# The elementary 3-Kronecker modules 

Claus Michael Ringel


#### Abstract

The 3-Kronecker quiver has two vertices, namely a sink and a source, and 3 arrows. A regular representation of a representationinfinite quiver such as the 3 -Kronecker quiver is said to be elementary provided it is non-zero and not a proper extension of two regular representations. Of course, any regular representation has a filtration whose factors are elementary, thus the elementary representations may be considered as the building blocks for obtaining all the regular representations. We are going to determine the elementary 3-Kronecker modules. It turns out that all the elementary modules are combinatorially defined.


Let $k$ be an algebraically closed field and $Q=K(3)$ the 3-Kronecker quiver

$$
1 \Longrightarrow 2
$$

The dimension vector of a representation $M$ of $Q$ is the pair ( $\left.\operatorname{dim} M_{1}, \operatorname{dim} M_{2}\right)$.
We denote by $A$ the arrow space of $Q$, it is a three-dimensional vector space, thus $\Lambda=\left[\begin{array}{cc}k & A \\ 0 & k\end{array}\right]$ is the path algebra of $Q$. Note that $\Lambda$ is a finite-dimensional $k$-algebra which is connected, hereditary and representation-infinite. The $\Lambda$-modules will be called 3 Kronecker modules. Of course, choosing a basis of $A$, the 3 -Kronecker modules are just the representations of $K(3)$.

Elementary modules. In general, if $\Lambda$ is a finite-dimensional $k$-algebra, we denote by $\bmod \Lambda$ the category of all (finite-dimensional left) $\Lambda$-modules. We denote by $\tau$ the Auslander-Reiten translation in $\bmod \Lambda$.

Now let $\Lambda$ be the path algebra of a finite acyclic quiver. A $\Lambda$-module $M$ is said to be preprojective provided there are only finitely many isomorphism classes of indecomposable modules $X$ with $\operatorname{Hom}(X, M) \neq 0$, or, equivalently, provided $\tau^{t} M=0$ for some natural number $t$. Dually, $M$ is said to be preinjective provided there are only finitely many isomorphism classes of indecomposable modules $X$ with $\operatorname{Hom}(M, X) \neq 0$, or, equivalently, provided $\tau^{-t} M=0$ for some natural number $t$. A $\Lambda$-module $M$ is said to be regular provided it has no indecomposable direct summand which is preprojective or preinjective.

A regular $\Lambda$-module $M$ is said to be elementary provided there is no short exact sequence $0 \rightarrow M^{\prime} \rightarrow M^{\prime \prime} \rightarrow 0$ with $M^{\prime}, M^{\prime \prime}$ being non-zero regular modules (the definition is due to Crawley-Boevey, for basic results see Kerner and Lukas [L,KL,K]) and the appendix 1. Of course, any regular module has a filtration whose factors are elementary. If $M$ is elementary, then all the modules $\tau^{t} M$ with $t \in \mathbb{Z}$ are elementary.

The aim of this note is to determine the elementary 3 -Kronecker modules. Let $\alpha, \beta, \gamma$ be a basis of $A$. Let $X(\alpha, \beta, \gamma)$ and $Y(\alpha, \beta, \gamma)$ be the $\Lambda$-module defined by the following
pictures:


Here, we draw a corresponding coefficient quiver and require that all non-zero coefficients are equal to 1 . Thus, for example $X(\alpha, \beta, \gamma)=\left(k^{2}, k^{2} ; \alpha, \beta, \gamma\right)$ with $\alpha(a, b)=(a, b)$, $\beta(a, b)=(b, 0)$ and $\gamma(a, b)=(0, a)$ for $a, b \in k$.

Theorem. The dimension vectors of the elementary 3-Kronecker modules are the elements in the $\tau$-orbits of $(1,1),(2,1),(2,2)$ and $(4,2)$.

Any indecomposable representation with dimension vector in the $\tau$-orbit of $(1,1)$ and $(2,1)$ is elementary.

