for all i, and let  $a_{ij}$  be the number of arrows between i and j (take the arrows  $i \to j$  as well as the arrows  $j \to i$ ). In case there is at most one arrow between i and j we obtain a matrix as considered in section 1, and then we will call  $\Delta$  the underlying graph of  $\vec{\Delta}$ .

Let us assume that  $\vec{\Delta}$  is a finite quiver with n vertices, and let  $\Lambda = k\vec{\Delta}$ . We assume in addition that  $\vec{\Delta}$  has no cyclic paths (a cyclic path is a path of length at least 1 starting and ending in the same vertex). As a consequence,  $\vec{\Delta}$  is finite-dimensional, and there are precisely n simple  $\Lambda$ -modules, namely the modules S(x), with x a vertex. Of course, if M is a representation of  $\vec{\Delta}$ , then  $\dim M = \sum_{x} (\dim_k M_x) \dim S(x)$  in the Grothendieck group  $K_0(\Lambda)$ .

It is easy to see that  $\Lambda$  is hereditary, thus we can define on  $K_0(\Lambda)$  a bilinear form via

 $\langle \operatorname{\mathbf{dim}} X, \operatorname{\mathbf{dim}} Y \rangle = \dim_k \operatorname{Hom}(X, Y) - \dim_k \operatorname{Ext}^1(X, Y)$ 

where X, Y are  $\Lambda$ -modules of finite length. The corresponding quadratic form will be denoted by  $\chi$ ; thus for  $\mathbf{d} \in K_0(\Lambda)$ , we have  $\chi(\mathbf{d}) = \langle \mathbf{d}, \mathbf{d} \rangle$ . Of course, we have the following formula for all i, j

$$a_{ij} = \langle \dim S_i, \dim S_j \rangle + \langle \dim S_j, \dim S_i \rangle$$

#### Dynkin quivers

A quiver  $\Delta$  whose underlying graph is of the form  $\mathbb{A}_n$ ,  $\mathbb{D}_n$ ,  $\mathbb{E}_6$ ,  $\mathbb{E}_7$ ,  $\mathbb{E}_8$  will be called a *Dynkin quiver*. We recall some well-known results:

**Gabriel's Theorem.** Let  $\vec{\Delta}$  be a Dynkin quiver. The map dim yields a bijection between the isomorphism classes of the indecomposable  $k\vec{\Delta}$ -modules and the positive roots for  $\Delta$ .

Let  $\vec{\Delta}$  be a Dynkin quiver, and let  $\Lambda = k\vec{\Delta}$ . Given a positive root **a** for  $\Delta$ , we denote by  $M(\mathbf{a})$  or  $M_{\Lambda}(\mathbf{a})$  the corresponding  $\Lambda$ -module; thus  $M(\mathbf{a}) = M_{\Lambda}(\mathbf{a})$  is an indecomposable  $\Lambda$ -module with **dim**  $M(\mathbf{a}) = \mathbf{a}$ . Similarly, given a map  $\alpha : \Phi^+ \to \mathbb{N}_0$ , we denote by  $M(\alpha)$ we denote the  $\Lambda$ -module

$$M(\alpha) = M_{\Lambda}(\alpha) = \bigoplus_{\mathbf{a}} \alpha(\mathbf{a}) M(\mathbf{a}).$$

We obtain in this way a bijection between the maps  $\Phi^+ \to \mathbb{N}_0$  and the isomorphism classes of  $\Lambda$ -modules of finite length (according to the Krull-Schmidt theorem).

A finite dimensional k-algebra R is called *representation directed* provided there is only a finite number of (isomorphism classes of) indecomposable R-modules, say  $M_1, \ldots, M_m$ , and they can be indexed in such a way that  $\operatorname{Hom}(M_i, M_j) = 0$  for i > j. **Proposition.** Let  $\vec{\Delta}$  be a Dynkin quiver. Then  $k\vec{\Delta}$  is representation directed.

Let  $\Phi^+ = \{ \mathbf{a}_1, \dots, \mathbf{a}_m \}$ , we will assume that the ordering is chosen so that

Hom
$$(M_{\Lambda}(\mathbf{a}_i), M_{\Lambda}(\mathbf{a}_j)) \neq 0$$
 implies  $i \leq j$ .

The subcategories C, D of mod  $\Lambda$  are said to be *linearly separated* provided for modules C in add C, and D in add D with  $\dim C = \dim D$ , we have C = 0 = D.

**Lemma.** The subcategories  $\operatorname{add}\{M(\mathbf{a}_1), \ldots, M(\mathbf{a}_{s-1})\}\ and \operatorname{add}\{M(\mathbf{a}_s), \ldots, M(\mathbf{a}_m)\}\$ are linearly separated.

#### 3. The Hall algebra of a finitary ring.

Given a ring R, we will be interested in the finite R-modules; here a module M will be said to be *finite* provided the cardinality of its underlying set is finite (not just that M is of finite length). Of course, for many rings the only finite R-module will be the zero-module, but for finite rings, in particular for finite-dimensional algebras over finite fields, all finite length modules are finite modules. A ring R will be said to be *finitary* provided the group  $\operatorname{Ext}^1(S_1, S_2)$  is finite, for all finite simple R-modules  $S_1, S_2$ . (For a discussion of finitary rings, see [R1]).

We assume that R is a finitary ring. We mainly will consider path algebras of finite quivers over finite fields; of course, such a ring is finitary.

Given finite *R*-modules  $N_1, N_2, \ldots, N_t$  and *M*, let  $\mathcal{F}_{N_1,\ldots,N_t}^M$  be the set of filtrations

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_t = 0$$

such that  $M_{i-1}/M_i$  is isomorphic to  $N_i$ , for all  $1 \le i \le t$ . The cardinality of  $\mathcal{F}_{N_1,\ldots,N_t}^M$  will be denoted by  $F_{N_1,\ldots,N_t}^M$  or also by  $\langle N_1 N_2 \ldots N_t \notin M \rangle$ . (These cardinalities are finite, since we assume that R is finitary.)

Let  $\mathcal{H}(R)$  be the free abelian group with basis the set of isomorphism classes [X] of finite *R*-modules, with a multiplication which we denote by the diamond sign  $\diamond$ 

$$[N_1] \diamond [N_2] := \sum_{[M]} F^M_{N_1 N_2}[M] = \sum_{[M]} \langle N_1 N_2 \phi M \rangle [M].$$

Given an element  $x \in \mathcal{H}(R)$ , we denote its  $t^{\text{th}}$  power with respect to the diamond product by  $x^{\diamond t}$ .

**Proposition.**  $\mathcal{H}(R)$  is an associative ring with 1.

Proof: The associativity follows from the fact that

$$([N_1] \diamond [N_2]) \diamond [N_3] = \sum_{[M]} F^M_{N_1 N_2 N_3}[M] = [N_1] \diamond ([N_2] \diamond [N_3]),$$

The unit element is just  $[0_R]$ , with  $0_R$  the zero module.

In case R is a finite-dimensional algebra over some finite field, we assign to the isomorphism class [M] the degree  $\dim M \in \mathbb{Z}^n$ . Let  $\mathcal{H}(R)_{\mathbf{d}}$  be the free abelian group with basis the set of isomorphism classes [M] of finite R-modules with  $\dim M = \mathbf{d}$ .

**Proposition.**  $\mathcal{H}(R) = \bigoplus_{\mathbf{d}} \mathcal{H}(R)_{\mathbf{d}}$  is a  $\mathbb{Z}^n$ -graded ring.

Proof: We only have to observe that for  $F_{N_1N_2}^M \neq 0$ , we have  $\dim M = \dim N_1 + \dim N_2$ .

From now on, let  $\vec{\Delta}$  be a Dynkin quiver, let k be a field. We consider  $\Lambda = k\vec{\Delta}$ . Let  $\{1, 2, \ldots, n\}$  be the vertices of  $\vec{\Delta}$ , ordered in such a way that

 $\operatorname{Ext}^1(S_i, S_j) \neq 0$  implies i < j.

Let  $\Phi^+ = \{ \mathbf{a}_1, \dots, \mathbf{a}_m \}$ , and we will assume that the ordering is chosen so that

Hom $(M_{\Lambda}(\mathbf{a}_i), M_{\Lambda}(\mathbf{a}_j)) \neq 0$  implies  $i \leq j$ .

#### Hall polynomials

**Proposition.** Let  $\alpha, \beta, \gamma \colon \Phi^+ \to \mathbb{N}_0$ . There exists a polynomial  $\phi^{\beta}_{\alpha,\gamma}(q) \in \mathbb{Z}[q]$  such that for any finite field k of cardinality  $q_k$ 

$$F_{M_{\Lambda}(\alpha)M_{\Lambda}(\gamma)}^{M_{\Lambda}(\beta)} = \phi_{\alpha,\gamma}^{\beta}(q_k)$$

For a proof, see [R1], Theorem 1, p.439.