An indecomposable representation with dimension vector $(2,2)$ or $(4,2)$ is elementary if and only if it is of the form $X(\alpha, \beta, \gamma)$ or $Y(\alpha, \beta, \gamma)$, respectively for some basis $\alpha, \beta, \gamma$ of $A$.

The indecomposable representations with dimension vectors in the $\tau$-orbits of $(1,1)$ and $(2,1)$ have been studied in several papers. They are the even index Fibonacci modules, see [FR2,FR3,R4]. If $M$ is indecomposable and $\operatorname{dim} M=(1,1)$ or $(2,1)$, then there is a basis $\alpha, \beta, \gamma$ of $A$ such that $M=B(\alpha)$ or $M=V(\beta, \gamma)$, respectively, defined as follows:


Note that $B(\alpha)$ is the unique indecomposable 3 -Kronecker module of length 2 which is annihilated by $\beta$ and $\gamma$, whereas $V(\beta, \gamma)$ is the unique indecomposable 3 -Kronecker module of length 3 with simple socle which is annihilated by $\alpha$.

The indecomposable modules with dimension vector $(1,1)$ are called bristles in [R3]. The indecomposable representations with dimension vector $(2,1)$ have been considered in $[\mathrm{BR}]$ : there, it has been shown that any arrow $\alpha$ of a quiver gives rise to an AuslanderReiten sequence with indecomposable middle term say $M(\alpha)$; in this way, we obtain the sequence:

$$
0 \rightarrow V(\beta, \gamma) \rightarrow M(\alpha) \rightarrow \tau^{-} V(\beta, \gamma) \rightarrow 0
$$

The study of the $\tau$-orbits of the indecomposable 3-Kronecker modules with dimension vectors $(1,1)$ and $(2,1)$ in the papers [FR2,FR3,R4,R5] uses the universal covering $\widetilde{K}(3)$ of the Kronecker quiver $K(3)$. The quiver $\widetilde{K}(3)$ is the 3 -regular tree with bipartite orientation. Since the 3 -Kronecker modules $B(\alpha)$ and $V(\beta, \gamma)$ are cover-exceptional (they are pushdowns of exceptional representations of $\widetilde{K}(3))$, it follows that all the modules in the $\tau$ orbits of $B(\alpha)$ and $V(\beta, \gamma)$ are cover-exceptional, and therefore tree modules in the sense of [R2].

In general, one should modify the definition of a tree module as follows: Let $Q$ be any quiver. For any pair of vertices $x, y$ of $Q$, let $A(x, y)$ be the corresponding arrow space, this is the vector space with basis the arrows $x \rightarrow y$. If $\alpha(1), \ldots, \alpha(t)$ are the arrows $x \rightarrow y$ and $\beta=\sum a_{i} \alpha(i)$ with all $a_{i} \in k$ is an element of $A(x, y)$, we may consider for any representation $M=\left(M_{x}, M_{\alpha}\right)_{x \in Q_{0}, \alpha \in Q_{1}}$ the linear combination $M_{\beta}=\sum a_{i} M_{\alpha(i)}$. Given a basis $\mathcal{B}(x, y)$ of the arrow space $A(x, y)$, for all vertices $x, y$ of $Q$ as well as a basis $\mathcal{B}(M, x)$ of the vector space $M_{x}$, for all vertices $x$ of $Q$, we may write the linear maps $M_{b}$ with $b \in \mathcal{B}(x, y)$ as matrices with respect to the bases $\mathcal{B}(M, x), \mathcal{B}(M, y)$. Looking at these matrices, we obtain a coefficient quiver $\Gamma(\mathcal{B}(x, y), \mathcal{B}(M, x))$ as in [R2]. A representation $M$ of the path algebra $k Q$ should be called a tree module provided $M$ is indecomposable and there are bases $\mathcal{B}(x, y)$ of the arrow spaces $A(x, y)$ and $\mathcal{B}(M, x)$ of the vector spaces $M_{x}$ such that $\Gamma(\mathcal{B}(x, y), \mathcal{B}(M, x))$ is a tree. Of course, in case $Q$ has no multiple arrows, this coincides with the definition given in [R2]. But in general, we now allow base changes in the arrow spaces. Note that such base changes in the arrow spaces do not effect the $k Q$ module $M$, but only its realization as the representation of a quiver. There is the following interesting consequence: Any indecomposable representation of the 2-Kronecker quiver is a tree module, see Appendix 2. Using this modified definition, we see immediately that all the indecomposable modules with dimension vector in the $\tau$-orbits of $(1,1)$ and $(2,1)$ are tree modules. On the other hand, the modules $X(\alpha, \beta, \gamma)$ (and also $Y(\alpha, \beta, \gamma))$ are not tree modules, see Lemma 4.2.

Whereas the modules in the $\tau$-orbits of the elementary 3 -Kronecker modules with dimension vectors $(1,1)$ and $(2,1)$ are quite well understood, a similar study of those in the $\tau$-orbits of modules with dimension vectors $(2,2)$ and $(4,2)$ is missing. It seems that any module $M$ in these $\tau$-orbits has a coefficient quiver with a unique cycle. A first structure theorem for these modules is exhibited in section 5 .

We say that an element $(x, y) \in K_{0}(\Lambda)=\mathbb{Z}^{2}$ is non-negative provided $x, y \geq 0$. The non-negative elements in $K_{0}(\Lambda)$ are just the possible dimension vectors of $\Lambda$-modules. Note that $K_{0}(\Lambda)$ is endowed with the quadratic form $q$ defined by $q(x, y)=x^{2}+y^{2}-3 x y$ (see for example [R1]). A dimension vector $\mathbf{d}$ is said to be regular provided $q(\mathbf{d})<0$. There are precisely two $\tau$-orbits of dimension vectors $\mathbf{d}$ with $q(\mathbf{d})=-1$, namely the $\tau$-orbits of $(1,1)$ and $(2,1)$. Similarly, there are precisely two $\tau$-orbits of dimension vectors $\mathbf{d}$ with $q(\mathbf{d})=-4$, namely the $\tau$-orbits of $(2,2)$ and $(4,2)$. The remaining regular dimension vectors $\mathbf{d}$ satisfy $q(\mathbf{d}) \leq-5$.

Corollary. Let $\Lambda=k K(3)$ and ( $x, y$ ) a dimension vector. There exists an elementary module $M$ with dimension vector $(x, y)$ if and only if $q(x, y)$ is equal to -1 or -4 .

Acknowledgment. The author wants to thank Daniel Bissinger, Rolf Farnsteiner and Otto Kerner for fruitful discussions which initiated these investigations.

## 1. The BGP-shift $\sigma$.

Let $\sigma$ denote the BGP-shift of $K_{0}(\Lambda)=\mathbb{Z}^{2}$ given by $\sigma(x, y)=(3 x-y, x)$, and let $\tau=\sigma^{2}$.

We denote by $\sigma, \sigma^{-}$the BGP-shift functors for $\bmod \Lambda$ (they correspond to the reflection functors of Bernstein-Gelfand-Ponomarev in [BGP], but take into account that the opposite of the 3-Kronecker quiver is again the 3-Kronecker quiver). If $M=\left(M_{1}, M_{2} ; \alpha, \beta, \gamma\right)$ is a representation of $Q$, we denote by $(\sigma M)_{1}$ the kernel of the map $[\alpha \beta \gamma]: M_{1}^{3} \rightarrow M_{2}$ and put $(\sigma M)_{2}=M_{1}$; the maps $\alpha, \beta, \gamma:(\sigma M)_{1} \rightarrow(\sigma M)_{2}$ are given by the corresponding projections. Similarly, $\left(\sigma^{-} M\right)_{2}$ is the cokernel of the map $\left[\begin{array}{c}\alpha \\ \beta \\ \gamma\end{array}\right]: M_{1} \rightarrow M_{2}^{3}$ and we put $\left(\sigma^{-} M\right)_{1}=M_{2}$; now the maps $\alpha, \beta, \gamma:\left(\sigma^{-} M\right)_{1} \rightarrow\left(\sigma^{-} M\right)_{2}$ are just the corresponding restrictions. Note that $\sigma^{2}$ is just the Auslander-Reiten translation $\tau$ (we should stress that this relies on the fact that we deal with a quiver without cyclic walks of odd length, see [G]).