The polynomials which arise in this way are called *Hall polynomials*.

Let  $\vec{\Delta}$  be a Dynkin quiver. Let  $\mathcal{H}(\vec{\Delta})$  be the free  $\mathbb{Z}[q]$ -module with basis the set of maps  $\Phi^+ \to \mathbb{N}_0$ . On  $\mathcal{H}(\vec{\Delta})$ , we define a multiplication by

$$\alpha_1 \diamond \alpha_2 := \sum_{\beta} \phi^{\beta}_{\alpha_1 \alpha_2}(q) \cdot \beta$$

**Proposition.**  $\mathcal{H}(\vec{\Delta})$  is an associative ring with 1, it is  $\mathbb{Z}^n$ -graded (the degree of  $\alpha \colon \Phi^+ \to \mathbb{N}_0$  being  $\dim \alpha$ ), and for any finite field k of cardinality  $q_k$ , the map  $\alpha \mapsto [M_{k\vec{\Delta}}(\alpha)]$  yields an isomorphism

$$\mathcal{H}(\vec{\Delta})/(q-q_k) \simeq \mathcal{H}(k\vec{\Delta}).$$

#### 4. Loewy series.

For  $\mathbf{d} = (d_1, \ldots, d_n) \in \mathbb{N}_0^n$ , let

$$w_{\diamond}(\mathbf{d}) := [d_1 S_1] \diamond \cdots \diamond [d_n S_n]$$

Note that the element  $w_{\diamond}(\mathbf{d})$  only depends on the semisimple module  $\bigoplus d_i S_i$  and not on the particular chosen ordering of the vertices of  $\vec{\Delta}$ , since  $[d_i S_i] \diamond [d_j S_j] = [d_j S_j] \diamond [d_i S_i]$  in case  $\operatorname{Ext}^1(S_i, S_j) = 0 = \operatorname{Ext}^1(S_j, S_i)$ .

Remark: Recall that the vertices  $\{1, 2, ..., n\}$  of  $\vec{\Delta}$  are ordered in such a way that  $\text{Ext}^1(S_i, S_j) \neq 0$  implies that i < j. Usually, there will be several possible orderings, for example in the case of  $\mathbb{A}_3$  with orientation



we have to take 1 = y but we may take 2 = x, 3 = z or else 2 = z, 3 = x. All possible orderings are obtained from each other by a finite sequence of transpositions (i, i + 1) in case  $\text{Ext}^1(S_i, S_{i+1}) = 0 = \text{Ext}^1(S_{i+1}, S_i)$ .

**Lemma.** We have  $\langle w_{\diamond}(\mathbf{d}) \diamond M \rangle \neq 0$  if and only if  $\dim M = \mathbf{d}$ ; and, in this case,  $\langle w_{\diamond}(\mathbf{d}) \diamond M \rangle = 1$ .

The proof is obvious.

Given a map  $\alpha \colon \Phi^+ \to \mathbb{N}_0$ , let

$$w_{\diamond}(\alpha) := w_{\diamond}(\alpha(\mathbf{a}_1)\mathbf{a}_1) \diamond \cdots \diamond w_{\diamond}(\alpha(\mathbf{a}_m)\mathbf{a}_m).$$

The element  $w_{\diamond}(\alpha)$  does not depend on the chosen ordering of the positive roots.

**Example.** Consider the case  $\mathbb{A}_2$ . Thus, there is given a hereditary k-algebra  $\Lambda$  with two simple modules  $S_1, S_2$  such that  $\operatorname{Ext}^1(S_1, S_2) = k$ . There is a unique indecomposable module of length 2, and we denote it by *I*. There are three positive roots  $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ , where  $\mathbf{a}_2 = \mathbf{a}_1 + \mathbf{a}_3$ . If we assume that  $S_2 = M_{\Lambda}(\mathbf{a}_1)$  and  $S_1 = M_{\Lambda}(\mathbf{a}_3)$ , then the ordering is as desired. For  $\alpha: \Phi^+ \to \mathbb{N}_0$ , we obtain the following element

$$w_{\diamond}(\alpha) = w_{\diamond}(\alpha(\mathbf{a}_{1})\mathbf{a}_{1}) \diamond w_{\diamond}(\alpha(\mathbf{a}_{2})\mathbf{a}_{2}) \diamond w_{\diamond}(\alpha(\mathbf{a}_{3})\mathbf{a}_{3})$$
  
=  $[\alpha(\mathbf{a}_{1})S_{2}] \diamond [\alpha(\mathbf{a}_{2})S_{1}] \diamond [\alpha(\mathbf{a}_{2})S_{2}] \diamond [\alpha(\mathbf{a}_{3})S_{1}],$ 

the corresponding  $\Lambda$ -module is  $M_{\Lambda}(\alpha) = \alpha(\mathbf{a}_1)S_2 \oplus \alpha(\mathbf{a}_2)I \oplus \alpha(\mathbf{a}_3)S_1$ .

**Lemma.** We have  $\langle w_{\diamond}(\alpha) \phi M \rangle \neq 0$  if and only if there exists a filtration

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_m = 0$$

such that  $\dim M_{i-1}/M_i = \alpha(\mathbf{a}_i)\mathbf{a}_i$ .

The proof is obvious.

The set of maps  $\Phi^+ \to \mathbb{N}_0$  will be ordered using the opposite of the lexicographical ordering: Given  $\alpha, \beta: \Phi^+ \to \mathbb{N}_0$ , we have  $\beta < \alpha$  if and only if there exists some  $1 \le j \le m$  such that  $\beta(\mathbf{a}_i) = \alpha(\mathbf{a}_i)$  for all i < j, whereas  $\beta(\mathbf{a}_j) > \alpha(\mathbf{a}_j)$ .

**Theorem 1.** Let  $\alpha \colon \Phi^+ \to \mathbb{N}_0$ . Then  $\langle w_\diamond(\alpha) \diamond M(\alpha) \rangle = 1$ . On the other hand, given a module M with  $\langle w_\diamond(\alpha) \diamond M \rangle \neq 0$ , then  $M \simeq M(\beta)$  for some  $\beta \leq \alpha$ .

Before we present the proof, we need some preliminary considerations. Given  $\alpha \colon \Phi^+ \to \mathbb{N}_0$ , let us define for  $0 \leq t \leq m$ , the submodule  $M_t(\alpha) = \bigoplus_{i>t} \alpha(\mathbf{a}_i) M_{\Lambda}(\mathbf{a}_i)$  of  $M(\alpha)$ . Thus we obtain a sequence of submodules

$$M(\alpha) = M_0(\alpha) \supseteq M_1(\alpha) \supseteq \cdots \supseteq M_m(\alpha) = 0.$$

**Lemma.** Let U be a submodule of  $M' = M_{t-1}(\beta)$  such that  $\dim M'/U = u \cdot \mathbf{a}_j$  for some j. Then we have  $j \geq t$ . If j = t, then  $U \supseteq M_t$  (and therefore  $u \leq \beta(\mathbf{a}_t)$ ), there is an isomorphism  $M'/U \simeq uM(\mathbf{a}_j)$ , and  $U = M_t(\beta) \oplus U'$ , with  $U' \simeq (\beta(\mathbf{a}_t) - u)M(\mathbf{a}_t)$ .

Proof. We can assume u > 0.

Let us first assume that  $M'/U \simeq u \cdot M(a_j)$ . First of all, we show that  $j \geq t$ . For j < t, we have  $\operatorname{Hom}(M(\mathbf{a}_i), M(\mathbf{a}_j) = 0$  for all  $i \geq t$ , thus  $\operatorname{Hom}(M', M(\mathbf{a}_j)) = 0$ , whereas there is given a non-zero map  $M' \to M'/U \simeq u \cdot M(\mathbf{a}_j)$ . Now assume j = t. Using the same argument, we see that the composition of the inclusion map  $M_t(\beta) \to M'$  and the projection map  $M' \to M'/U$  has to be zero, since  $\operatorname{Hom}(M(\mathbf{a}_i), M(\mathbf{a}_t)) = 0$  for i > t. This shows that  $U \supseteq M_t$ , and consequently  $u \leq \beta(\mathbf{a}_t)$ . The canonical projection  $\beta(\mathbf{a}_t)M(\mathbf{a}_t) \simeq M'/M_t(\beta) \to M'/U$  splits, thus  $U/M_t(\beta) \simeq (\beta(\mathbf{a}_t) - u)M(\mathbf{a}_t)$ . But then also the projection  $U \to U/M_t(\beta)$  splits (since  $\operatorname{Ext}^1(M(\mathbf{a}_t), M(\mathbf{a}_i)) = 0$  for all i > t). This shows the existence of a direct complement U' in U to  $M_t(\beta)$ , and we have  $U' \simeq U/M_t(\beta) \simeq (\beta(\mathbf{a}_t) - u)M(\mathbf{a}_t)$ .