Remark. The functors $\sigma$ and $\sigma^{-}$depend on the choice of the basis $\alpha, \beta, \gamma$ of $A$, thus we should write $\sigma=\sigma_{\alpha, \beta, \gamma}$ and $\sigma^{-}=\sigma_{\alpha, \beta, \gamma}^{-}$.

If $N$ is an indecomposable representation of $K(3)$ different from $S(2)$, then $\operatorname{dim} \sigma N=$ $\sigma \operatorname{dim} N$; similarly, if $N$ is indecomposable and different from $S(1)$, then $\operatorname{dim} \sigma^{-} N=$ $\sigma \operatorname{dim} N$ (here, $S(1)$ and $S(2)$ are the simple representations of $K(3)$; they are defined by $\operatorname{dim} S(1)=(1,0), \operatorname{dim} S(2)=(0,1))$.

An indecomposable $\Lambda$-module $M$ is regular if and only if all the modules $\sigma^{n} N$ and $\sigma^{-n} N$ with $n \in \mathbb{N}$ are nonzero. The restriction of $\sigma$ to the full subcategory of all regular modules is a self-equivalence with inverse $\sigma^{-}$and a regular module $M$ is elementary if and only if $\sigma M$ is elementary. We say that an indecomposable representation $M$ of $K(3)$ is of $\sigma$-type $(x, y)$ provided $\operatorname{dim} M$ belongs to the $\sigma$-orbit of $(x, y)$.

In terms of $\sigma$, the main result can be formulated as follows:
Theorem. The elementary $k K(3)$-modules are of $\sigma$-type $(1,1)$ and $(2,2)$. All the indecomposable representations of $\sigma$-type $(1,1)$ are elementary and tree modules. An indecomposable representation of $\sigma$-type $(2,2)$ is either elementary or else a tree module.

The tree modules with dimension vector $(2,2)$ are precisely the representations of the form

for some basis $\alpha, \beta, \gamma$ of $A$.
2. Reduction to the dimension vectors $(x, y)$ with $\frac{2}{3} x \leq y \leq x$.

Let us denote by $\mathbf{R}$ the set of regular dimension vectors. As we have mentioned, $\sigma$ maps $\mathbf{R}$ onto $\mathbf{R}$. There is the additional transformation $\delta$ on $K_{0}(\Lambda)$ defined by $\delta(x, y)=$ $(y, x)$. Of course, it also sends $\mathbf{R}$ onto $\mathbf{R}$. If $M$ is a representation of $Q(3)$, then $\delta(\operatorname{dim} M)=\operatorname{dim} M^{*}$, where $M^{*}$ is the dual representation of $M$ (defined in the obvious way: $\left(M^{*}\right)_{1}$ is the $k$-dual of $M_{2},\left(M^{*}\right)_{2}$ is the $k$-dual of $M_{1}$, the map $\left(M^{*}\right)_{\alpha}$ is the $k$-dual of $M_{\alpha}$, and so on).

Lemma. The subset

$$
\mathbf{F}=\left\{(x, y) \left\lvert\, \frac{2}{3} x \leq y \leq x\right.\right\}
$$

is a fundamental domain for the action of $\sigma$ and $\delta$ on $\mathbf{R}$.
The proof is easy. Let us just mention that $\sigma(3,2)=(2,3)$ and that for $(x, y) \in \mathbf{R}$ with $\sigma(x, y)=\left(x^{\prime}, y^{\prime}\right)$, we have $\frac{y}{x}>\frac{y^{\prime}}{x^{\prime}}$ (this condition explains why we call $\sigma$ a shift).

It follows that for looking at an elementary module, we may use the shift $\sigma$ and duality in order to obtain an elementary module $M$ with $\operatorname{dim} M \in \mathbf{F}$. Here is the set $\mathbf{F}$ :


In the next section 3 , we first will consider the pairs $(x, y) \in \mathbf{F}$ with $y \geq 4$, they are marked by a circle o. Then we deal with the three special pairs $(3,2),(3,3)$ and $(4,3)$ marked by a star $\star$ (actually, instead of $(4,3)$ and $(3,2)$, we will look at $(3,4)$ and $(2,3)$, respectively). As we will see in section 3, all these pairs cannot occur as dimension vectors of elementary modules.

As a consequence, the only possible dimension vectors in $\mathbf{F}$ which can occur as dimension vectors of elementary modules are $(1,1)$ and $(2,2)$; they are marked by a bullet • and will be studied in section 4 .

## 3. Dimension vectors without elementary modules.

Lemma 3.1. Assume that $M$ is a regular module with a proper non-zero submodule $U$ such that both dimension vectors $\operatorname{dim} U$ and $\operatorname{dim} M / U$ are regular. Then $M$ is not elementary.

Proof. This is a direct consequence of the fact that $M$ is elementary if and only if for any submodule $U$ the submodule $U$ is preprojective or the factor module $M / U$ is preinjective, see the Appendix 1.

Lemma 3.2. A 3-Kronecker module $M$ with $\operatorname{dim} M=(x, y)$ such that $2 \leq y \leq x+1$ has a submodule $U$ with dimension vector $(1,2)$.

Proof. Let us show that there are non-zero elements $m \in M_{1}$ and $\alpha \in A$ such that $\alpha m=0$. The multiplication map $A \otimes_{k} M_{1} \rightarrow M_{2}$ is a linear map, let $W$ be its kernel. Since $\operatorname{dim} A=3$, we see that $\operatorname{dim} A \otimes_{k} M_{1}=3 x$. Since $\operatorname{dim} M_{2}=y$, it follows that $\operatorname{dim} W \geq$ $3 x-y$. The projective space $\mathbb{P}\left(A \otimes M_{1}\right)$ has dimension $3 x-1$, the decomposable tensors
in $A \otimes M_{1}$ form a closed subvariety $\mathcal{V}$ of $\mathbb{P}\left(A \otimes M_{1}\right)$ of dimension $(3-1)+(x-1)=x+1$. Since $\mathcal{W}=\mathbb{P}(V)$ is a closed subspace of $\mathbb{P}\left(A \otimes M_{1}\right)$ of dimension $3 x-y-1$, it follows that

$$
\operatorname{dim}(\mathcal{V} \cap \mathcal{W}) \geq(x+1)+(3 x-y-1)-(3 x-1)=x-y+1
$$

By assumption, $x-y+1 \geq 0$, thus $\mathcal{V} \cap \mathcal{W}$ is non-empty. As a consequence, we get non-zero elements $m \in V, \alpha \in A$ such that $\alpha m=0$, as required.

Given non-zero elements $m \in M_{1}$ and $\alpha \in A$ such that $\alpha m=0$, the element $m$ generates a submodule $U^{\prime}$ which is annihilated by $\alpha$, thus $\operatorname{dim} U^{\prime}=(1, u)$ with $0 \leq u \leq 2$. Since $y \geq 2$, there is a semi-simple submodule $U^{\prime \prime}$ of $M$ with dimension vector $(0,2-u)$ such that $U^{\prime} \cap U^{\prime \prime}=0$. Let $U=U^{\prime} \oplus U^{\prime \prime}$. This is a submodule of $M$ with dimension vector $\operatorname{dim} U=\operatorname{dim} U^{\prime} \oplus U^{\prime \prime}=(1,2)$.

Remark. Under the stronger assumption $2 \leq y<x$, we can argue as follows: We have $\langle(1,2),(x, y)\rangle=x+2 y-3 y=x-y>0$, where $\langle-,-\rangle$ is the canonical bilinear form on $K_{0}(\Lambda)($ see $[\mathrm{R} 1])$, thus $\operatorname{Hom}(N . M) \neq 0$ for any module $N$ with $\operatorname{dim} N=(1,2)$ The image of any non-zero map $f: N \rightarrow M$ has dimension vector $(1, u)$ with $0 \leq u \leq 2$.