In general, we can write  $M'/U = M(\gamma)$  for some  $\gamma: \Phi^+ \to \mathbb{N}_0$ . Choose *s* minimal with  $\gamma(\mathbf{a}_s) > 0$ . Let  $U \subseteq V \subset M_{t-1}(\beta)$  such that  $M_{t-1}(\beta)/V = M_s(\gamma)$ . Then  $M_{t-1}(\beta)/V \simeq M(\gamma)/M_s(\gamma) \simeq \gamma(a_s)M(\mathbf{a}_s)$ , and we can apply the previous considerations. We see that  $s \geq t$ , and if s = t, then  $\gamma(\mathbf{a}_t) \leq \beta(\mathbf{a}_t)$ . By assumption,  $u \cdot \mathbf{a}_j = \dim M'/U = \sum_i \gamma(\mathbf{a}_i)\mathbf{a}_i = \sum_{i\geq s} \gamma(\mathbf{a}_i)\mathbf{a}_i$ , with non-negative coefficients *u* and  $\gamma(\mathbf{a}_i)$ . We cannot have j < s, since  $\{M(\mathbf{a}_1), \ldots, M(\mathbf{a}_{s-1})\}$  and  $\{M(\mathbf{a}_s), \ldots, M(\mathbf{a}_m)\}$  are linearly separated. This shows that  $j \geq s \geq t$ . Now assume j = t, thus we have j = s = t. We must have  $\gamma(\mathbf{a}_t) \leq u$ , and thus we can write  $(u - \gamma(\mathbf{a}_t)) \cdot \mathbf{a}_t = \sum_{i>t} \gamma(\mathbf{a}_i)\mathbf{a}_i$  with non-negative coefficients  $(u - \gamma(\mathbf{a}_t))$  and  $\gamma(\mathbf{a}_i)$ . Now, we use that  $\{M(\mathbf{a}_1), \ldots, M(\mathbf{a}_t)\}$  and  $\{M(\mathbf{a}_{t+1}), \ldots, M(\mathbf{a}_m)\}$  are linearly

separated in order to conclude that  $u - \gamma(\mathbf{a}_t) = 0$  and  $\gamma(\mathbf{a}_i) = 0$  for all i > t. This shows that  $M'/U \simeq \gamma(\mathbf{a}_t)M(\mathbf{a}_t)$  and therefore our first considerations do apply.

Proof of Theorem 1: First of all, the sequence

$$M(\alpha) = M_0(\alpha) \supseteq M_1(\alpha) \supseteq \cdots \supseteq M_m(\alpha) = 0$$

shows that  $\langle w_{\diamond}(\alpha) \diamond M(\alpha) \rangle \neq 0$ .

Let as assume that  $\langle w_{\diamond}(\alpha) \diamond M(\beta) \rangle \neq 0$  for some  $\alpha, \beta \colon \Phi^+ \to \mathbb{N}_0$ . Thus, we know that there exists a sequence

$$M(\beta) = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_m = 0$$

such that  $\dim M_{i-1}/M_i = \alpha(\mathbf{a}_i)\mathbf{a}_i$ . Let  $\beta(\mathbf{a}_i) = \alpha(\mathbf{a}_i)$  for all i < j. By induction, we claim that  $M_i = M_i(\beta)$  for i < j. Assume, we know that  $M_{i-1} = M_{i-1}(\beta)$ . According to Lemma, the only submodule  $M_i(=U)$  of  $M_{i-1}(\beta)$  with  $\dim M_{i-1}(\beta)/M_i = \beta(\mathbf{a}_i)$  is  $M_i = M_i(\beta)$ . In particular, we have  $M_{j-1} = M_{j-1}(\beta)$ . Again, using Lemma, we see that we must have  $\alpha(\mathbf{a}_j) \leq \beta(\mathbf{a}_j)$ , this shows that  $\alpha \geq \beta$ . Also, we see that for  $\alpha = \beta$ , we have  $M_i = M_i(\beta)$ for all i, thus  $\langle w_{\diamond}(\alpha) \diamond M(\alpha) \rangle = 1$ . This completes the proof.

#### 5. The fundamental relations

**Lemma.** Let  $S_i, S_j$  be simple R-modules with

$$\operatorname{Ext}^{1}(S_{i}, S_{j}) = 0, \quad \operatorname{Ext}^{1}(S_{j}, S_{i}) = 0.$$

Then we have

$$[S_i] \diamond [S_j] = [S_j] \diamond [S_i].$$

The proof is obvious.

**Lemma.** Let k be a finite field of cardinality  $q_k$ . Let R be a k-algebra. Let  $S_i, S_j$  be simple R-modules such that

$$\operatorname{Ext}^{1}(S_{i}, S_{i}) = 0, \ \operatorname{Ext}^{1}(S_{j}, S_{j}) = 0, \ \operatorname{Ext}^{1}(S_{i}, S_{j}) = k, \ \operatorname{Ext}^{1}(S_{j}, S_{i}) = 0.$$

Then

$$[S_i]^{\diamond 2} \diamond [S_j] - (q_k + 1)[S_i] \diamond [S_j] \diamond [S_i] + q_k[S_j] \diamond [S_i]^{\diamond 2} = 0,$$
  
$$[S_i] \diamond [S_j]^{\diamond 2} - (q_k + 1)[S_i] \diamond [S_j] \diamond [S_i] + q_k[S_j]^{\diamond 2} \diamond [S_i] = 0.$$

Proof: Since  $\operatorname{Ext}^1(S_i, S_j) = k$ , there exists an indecomposable module M of length 2 with top  $S_i$  and socle  $S_j$ . Taking into account the assumptions  $\operatorname{Ext}^1(S_i, S_i) = 0 = \operatorname{Ext}^1(S_j, S_i)$ , we see that there are just two isomorphism classes of modules of length three with 2 composition factors of the form  $S_i$  and one of the form  $S_j$ , namely  $X = M \oplus S_i$  and  $Y = 2S_i \oplus S_j$ . It is easy to check that

$$[S_i]^{\diamond 2} \diamond [S_j] = (q_k + 1)[X] + (q_k + 1)[Y],$$
  

$$[S_i] \diamond [S_j] \diamond [S_i] = [X] + (q_k + 1)[Y],$$
  

$$[S_j] \diamond [S_i]^{\diamond 2} = (q_k + 1)[Y].$$

This yields the first equality. Similarly, there are the two isomorphism classes of modules with 2 composition factors of the form  $S_j$  and one of the form  $S_i$ , namely  $X' = M \oplus S_j$ and  $Y' = S_i \oplus 2S_j$ . It is easy to check that

$$[S_i] \diamond [S_j]^{\diamond 2} = (q_k + 1)[X'] + (q_k + 1)[Y'],$$
  

$$[S_i] \diamond [S_j] \diamond [S_i] = [X'] + (q_k + 1)[Y'],$$
  

$$[S_j]^{\diamond 2} \diamond [S_i] = (q_k + 1)[Y'].$$

This yields the second equality.

As an immediate consequence we obtain:

**Proposition.** The elements  $[S_i]$  of  $\mathcal{H}(\vec{\Delta})$  satisfy the following relations: Let i < j. If there is no arrow from i to j, then

$$[S_i] \diamond [S_j] - [S_j] \diamond [S_i] = 0,$$

if there is an arrow  $i \rightarrow j$ , then

$$\begin{split} [S_i]^{\diamond 2} &\diamond [S_j] - (q+1)[S_i] \diamond [S_j] \diamond [S_i] + q[S_j] \diamond [S_i]^{\diamond 2} = 0, \\ [S_i] &\diamond [S_j]^{\diamond 2} - (q+1)[S_i] \diamond [S_j] \diamond [S_i] + q[S_j]^{\diamond 2} \diamond [S_i] = 0. \end{split}$$

More general, if we start with simple modules  $S_i, S_j$  satisfying

$$\operatorname{Ext}^{1}(S_{i}, S_{i}) = 0, \quad \operatorname{Ext}^{1}(S_{j}, S_{j}) = 0,$$
  
 $\operatorname{Ext}^{1}(S_{i}, S_{j}) = k^{t}, \quad \operatorname{Ext}^{1}(S_{j}, S_{i}) = 0.$ 

for some t, then we obtain relations which are similar to the Jimbo-Drinfeld relations which are used to define quantum groups for arbitrary symmetrizable generalized Cartan matrices. See [R3].

# 6. The twisted Hall algebra

In the ring  $A = \mathbb{Z}[v, v^{-1}]$ , we denote the element  $v^2$  by q. In this way, we have fixed an embedding of  $\mathbb{Z}[q]$  into A. Consider the A-module

$$\mathcal{H}_*(\vec{\Delta}) = \mathcal{H}(\vec{\Delta}) \otimes_{\mathbb{Z}[q]} A.$$

In  $\mathcal{H}_*(\vec{\Delta})$ , we introduce a new multiplication \* by

$$[N_1] * [N_2] := v^{\dim_k \operatorname{Hom}(N_1, N_2) - \dim_k \operatorname{Ext}^1(N_1, N_2)}[N_1] \diamond [N_2]$$
$$= v^{\langle \dim N_1, \dim N_2 \rangle}[N_1] \diamond [N_2]$$

where  $N_1, N_2$  are  $\Lambda$ -modules.