Lemma 3.3. If $(x, y) \in \mathbf{F}$ and $y \geq 4$, then $(x-1, y-2)$ is a regular dimension vector.
Proof. Since $y \leq x$, we have $y-2 \leq x-1$. On the other hand, the inequalities $y \geq 4$ and $y \geq \frac{2}{3} x$ imply the inequality $y-2 \geq \frac{2}{5}(x-1)$. Thus $\frac{2}{5}(x-1) \leq y-2 \leq x-1$. As a consequence, $(x-1, y-2)$ is a regular dimension vector.

We are now able to provide a proof for the first assertion of the Theorem: The elementary $k K(3)$-modules are of $\sigma$-type $(1,1)$ and $(2,2)$.

Proof. Let $M$ be elementary with dimension vector $\operatorname{dim} M=(x, y) \in \mathbf{F}$. First, assume that $y \geq 4$. According to Lemma 3.2, there is a submodule $U$ with the regular dimension vector $\operatorname{dim} U=(1,2)$. The factor module $M / U$ has dimension vector $(x-1, y-2)$ and $(x-1, y-1)$. According to Lemma 3.3, also $(x-1, y-2)$ is a regular dimension vector. Using Lemma 3.1, we obtain a contradiction.

It remains to show that the dimension vectors $(3,2),(3,3),(4,3)$ cannot occur. Using duality, we may instead deal with the dimension vectors $(2,3),(3,3),(3,4)$. Thus, assume there is given an elementary module $N$ with dimension vector $(2,3),(3,3)$ or $(3,4)$. According to Lemma 3.2, it has a submodule $U$ with dimension vector $(1,2)$. The corresponding factor module $M / U$ has dimension vector $(1,1),(2,1),(2,2)$, respectively. But all these dimension vectors are regular. Again Lemma 3.1 provides a contradiction.
4. The indecomposable modules with dimension vector $(1,1)$ and $(2,2)$.

Dimension vector $(1,1)$. Any indecomposable $\Lambda$-module $M$ with dimension vector $(1,1)$ is of the form
for some basis $\alpha, \beta$, $\gamma$ of $A$, thus a tree module. Namely, $M=P(1) / U$, where $P(1)$ is the indecomposable projective module corresponding to the vertex 1 and $U$ is a two-dimensional submodule of $P(1)$. Actually, we may consider $U$ as a two-dimensional subspace of $P(1)$. Let $\alpha, \beta, \gamma$ be a basis of $A$ such that $U=\langle\beta, \gamma\rangle$.

Of course, any indecomposable $\Lambda$-module with dimension vector $(1,1)$ is elementary.

## The indecomposable $\Lambda$-modules with dimension vector (2,2).

Lemma 4.1. An indecomposable module with dimension vector $(2,2)$ is elementary if and only if it is of the form $X(\alpha, \beta, \gamma)$.

Proof. First we show: The modules $M=X(\alpha, \beta, \gamma)$ are elementary. We have to verify that any non-zero element of $M_{1}$ generates a 3 -dimensional submodule. We see this directly for the elements $(1,0)$ and $(0,1)$ of $M_{1}=k^{2}$. If $(a, b)$ with $a \neq 0, b \neq 0$, then $\beta(a, b)=(b, 0)$ and $\gamma(a, b)=(0, a)$ are linearly independent elements of $M_{2}=k^{2}$. This completes the proof.