The following assertion is rather obvious:

**Proposition.** The free A-module  $\mathcal{H}_*(\vec{\Delta})$  with the multiplication \* is an associative algebra with 1, and  $\mathbb{Z}^n$ -graded.

We call  $\mathcal{H}_*(\vec{\Delta})$  (with this multiplication) the *twisted Hall algebra* of  $\vec{\Delta}$ . For any element x, we denote its  $t^{\text{th}}$  power with respect to the \* multiplication by  $x^{*(t)}$ .

Using induction, one shows that

$$[N_1] * [N_2] * \dots * [N_m] = v^{\sum_{i < j} \langle \operatorname{\mathbf{dim}} N_i, \operatorname{\mathbf{dim}} N_j \rangle} [N_1] \diamond [N_2] \diamond \dots \diamond [N_m].$$

**Example.** Assume there is an arrow  $i \rightarrow j$ . Then

$$[S_i] * [S_j] = v^{-1}[S_i] \diamond [S_j] = v^{-1} \left( \begin{bmatrix} S_i \\ S_j \end{bmatrix} + [S_i \oplus S_j] \right),$$
$$[S_j] * [S_i] = [S_i \oplus S_j],$$

thus

$$\begin{bmatrix} S_i \\ S_j \end{bmatrix} = v [S_i] * [S_j] - [S_i \oplus S_j] = v [S_i] * [S_j] - [S_j] * [S_i].$$

**Proposition.** The elements  $[S_i]$  of  $\mathcal{H}_*(\vec{\Delta})$  satisfy the following relations:

$$[S_i] * [S_j] - [S_j] * [S_i] = 0 \qquad if \quad a_{ij} = 0,$$
  
$$[S_i]^{*(2)} * [S_j] - (v + v^{-1})[S_i] * [S_j] * [S_i] + [S_j] * [S_i]^{*(2)} = 0 \quad if \quad a_{ij} = -1$$

Proof: In case  $a_{ij} = 0$ , we must have  $\operatorname{Ext}^1(S_i, S_j) = 0 = \operatorname{Ext}^1(S_j, S_i)$ , and therefore we have  $\langle \dim S_i, \dim S_j \rangle = 0 = \langle \dim S_j, \dim S_i \rangle$ .

Now assume  $a_{ij} = -1$ . First, consider the case when i < j, thus  $\dim_k \operatorname{Ext}^1(S_i, S_j) = 1$ , and  $\operatorname{Ext}^1(S_j, S_i) = 0$ . In this case, we have

$$\langle \dim S_i, \dim S_j \rangle = -1$$
, and  $\langle \dim S_j, \dim S_i \rangle = 0$ .

Also,  $\langle \operatorname{\mathbf{dim}} S_i, \operatorname{\mathbf{dim}} S_i \rangle = 1$ , thus

$$[S_i]^{*(2)} * [S_j] = v^{-1} [S_i]^{\diamond 2} \diamond [S_j],$$
  
$$[S_i] * [S_j] * [S_i] = [S_i] \diamond [S_j] \diamond [S_i],$$
  
$$[S_j] * [S_i]^{*(2)} = v [S_j] \diamond [S_i]^{\diamond 2},$$

thus

$$\begin{split} [S_i]^{*(2)} * [S_j] - (v + v^{-1})[S_i] * [S_j] * [S_i] + [S_j] * [S_i]^{*(2)} \\ &= v^{-1}[S_i]^{\diamond 2} \diamond [S_j] - (v + v^{-1})[S_i] \diamond [S_j] \diamond [S_i] + v[S_j] \diamond [S_i]^{\diamond 2} \\ &= v^{-1} \Big( [S_i]^{\diamond 2} \diamond [S_j] - (q + 1)[S_i] \diamond [S_j] \diamond [S_i] + q[S_j] \diamond [S_i]^{\diamond 2} \Big) \\ &= 0. \end{split}$$

Similarly, if j < i, so that  $\dim_k \operatorname{Ext}^1(S_j, S_i) = 1$ , and  $\operatorname{Ext}^1(S_i, S_j) = 0$ , then

$$\begin{split} [S_i]^{*(2)} * [S_j] - (v + v^{-1})[S_i] * [S_j] * [S_i] + [S_j] * [S_i]^{*(2)} \\ &= v[S_i]^{\diamond 2} \diamond [S_j] - (v + v^{-1})[S_i] \diamond [S_j] \diamond [S_i] + v^{-1}[S_j] \diamond [S_i]^{\diamond 2} \\ &= v^{-1} \Big( q[S_i]^{\diamond 2} \diamond [S_j] - (q + 1)[S_i] \diamond [S_j] \diamond [S_i] + [S_j] \diamond [S_i]^{\diamond 2} \Big) \\ &= 0. \end{split}$$

Also in general, the fundamental relations in  $\mathcal{H}(\vec{\Delta})$  give rise to the Jimbo-Drinfeld relations in  $\mathcal{H}_*(\vec{\Delta})$ , see [R6].

**Divided powers.** Given an indecomposable module X, let

$$[X]^{*(t)} := \frac{1}{[t]!} [X]^{*(t)},$$

we claim that this is an element of  $\mathcal{H}_*(\Lambda)$ . Namely:

$$[X]^{*(t)} = v^{\binom{t}{2}} [X]^{\diamond(t)}$$
  
=  $v^{\binom{t}{2}} F^t(q) [tX]$   
=  $v^{t(t-1)} [t]! [tX],$ 

(since  $F^t(q) = v^{\binom{t}{2}}[t]!$ ). Thus

$$[X]^{(*(t))} = \frac{1}{[t]!} [X]^{*(t)} = v^{t(t-1)} [tX]$$

Using divided powers, we can rewrite the fundamental relations

$$[S_i]^{*(2)} * [S_j] - (v + v^{-1})[S_i] * [S_j] * [S_i] + [S_j] * [S_i]^{*(2)} = 0$$

as follows:

$$[S_i]^{(*2)} * [S_j] - [S_i] * [S_j] * [S_i] + [S_j] * [S_i]^{(*2)} = 0$$

Recall that the vertices  $\{1, 2, \ldots, n\}$  of  $\Lambda$  are ordered in such a way that

$$\operatorname{Ext}^{1}(S_{i}, S_{j}) \neq 0$$
 implies  $i < j$ .

In case M is semisimple, say  $M = \bigoplus d_i S(i)$ , we have

$$[M] = [d_n S_n] \diamond \cdots \diamond [d_1 S_1] = [d_n S_n] \ast \cdots \ast [d_1 S_1],$$

since for i > j we have  $\text{Hom}(d_i S_i, d_j S_j) = 0 = \text{Ext}^1(d_i S_i, d_j S_j)$ . Also, recall that

$$[tS_i] = v^{-t(t-1)} [S_i]^{(*t)},$$

thus

$$[M] = [d_n S_n] * \dots * [d_1 S_1] = v^{-\sum d_i (d_i - 1)} [S_n]^{(*d_n)} * \dots * [S_1]^{(*d_1)}.$$

The words  $w_*(\mathbf{d}), w_*(\alpha)$ .

Recall that  $\{1, 2, ..., n\}$  is the set of vertices vertices of  $\Lambda$ , ordered in such a way that

$$\operatorname{Ext}^{1}(S_{i}, S_{j}) \neq 0$$
 implies  $i < j$ .

Also, recall that  $\Phi^+ = \{ \mathbf{a}_1, \dots, \mathbf{a}_m \}$  is the set of positive roots and we assume that the ordering is chosen so that

$$\operatorname{Hom}(M_{\Lambda}(\mathbf{a}_i), M_{\Lambda}(\mathbf{a}_j)) \neq 0 \quad \text{implies} \quad i \leq j.$$

Using the multiplication \*, we define for  $\mathbf{d} \in \mathbb{N}_0^n$  and  $\alpha \colon \Phi^+ \to \mathbb{N}_0$ 

$$w_*(\mathbf{d}) := [S_1]^{*(d_1)} * \dots * [S_n]^{*(d_n)}, w_*(\alpha) := w_*(\alpha(\mathbf{a}_1)\mathbf{a}_1) * \dots * w_*(\alpha(\mathbf{a}_m)\mathbf{a}_m).$$

Lemma. We have

$$w_*(\alpha) = v^{r(\alpha)} w_{\diamond}(\alpha), \quad with \quad r(\alpha) := -\dim_k M_{\Lambda}(\alpha) + \dim_k \operatorname{End}(M_{\Lambda}(\alpha))$$

Proof: We have for  $\mathbf{d} = \sum d_i \mathbf{e}_i$ 

$$w_*(\mathbf{d}) = [S_1]^{(*d_1)} * \cdots * [S_n]^{(*d_n)}$$
  
=  $v \sum d_i^2 - \sum d_i [d_1 S_1] * \cdots * [d_n S_n]$   
=  $v \sum d_i^2 - \sum d_i - \sum_{i \to j} d_i d_j [d_1 S_1] \diamond \cdots \diamond [d_n S_n]$   
=  $v^{\chi(\mathbf{d}) - |\mathbf{d}|} [d_1 S_1] \diamond \cdots \diamond [d_n S_n],$   
=  $v^{\chi(\mathbf{d}) - |\mathbf{d}|} w_{\diamond}(d)$ 

where we have used that  $\operatorname{Hom}(d_iS_i, d_jS_j) = 0$  for i > j and  $\dim_k \operatorname{Ext}^1(d_iS_i, d_jS_j) = d_id_j$ for  $i \to j$ . We apply this for  $\mathbf{d} = \alpha(\mathbf{a}_i)\mathbf{a}_i$ . We note that

$$\chi(\alpha(\mathbf{a}_i)\mathbf{a}_i) = \dim_k \operatorname{End}(M_{\Lambda}(\alpha(\mathbf{a}_i)\mathbf{a}_i)),$$

and

.

$$|\alpha(\mathbf{a}_i)\mathbf{a}_i| = \dim_k M_{\Lambda}(\alpha(\mathbf{a}_i)\mathbf{a}_i),$$

therefore

$$w_*(\alpha(\mathbf{a}_i)\mathbf{a}_i) = v^{\dim_k \operatorname{End}(M_{\Lambda}(\alpha(\mathbf{a}_i)\mathbf{a}_i)) - \dim_k M_{\Lambda}(\alpha(\mathbf{a}_i)\mathbf{a}_i)} w_{\diamond}(\alpha(\mathbf{a}_i)\mathbf{a}_i).$$

On the other hand,

$$w_*(\alpha) = w_*(\alpha(\mathbf{a}_1)\mathbf{a}_1) * \cdots * w_*(\alpha(\mathbf{a}_m)\mathbf{a}_m)$$
$$= v^{r'}w_*(\alpha(\mathbf{a}_1)\mathbf{a}_1) \diamond \cdots \diamond w_*(\alpha(\mathbf{a}_m)\mathbf{a}_m)$$

with

$$r' = \sum_{i < j} \langle \alpha(\mathbf{a}_i) \mathbf{a}_i, \alpha(\mathbf{a}_j) \mathbf{a}_j \rangle$$
  
= 
$$\sum_{i < j} \dim_k \operatorname{Hom}(\alpha(\mathbf{a}_i) M_{\Lambda}(\mathbf{a}_i), \alpha(\mathbf{a}_j) M_{\Lambda}(\mathbf{a}_j))$$
  
= 
$$\dim_k \operatorname{rad} \operatorname{End}(M_{\Lambda}(\alpha)),$$

here we use that for i < j, we have  $\operatorname{Ext}^{1}(\alpha(\mathbf{a}_{i})M_{\Lambda}(\mathbf{a}_{i}), \alpha(\mathbf{a}_{j})M_{\Lambda}(\mathbf{a}_{j})) = 0$ , and that for i > j, we have  $\operatorname{Hom}(\alpha(\mathbf{a}_{i})M_{\Lambda}(\mathbf{a}_{i}), \alpha(\mathbf{a}_{j})M_{\Lambda}(\mathbf{a}_{j})) = 0$ . Altogether, we see that

$$w_*(\alpha) = v^{\dim_k \operatorname{rad} \operatorname{End}(M_{\Lambda}(\alpha))} w_*(\alpha(\mathbf{a}_1)\mathbf{a}_1) \diamond \cdots \diamond w_*(\alpha(\mathbf{a}_m)\mathbf{a}_m) = v^r w_{\diamond}(\alpha),$$

with

$$r = r' + \sum_{i} \dim_{k} \operatorname{End}(M_{\Lambda}(\alpha(\mathbf{a}_{i})\mathbf{a}_{i})) - \sum_{i} \dim_{k} M_{\Lambda}(\alpha(\mathbf{a}_{i})\mathbf{a}_{i})$$
  
= dim\_{k} End(M\_{\Lambda}(\alpha)) - dim\_{k} M\_{\Lambda}(\alpha).

This completes the proof.

By definition,  $\mathcal{H}_*(\Lambda)$  is the free A-module with basis elements the isomorphism classes [M] of the finite  $\Lambda$ -modules. It seems to be worthwhile to consider besides these elements [M] also their multiples

$$\langle M \rangle := v^{-\dim_k M + \dim_k \operatorname{End}(M)}[M].$$

Example.

$$\left\langle \begin{array}{c} S_i \\ S_j \end{array} \right\rangle = v^{-2+1} \left[ \begin{array}{c} S_i \\ S_j \end{array} \right] = v^{-1} (v \left[ S_i \right] * \left[ S_j \right] - \left[ S_j \right] * \left[ S_i \right] ) = \left[ S_i \right] * \left[ S_j \right] - v^{-1} \left[ S_j \right] * \left[ S_i \right]$$

Theorem 1'.

$$w_*(\alpha) = \langle M_\Lambda(\alpha) \rangle + \sum_{\beta < \alpha} g_{\alpha\beta} \langle M_\Lambda(\beta) \rangle \quad \text{with} \quad g_{\alpha\beta} \in A$$

Proof: This is a direct consequence of Theorem 1.

# Lemma.

$$\langle M_{\Lambda}(\alpha) \rangle = \langle \alpha(\mathbf{a}_1) M_{\Lambda}(\mathbf{a}_1) \rangle * \cdots * \langle \alpha(\mathbf{a}_m) M_{\Lambda}(\mathbf{a}_m) \rangle$$

Proof:

$$\langle \alpha(\mathbf{a}_{1})M_{\Lambda}(\mathbf{a}_{1}) \rangle * \cdots * \langle \alpha(\mathbf{a}_{m})M_{\Lambda}(\mathbf{a}_{m}) \rangle$$

$$= v^{-\sum |\alpha(\mathbf{a}_{i})\mathbf{a}_{i}| + \sum \alpha(\mathbf{a}_{i})^{2}} [\alpha(\mathbf{a}_{1})M_{\Lambda}(\mathbf{a}_{1})] * \cdots * [\alpha(\mathbf{a}_{m})M_{\Lambda}(\mathbf{a}_{m})]$$

$$= v^{-\sum |\alpha(\mathbf{a}_{i})\mathbf{a}_{i}| + \sum \alpha(\mathbf{a}_{i})^{2}} v^{\dim_{k} \operatorname{rad} \operatorname{End}(M(\alpha))} [\alpha(\mathbf{a}_{1})M_{\Lambda}(\mathbf{a}_{1})] \diamond \cdots \diamond [\alpha(\mathbf{a}_{m})M_{\Lambda}(\mathbf{a}_{m})]$$

$$= v^{-\dim_{k} M(\alpha) + \dim_{k} \operatorname{End}(M(\alpha))} [M_{\Lambda}(\alpha)]$$

$$= \langle M_{\Lambda}(\alpha) \rangle$$

**Example.** Let us consider the explicit expression for  $w_*(\mathbf{d})$ , where  $\mathbf{d} \in \mathbb{N}_0^n$ .

$$w_*(\mathbf{d}) = \sum_{\mathbf{dim}\,\beta=\mathbf{d}} v^{-\delta(\beta)} \langle M_{\Lambda}(\beta) \rangle \quad \text{with} \quad \delta(\beta) := \dim_k \operatorname{Ext}^1(M_{\Lambda}(\beta), M_{\Lambda}(\beta)).$$

Proof: We have

$$w_*(\mathbf{d}) = v^{\chi(\mathbf{d}) - |\mathbf{d}|} w_\diamond(\mathbf{d}) = v^{\chi(\mathbf{d}) - |\mathbf{d}|} \sum_{\mathbf{dim}\,\beta = \mathbf{d}} [M_\Lambda(\beta)],$$

since any module  $M_{\Lambda}(\beta)$  with  $\dim \beta = \mathbf{d}$  has a unique filtration of type  $w_{\diamond}(\mathbf{d})$ . But

$$\chi(\mathbf{d}) - |\mathbf{d}| = \dim_k \operatorname{End}(M_{\Lambda}(\beta)) - \dim_k \operatorname{Ext}^1(M_{\Lambda}(\beta), M_{\Lambda}(\beta)) - |\mathbf{d}|$$
$$= -\delta(\beta) + r(\beta).$$

Thus,

$$w_*(\mathbf{d}) = v^{\chi(\mathbf{d}) - |\mathbf{d}|} \sum_{\substack{\mathbf{dim} \ \beta = \mathbf{d}}} [M_{\Lambda}(\beta)]$$
$$= \sum_{\substack{\mathbf{dim} \ \beta = \mathbf{d}}} v^{-\delta(\beta)} v^{r(\beta)} [M_{\Lambda}(\beta)]$$
$$= \sum_{\substack{\mathbf{dim} \ \beta = \mathbf{d}}} v^{-\delta(\beta)} \langle M_{\Lambda}(\beta) \rangle.$$

More generally, given  $\alpha, \beta \colon \Phi^+ \to \mathbb{N}_0$ , we have to consider

$$\delta(\beta; \alpha) = \dim_k \operatorname{Ext}^1(M(\beta), M(\beta)) - \dim_k \operatorname{Ext}^1(M(\alpha), M(\alpha))$$
  
= dim<sub>k</sub> End(M(\alpha)) - dim<sub>k</sub> End(M(\beta)),

of course, we have  $\delta(\beta) = \delta(\beta; 0)$ .