Conversely, let $M$ be an elementary module with dimension vector (2,2). Let us show that the restriction of $M$ to any 2-Kronecker subalgebra has 2-dimensional endomorphism ring. Let $\alpha, \beta, \gamma$ be a basis of the arrow space and consider the restriction $M^{\prime}$ of $M$ to the subquiver $K(2)$ with basis $\beta, \gamma$. If $M^{\prime}$ has a simple injective direct summand, then either $M^{\prime}$ is annihilated by $\alpha$, then $M^{\prime}$ is a simple injective submodule of $M$, therefore $M$ is not indecomposable, impossible. If $M^{\prime}$ is not annihilated by $\alpha$, then $M^{\prime}+\alpha\left(M^{\prime}\right)$ is an indecomposable submodule of dimension 2 , thus $M$ is not elementary. Dually, $M^{\prime}$ has no simple projective direct summand. It remains to exclude the case that $M^{\prime}=R \oplus R$ for some simple regular representation $R$ of $K(2)$. Without loss of generality, we can assume that $M^{\prime}$ is annihilated by $\gamma$. Since $M$ is annihilated by $\gamma$, it is just a regular representation of the 2 -Kronecker quiver with arrow basis $\alpha$ and $\beta$. But any 4 -dimensional regular representation of a 2 -Kronecker quiver has a 2 -dimensional regular submodule. This shows that $M$ is not elementary. Altogether we have shown that the restriction of $M$ to any 2 -Kronecker subalgebra has 2-dimensional endomorphism ring.

If $u$ is a non-zero element of $M_{1}$, then $\Lambda u$ contains $M_{2}$ and $\operatorname{dim} \Lambda u=3$. Namely, if $\Lambda u$ is of dimension 1 , then $\Lambda u$ simple injective, thus $M$ cannot be indecomposable. If $\Lambda u$ is of dimension 2 , then $\Lambda u$ is a proper non-zero regular submodule and then $M$ is not elementary. It follows that $\operatorname{dim} \Lambda u=3$ and that $M_{2} \subset \Lambda u$. Given any non-zero element $u \in M_{1}$, there is a non-zero element which annihilates $u$, say $0 \neq \beta \in A$. No element in $A \backslash\langle\beta\rangle$ annihilates $u$, since otherwise the dimension of $\Lambda u$ is at most 2 . Let $u, v$ be a basis of $M_{1}$. Let $\beta, \gamma$ be non-zero elements of $A$ with $\beta(u)=0, \gamma(v)=0$. Then the elements $\beta, \gamma$ are linearly independent, since otherwise we would have $\gamma(u)=0$, thus the submodule $\Lambda u$ would be of dimension at most 2 . The elements $\beta(v), \gamma(u)$ must be linearly independent, since otherwise the restriction of $M$ to $\beta, \gamma$ would be the direct sum of a simple projective and an indecomposable injective. We take $\beta(v), \gamma(u)$ as an ordered basis of $M_{2}=k^{2}$, so that $\beta(v)=(1,0)$ and $\gamma(u)=(0,1)$. Choose an element $\alpha \in A \backslash\langle\beta, \gamma\rangle$, thus $\alpha, \beta, \gamma$ is a basis of $A$. Let $\alpha(u)=(\kappa, \lambda)$ and $\alpha(v)=(\mu, \nu)$ with $\kappa, \lambda, \mu, \nu$ in $k$. Since $\alpha(u)$ cannot be a multiple of $\gamma(u)=(0,1)$, we see that $\kappa \neq 0$. Since $\alpha(v)$ cannot be a multiple of
$\beta(v)=(1,0)$, we see that $\nu \neq 0$. Let $\alpha^{\prime}=\alpha-\mu \beta-\lambda \gamma$. Then

$$
\begin{aligned}
\alpha^{\prime}(u) & =\alpha(u)-\mu \beta(u)-\lambda \gamma(u)=(\kappa, \lambda)-(0,0)-\lambda(0,1)=(\kappa, 0), \\
\alpha^{\prime}(v) & =\alpha(v)-\mu \beta(v)-\lambda \gamma(v)=(\mu, \nu)-\mu(1,0)-(0,0)=(0, \nu) .
\end{aligned}
$$

Let $\beta^{\prime}=\kappa \beta$ and $\gamma^{\prime}=\nu \gamma$. Then we have

$$
\begin{array}{ll}
\beta^{\prime}(u)=(0,0), & \beta^{\prime}(v)=(\kappa, 0) \\
\gamma^{\prime}(u)=(0, \nu), & \gamma^{\prime}(v)=(0,0)
\end{array}
$$

Altogether, we see that


Since both elements $\kappa$ and $\nu$ are non-zero, the elements $(\kappa, 0)$ and $(0, \nu)$ form a basis of $k^{2}$, and $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ form a basis of $A$. Thus $M$ is isomorphic to $X\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$. This completes the proof.