# 7. The isomorphism between $U_q(\mathbf{n}_+(\Delta))$ and $\mathcal{H}_*(k\vec{\Delta})$ for $\vec{\Delta}$ a Dynkin quiver

**Proposition.** The elements  $[S_i]^{*(t)}$  with  $1 \leq i \leq n$  and  $t \geq 1$  generate  $\mathcal{H}_*(\vec{\Delta})$  as a *A*-algebra.

Proof: Let  $\mathcal{H}'$  be the A-algebra generated by the elements  $[S_i]^{*(t)}$  with  $1 \leq i \leq n$  and  $t \geq 1$ . By induction on **dim**  $\alpha$ , we show that  $\langle M_{\Lambda}(\alpha) \rangle$  belongs to  $\mathcal{H}'$ .

If the support of  $\alpha$  contains more than one element, then we use the formula

 $\langle M_{\Lambda}(\alpha) \rangle = \langle \alpha(\mathbf{a}_1) M_{\Lambda}(\mathbf{a}_1) \rangle * \cdots * \langle \alpha(\mathbf{a}_m) M_{\Lambda}(\mathbf{a}_m) \rangle.$ 

By induction, all the elements  $\langle \alpha(\mathbf{a}_i) M_{\Lambda}(\mathbf{a}_i) \rangle$  belong to  $\mathcal{H}'$ , thus also  $\langle M_{\Lambda}(\alpha) \rangle$ , and thefore  $[M_{\Lambda}(\alpha)]$  belong to  $\mathcal{H}'$ .

In case the support of  $\alpha$  consists of the unique element  $\mathbf{a}_i$ , let  $\mathbf{d} = \alpha(\mathbf{a}_i)\mathbf{a}_i$ , thus  $M_{\Lambda}(\alpha) = M_{\Lambda}(\mathbf{d})$ , and we know that

$$w_*(\mathbf{d}) = \langle M_{\Lambda}(\alpha) \rangle + \sum_{\substack{\mathbf{dim } \beta = \mathbf{d} \\ \beta \neq \alpha}} v^{-\delta(\beta)} \langle M_{\Lambda}(\beta) \rangle.$$

The support of any  $\beta$  with  $\dim \beta = \mathbf{d}$  and  $\beta \neq \alpha$  contains more than one element; as we have seen, this implies that the corresponding elements  $\langle M_{\Lambda}(\beta) \rangle$  belong to  $\mathcal{H}'$ . Since also  $w_*(\mathbf{d})$  is in  $\mathcal{H}'$ , we conclude that  $\langle M_{\Lambda}(\alpha) \rangle$  belongs to  $\mathcal{H}'$ .

Of course, with  $\langle M_{\Lambda}(\alpha) \rangle$  also  $[M_{\Lambda}(\alpha)]$  belongs to  $\mathcal{H}'$ . This completes the proof.

The fundamental relations show that we may define a ring homomorphism

$$\eta \colon U_q(\mathbf{n}_+(\Delta)) \to \mathcal{H}_*(\Delta)$$

by  $\eta(E_i) = [S_i]$ . The Lemma above shows that this map is surjective.

**Theorem.** The map  $\eta: U_q(\mathbf{n}_+(\Delta)) \to \mathcal{H}_*(\vec{\Delta})$  is an isomorphism.

We have to show that  $\eta$  is also injective. Let  $A'' = \mathbb{Q}[v, v^{-1}]$ , and  $U'' = U''_q(\mathbf{n}_+(\Delta))$ the A''-subalgebra of  $U'_q(\mathbf{n}_+(\Delta))$  generated by the elements  $E_i^{(t)}$  with  $1 \le i \le n$  and  $t \ge 0$ .

Also, let  $\mathcal{H}''_*(\vec{\Delta}) = \mathcal{H}_*(\vec{\Delta}) \otimes_A A''$ . Of course, the map  $\eta$  extends in a unique way to a map  $\eta'' \colon U'' \to \mathcal{H}''_*(\vec{\Delta})$  (thus  $\eta''|U_q(\mathbf{n}_+(\Delta)) = \eta$ ). It remains to be seen that  $\eta''$  is injective. Both U'' and  $\mathcal{H}''_*(\vec{\Delta})$  are  $\mathbb{Z}^n$ -graded, and  $\eta''$  respects this graduation, thus, for  $\mathbf{d} \in \mathbb{Z}^n$ , there is the corresponding map  $\eta''_{\mathbf{d}} \colon U''_{\mathbf{d}} \to \mathcal{H}''_*(\vec{\Delta})_{\mathbf{d}}$ , and we show that all these maps  $\eta''_{\mathbf{d}}$  are injective.

The A''-module  $U''_{\mathbf{d}}$  is torsionfree (since it is a submodule of  $U'_{q}(\mathbf{n}_{+}(\Delta))$ ) and finitely generated. Since A'' is a principal ideal domain, we see that  $U''_{\mathbf{d}}$  is a free A''-module. In order to calculate its rank, we consider the factor module  $U''_{\mathbf{d}}/(v-1)$ . As we have seen in section 1, we can identify  $U''_{\mathbf{d}}/(v-1)$  with  $U(\mathbf{n}_{+}(\Delta))_{\mathbf{d}}$ , thus it has  $\mathbb{Q}$ -dimension  $u(\mathbf{d})$ . It follows that  $U''_{\mathbf{d}}$  is a free A''-module of rank  $u(\mathbf{d})$ . On the other hand,  $\mathcal{H}''_{*}(\vec{\Delta})_{\mathbf{d}}$  is the free A''-module with basis the set of maps  $\alpha \colon \Phi^+ \to \mathbb{N}_0$  satisfying  $\dim \alpha = \mathbf{d}$ , thus it also is a free A''-module of rank  $u(\mathbf{d})$ . But any surjective map between free A''-modules of equal rank has to be an isomorphism. This completes the proof.

In our further considerations, it sometimes will be useful to identify  $U_q(\mathbf{n}_+(\Delta))$  and  $\mathcal{H}_*(\vec{\Delta})$  via the map  $\eta$ . Under this identification, the generator  $E_i$  corresponds to the isomorphism class  $[S_i]$ .

### 8. The canonical basis

For any pair  $\beta < \alpha$  of maps  $\Phi^+ \to \mathbb{N}_0$ , Theorem 1' gives an element  $g_{\alpha\beta} \in A$ . Let  $g_{\alpha\alpha} = 1$ , and  $g_{\alpha\beta} = 0$  in the remaining cases. We may consider  $g = (g_{\alpha\beta})_{\alpha\beta}$  as a matrix using some total ordering of the indices; it is the base change matrix between the basis given by the elements  $\langle M_{\Lambda}(\alpha) \rangle$  and the basis given by the elements  $w_*(\alpha)$ . Note that we may assume that g is a unipotent lower triangular matrix. Let  $\overline{g}$  be obtained from g by applying the automorphism  $\overline{}$ , and g' the inverse of  $\overline{g}$ . Since  $w_*(\alpha) = w_*(\alpha)$ , we see that

$$w_*(\alpha) = \overline{w_*(\alpha)} = \sum_{\beta} \overline{g_{\alpha\beta}} \overline{\langle M_{\Lambda}(\beta) \rangle},$$

thus

$$\overline{\langle M_{\Lambda}(\alpha)\rangle} = \sum_{\beta} g'_{\alpha\beta} w_*(\beta) = \sum_{\beta} \sum_{\gamma} g'_{\alpha\beta} g_{\beta\gamma} \langle M_{\Lambda}(\gamma)\rangle.$$

Let us denote by h = g'g the matrix product, then h is again a unipotent lower triangular matrix, and  $\overline{h} = h^{-1}$ .

There exists a unique unipotent lower triangular matrix  $u = (u_{\alpha\beta})_{\alpha,\beta}$  with off-diagonal entries in  $\mathbb{Z}[v^{-1}]$  without constant term, such that  $u = \overline{u}h$  (see [L6], 7.10, or also [D], 1.2).

The desired basis is

$$C(\alpha) := \langle M_{\Lambda}(\alpha) \rangle + \sum_{\beta \prec \alpha} u_{\alpha\beta} \langle M_{\Lambda}(\beta) \rangle \quad \text{with} \quad u_{\alpha\beta} \in v^{-1} \mathbb{Z}[v^{-1}]$$

this is called the *canonical basis* of  $\mathcal{H}_*(\vec{\Delta})$  or also of  $U_q(\mathbf{n}_+(\Delta))$ .

Note that by construction the elements of the canonical basis are invariant under the automorphism –, since

$$\overline{C(\alpha)} = \sum_{\beta} \overline{u_{\alpha\beta}} \overline{\langle M_{\Lambda}(\beta) \rangle}$$
$$= \sum_{\beta,\gamma} \overline{u_{\alpha\beta}} h_{\beta\gamma} \langle M_{\Lambda}(\gamma) \rangle$$
$$= \sum_{\beta} u_{\alpha\beta} \langle M_{\Lambda}(\beta) \rangle = C(\alpha).$$

In fact, the element  $C(\alpha)$  is characterized by the two properties

$$C(\alpha) := \langle M_{\Lambda}(\alpha) \rangle + \sum_{\beta \prec \alpha} u_{\alpha\beta} \langle M_{\Lambda}(\beta) \rangle \quad \text{with} \quad u_{\alpha\beta} \in v^{-1} \mathbb{Z}[v^{-1}],$$

and

$$\overline{C(\alpha)} = C(\alpha)$$

In particular, any monomial will satisfy the second property, thus in order to show that a monomial belongs to the canonical basis, we only have to verify the first property.

**9.** The case  $\mathbb{A}_2$ 

We consider the quiver

$$1 \longrightarrow 2.$$

There are three positive roots  $\mathbf{a}_1 = (1,0)$ ,  $\mathbf{a}_2 = (1,1)$ ,  $\mathbf{a}_3 = (0,1)$ , with corresponding indecomposable modules  $S_1 = M(1,0)$ , M(1,1),  $S_2 = M(0,1)$ . (For simplicity, we sometimes will denote the isomorphism class  $[S_1]$  by 1, the isomorphism class  $[S_2]$  by 2.)

The Auslander-Reiten quiver is of the form

$$\begin{array}{cccc} & M(1,1) \\ & \swarrow & & \searrow \\ M(0,1) & \cdots & & M(1,0) \end{array}$$

Let

$$M(c, r, s) = cM(0, 1) \oplus rM(1, 1) \oplus sM(1, 0)$$

note that M(c, r, s) has dimension vector (c + r, r + s), it is given by a linear map

$$M(c,r,s)_1 = k^{s+r} \longrightarrow k^{r+c} = M(c,r,s)_2$$

of rank r (thus, s is the dimension of its kernel, c the dimension of its cokernel). We may visualize M(c, r, s) as follows:

Let  $\epsilon(c, r, s) = \dim_k \operatorname{End} M(c, r, s)$ , thus

$$\epsilon(c, r, s) = c^2 + r^2 + s^2 + cr + rs,$$

and for  $0 \leq i \leq r$ ,

$$\epsilon(c+i,r-i,s+i) - \epsilon(c,r,s) = i(i+c+s).$$

Claim:

 $\langle [cS_2] \diamond [(r+s)S_1] \diamond [rS_2] \diamond M(c+i, r-i, s+i) \rangle = G_i^{c+i}.$ 

Proof: We take an r-dimensional subspace U of the (c + r)-dimensional space  $M(c, r, s)_2$ such that U contains a fixed (r - i)-dimensional subspace V (the image of the given map  $M(c + i, r - i, s + i)_1 \rightarrow M(c + i, r - i, s + i)_2$ ), thus in the (c + i)-dimensional space  $M(c + i, r - i, s + i)_2/V$ , we choose an arbitrary *i*-dimensional subspace.

Similarly:

$$\langle [rS_1] \diamond [(c+r)S_2] \diamond [sS_1] \phi \ M(c+i,r-i,s+i) \rangle = G_s^{s+i}.$$

Proof: Here, we take an s-dimensional subspace in the (s + i)-dimensional kernel of the map  $M(c + i, r - i, s + i)_1 \rightarrow M(c + i, r - i, s + i)_2$ , and the number of such subspaces is  $G_s^{s+i}$ .

It follows that

$$2^{(*c)} * 1^{(*(r+s))} * 2^{(*r)} = \sum_{i=0}^{r} v^{-i(i+c+s)} G_i^{c+i} \langle M(c+i, r-i, s+i) \rangle$$

and

$$1^{(*r)} * 2^{(*(c+r))} * 1^{(*s)} = \sum_{i=0}^{r} v^{-i(i+c+s)} G_s^{s+i} \langle M(c+i, r-i, s+i) \rangle$$

Note that in both expressions, the coefficient of  $\langle M(c,r,s) \rangle$  itself is 1. Consider the coefficients of the summands with index i > 0. Since  $G_i^{c+i}$  has degree ic, we see that for  $c \leq s$ , the coefficient  $v^{-i(i+c+s)}G_i^{c+i}$  belongs to  $v^{-1}\mathbb{Z}[v^{-1}]$ , similarly, for  $c \geq s$ , the coefficient  $v^{-i(i+c+s)}G_s^{s+i}$  belongs to  $v^{-1}\mathbb{Z}[v^{-1}]$ .

Let us consider the formulae in case c = s. In this case, the right hand sides coincide, since  $G_i^{s+i} = G_s^{s+i}$ . Thus, we see:

$$2^{(*s)} * 1^{(*(r+s))} * 2^{(*r)} = 1^{(*r)} * 2^{(*(s+r))} * 1^{(*s)}$$

This shows the following:

**Proposition.** The canonical basis of  $U_q(\mathbf{n}_+(\mathbb{A}_2))$  consists of the following elements: take the monomials  $2^{(*c)}*1^{(*(r+s))}*2^{(*r)}$  with  $c \leq s$  and the monomials  $1^{(*r)}*2^{(*(c+r))}*1^{(*s)}$  with c > s.

10. The case  $\mathbb{A}_3$ .

Consider the following quiver



denote the source by 2, the sinks by 1 and 3, respectively.

The indecomposable representations have the following dimension vectors

$$a = (100),$$
  

$$b = (001),$$
  

$$c = (111),$$
  

$$d = (011),$$
  

$$e = (110),$$
  

$$f = (010).$$

The Auslander-Reiten quiver is of the form



Consider the dimension vector (xyz), with positive integers x, y, z. Let  $\alpha \colon \Phi \to \mathbb{N}_0$  with

$$M(lpha)=M(c)\oplus (x-1)M(a)\oplus (y-1)M(f)\oplus (z-1)M(b).$$

We want to determine  $C(\alpha)$ .

Let  $\beta, \beta', \gamma \colon \Phi \to \mathbb{N}_0$  with

$$\begin{split} M(\beta) &= M(d) \oplus xM(a) \oplus (y-1)M(f) \oplus (z-1)M(b), \\ M(\beta') &= M(e) \oplus (x-1)M(a) \oplus (y-1)M(f) \oplus zM(b), \\ M(\gamma) &= xM(a) \oplus yM(f) \oplus zM(b). \end{split}$$

We have

$$\begin{split} \epsilon(\alpha) &= x^2 - x + y^2 - y + z^2 - z + 1, \\ \epsilon(\beta) &= x^2 + y^2 - y + z^2 - z + 1, \\ \epsilon(\beta') &= x^2 - x + y^2 - y + z^2 + 1, \\ \epsilon(\gamma) &= x^2 + y^2 + z^2. \end{split}$$

Thus, we see that

$$\begin{aligned} \epsilon(\beta) - \epsilon(\alpha) &= x, \\ \epsilon(\beta') - \epsilon(\alpha) &= z, \\ \epsilon(\gamma) - \epsilon(\alpha) &= x + y + z - 1. \end{aligned}$$

On the other hand,

$$\langle [S_2] \diamond [xS_1] \diamond [zS_3] \diamond [(y-1)S_2] \diamond \langle M(\beta) \rangle \rangle = 1 \langle [S_2] \diamond [xS_1] \diamond [zS_3] \diamond [(y-1)S_2] \diamond \langle M(\beta') \rangle \rangle = 1 \langle [S_2] \diamond [xS_1] \diamond [zS_3] \diamond [(y-1)S_2] \diamond \langle M(\gamma) \rangle \rangle = G_{y-1}^y.$$

It follows that

$$2 * 1^{(*x)} * 3^{(*z)} * 2^{(*(y-1))} = \langle M(\alpha) \rangle + v^{-x} \langle M(\beta) \rangle + v^{-z} \langle M(\beta') \rangle + v^{-(x+z)} [y] \langle M(\gamma) \rangle.$$

The two coefficients  $v^{-x}$ ,  $v^{-z}$  belong to  $v^{-1}\mathbb{Z}[v^{-1}]$ . In case  $x+z \ge y$ , also the last coefficient  $v^{-(x+z)}[y]$  belongs to  $v^{-1}\mathbb{Z}[v^{-1}]$ . Thus we see:

If 
$$x + z \ge y$$
, then  $C(\alpha) = 2 * 1^{(*x)} * 3^{(*z)} * 2^{(*(y-1))}$ 

In case x + z < y, we use the following equality

$$v^{-(x+z)}[y] = [y-x-z] + v^{-y}[x+z],$$

in order to see that

$$2 * 1^{(*x)} * 3^{(*z)} * 2^{(*(y-1))} - [y - x - z] 1^{(*x)} * 3^{(*z)} * 2^{(*y)} = \langle M(\alpha) \rangle + v^{-x} \langle M(\beta) \rangle + v^{-z} \langle M(\beta') \rangle + v^{-y} [x + z] \langle M(\gamma) \rangle.$$

Note that the last coefficient  $v^{-y}[x+z]$  belongs to  $v^{-1}\mathbb{Z}[v^{-1}]$ .

For x + z < y,  $C(\alpha) = 2 * 1^{(*x)} * 3^{(*z)} * 2^{(*(y-1))} - [y - x - z]1^{(*x)} * 3^{(*z)} * 2^{(*y)}$ 

**Lemma.** If  $c \ge a + d$ ,  $c \ge b + e$ , then  $1^{*(a)} * 3^{*(b)} * 2^{*(c)} * 1^{*(d)} * 3^{*(e)}$  belongs to the canonical basis.

Proof: Let  $w_* = 1^{*(a)} * 3^{*(b)} * 2^{*(c)} * 1^{*(d)} * 3^{*(e)}$ , and  $w_\diamond = 1^{\diamond(a)} \diamond 3^{\diamond(b)} \diamond 2^{\diamond(c)} \diamond 1^{\diamond(d)} \diamond 3^{\diamond(e)}$ Let M = M(d, c, e) be the generic module with dimension vector (d, c, e), let  $S = aS_1 \oplus bS_3$ . Since  $d \leq a+d \leq c$ , we see that  $\operatorname{Hom}(M, S_1) = 0$ . Similarly, Since  $e \leq b+e \leq c$ , we see that  $\operatorname{Hom}(M, S_2) = 0$ . Thus  $\operatorname{Hom}(M, S) = 0$ . Let  $N = S \oplus M$ . It follows that  $\langle w_\diamond \diamond N \rangle = 1$ .

Now, consider any module N' with  $\langle w \notin N' \rangle \neq 0$ . It follows that N' maps surjectively to S, and, since S is projective, S is a direct summand of N'. Let i, j be maximal so that  $S' = (a + i)S_1 \oplus (b + j)S_3$  is a direct summand of N', say  $N' = S' \oplus M'$ . Note that we have  $\operatorname{Hom}(M', S') = 0$ . Let M'' be the generic module with dimension vector equal to the dimension vector of M'. Let  $\epsilon, \epsilon', \epsilon''$  be the dimension of the endomorphism rings of N, N', and  $N'' = S' \oplus M''$  respectively. Then  $\epsilon' \geq \epsilon''$ .

Note that

$$\epsilon'' = \dim_k \operatorname{End}(S') + \dim_k \operatorname{End}(M'') + \dim_k \operatorname{Hom}(S', M'')$$
  
=  $q(S') + q(M'') + \langle S', M'' \rangle$   
=  $q(S' \oplus M'') - \langle M'', S' \rangle$   
=  $q(a + d, c, b + e) + \dim \operatorname{Ext}^1(M'', S')$ 

where we first have used that  $\operatorname{Hom}(M'', S') = 0$ , then that  $\operatorname{Ext}^1(S', M'') = 0$ , and finally again that  $\operatorname{Hom}(M'', S') = 0$ .

Let us show that  $\dim_k \operatorname{Ext}^1(M'', S') = (a+i)(c-d+i) + (b+j)(c-e+j)$ . Note that M'' has no direct summand of the form  $S_1$  or  $S_3$ , thus the number of indecomposable direct summands in any direct decomposition is just  $\dim_k M_2 = c$ , whereas the number of indecomposable direct summands with dimension vector (111) or (110) is  $\dim_k M_1 = d-i$ . Thus, the number of indecomposable direct summands with dimension vector (011) or (010) is c-d+i. It follows that  $\dim_k \operatorname{Ext}^1(M'', S_1) = c-d+i$ . Similarly,  $\dim_k \operatorname{Ext}^1(M'', S_2) = c-e+i$ .

As a consequence,

$$\epsilon'' = q(a+d, c, b+e) + \dim_k \operatorname{Ext}^1(M'', S')$$
  
= q(a+d, c, b+e) + (a+i)(c-d+i) + (b+j)(c-e+j).

In particular, we also see that

$$\epsilon = q(a+d, c, b+e) + a(c-d) + b(c-e).$$

Therefore,

$$\begin{aligned} \epsilon' - \epsilon &\geq \epsilon'' - \epsilon = (a+i)(c-d+i) + (b+j)(c-e+j) - a(c-d) - b(c-e) \\ &= i(a+c-d+i) + j(b+c-d+i) \geq i(2a+i) + j(2b+j), \end{aligned}$$

since we assume that  $c \ge a + d$ , and  $c \ge b + d$ . In particular, in case  $(i, j) \ne (0, 0)$ , we see that

$$\epsilon' - \epsilon > 2(ai + bj).$$

On the other hand, we clearly have

$$\langle w \ \phi \ N' \rangle = G_a^{a+i} G_b^{b+j},$$

and this is a polynomial of degree 2(ai + bj). The coefficient of  $w_* = 1^{*(a)} * 3^{*(b)} * 2^{*(c)} * 1^{*(d)} * 3^{*(e)}$  at  $\langle N' \rangle$  is  $v^{-\epsilon'+\epsilon} G_a^{a+i} G_b^{b+j}$ , thus it belongs to  $v^{-1}\mathbb{Z}[v^{-1}]$ . This completes the proof.

#### References

- BLM Bernstein, A.A.; Lusztig, G.; Deligne, P.: A geometric setting for the quantum deformations of  $GL_n$ . Duke Math. J. 61 (1990), 655-677
  - D Du, Jie: IC Bases and quantum linear groups. (Preprint).
  - K1 Kashiwara, M.: Crystalizing the q-analogue of universal enveloping algebras. Comm. Math. Phys. 133 (1990), 249-260.
  - K2 Kashiwara, M.: Bases crystallines. C. R. Acad. Sci. Paris 311 (1990), 277-280.
  - K3 Kashiwara, M.: On crystal bases of the *q*-analogue of the universal enveloping algebras. Duke Math. J. 63 (1991), 465-677
  - L1 Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. Math. 70 (1988), 237-249.
  - L2 Lusztig, G.: Modular representations and quantum groups. Contemp. Math. 82. Amer. Math. Soc. (1989). 59-77.
  - L3 Lusztig, G.: On quantum groups. J. Algebra 131 (1990), 277-280.
  - L4 Lusztig, G.: Finite dimensional Hopf algebras arising from quantum groups. J. Amer. Math. Soc. 3 (1990). 257-296.
  - L5 Lusztig, G.: Quantum groups at roots of 1. Geom. Dedicata (1990)
  - L6 Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc. 3 (1990), 447-498.
  - L7 Lusztig, G.: Canonical bases arising from quantized enveloping algebras II. Progr. Theor. Phys. 102 (1990), 175-201.
  - L8 Lusztig, G.: Quivers, perverse sheaves and qunatized enveloping algebras. J. Amer. Math. Soc. 4 (1991), 365-421.
  - L9 Lusztig, G.: Affine quivers and canonical bases. Publ. Math. (IHES) 76 (1992), 111-163.
  - L10 Lusztig, G.: Introduction to quantized enveloping algebras. (Preprint).
  - L11 Lusztig, G.: Tight monomials in quantized enveloping algebras. (Preprint).
  - L12 Lusztig, G.: Canonical bases in tensor products. (Preprint).
  - [R1] Ringel, C. M.: Hall algebras. In: Topics in Algebra. Banach Center Publ. 26. (1990), 433–447.
  - [R2] Ringel, C. M.: Hall polynomials for the representation-finite hereditary algebras. Adv. Math. 84 (1990), 137–178
  - [R3] Ringel, C. M.: Hall algebras and quantum groups. Inventiones math. 101 (1990), 583– 592.
- [R4] Ringel, C. M.: From representations of quivers via Hall and Loewy algebras to quantum groups. Proceedings Novosibirsk Conference 1989. Contemporary Mathematics 131 (Part 2) (1992), 381–401
- [R5] Ringel, C. M.: The composition algebra of a cyclic quiver. Towards an explicit description of the quantum group of type  $\tilde{A}_n$ . Proceedings London Math. Soc. (3) 66 (1993), 507–537.
- [R6] Ringel, C. M.: Hall algebras revisited. Proceedings Israel Conference on Quantum deformations of algebras and their representations, 1991/92. (To appear)