Lemma 4.2. A tree module with dimension vector $(2,2)$ cannot be elementary.
Proof. If $M$ is a tree module with dimension vector (2,2), then the coefficient quiver has to be of the form


But then $M$ has a submodule $U$ such that both $U$ and $M / U$ have dimension vector (1,1).
Lemma 4.3. If $M$ is indecomposable with dimension vector $(2,2)$ and not elementary, then $M$ is of one of the following forms

for some basis $\alpha, \beta, \gamma$ of $A$.
Proof. Let $M$ be indecomposable with dimension vector $(2,2)$. If $M$ is not faithful, say annihilated by $0 \neq \gamma \in A$, then $M$ is a $K(2)$-module and therefore as shown on the right.

Now assume that $M$ is faithful, and not elementary. Since $M$ is not elementary, there is an element $0 \neq u \in M_{1}$ such that $\Lambda u$ has dimension vector $(1,1)$. The annihilator $B$ of $u$ is a 2-dimensional subspace of $A$. Let $v \in M_{1} \backslash\langle u\rangle$. Since $M$ is indecomposable, we see that $\Lambda v$ has to be 3 -dimensional and there is a non-zero element $\alpha \in A$ with $\alpha v=0$. Since $M$ is faithful, $\alpha(u) \neq 0$. Also, since $M$ is faithful, we have $B v=M_{2}$. Thus, there is $\beta \in B$ with $\beta(v)=\alpha(u)$. Let $\gamma \in B \backslash\langle\beta\rangle$. Then $\alpha(u), \beta(\gamma)$ is a basis of $M_{2}$. With respect to the
basis $\alpha, \beta, \gamma$ of $A$, the basis $u, v$ of $M_{1}$ and the basis $\alpha(u), \beta(\gamma)$ of $M_{2}$, the module $M$ has the form as depicted on the left.

## 5. The structure of the modules $\sigma^{t} X(\alpha, \beta, \gamma)$.

The 3-Kroncker modules $I_{i}=\sigma^{i} S(2)$ are the preinjective modules, see [FR1].
Proposition. For $t \geq 1$, there is an exact sequence

$$
0 \rightarrow X(\alpha, \beta, \gamma) \rightarrow \sigma^{t} X(\alpha, \beta, \gamma) \rightarrow \bigoplus_{0 \leq i<t} I_{i}^{2} \rightarrow 0
$$

Proof. First we consider the case $t=1$. There is an obvious embedding of $X(\alpha, \beta, \gamma)$ into $Y(\alpha, \beta, \gamma)=\sigma X(\alpha, \beta, \gamma)$, thus there is an exact sequence of the form

$$
0 \rightarrow X(\alpha, \beta, \gamma) \rightarrow Y(\alpha, \beta, \gamma) \rightarrow S(2)^{2} \rightarrow 0
$$

Now we use induction. We start with the sequence

$$
0 \rightarrow X(\alpha, \beta, \gamma) \rightarrow \sigma^{t} X(\alpha, \beta, \gamma) \rightarrow \bigoplus_{0 \leq i<t} I_{i}^{2} \rightarrow 0
$$

for some $t \geq 1$ and apply $\sigma$. In this way, we obtain the sequence

$$
0 \rightarrow \sigma X(\alpha, \beta, \gamma) \rightarrow \sigma^{t+1} X(\alpha, \beta, \gamma) \rightarrow \bigoplus_{1 \leq i \leq t} I_{i}^{2} \rightarrow 0
$$

This shows that $M=\sigma^{t+1} X(\alpha, \beta, \gamma)$ has a submodule $U$ isomorphic to $\sigma X(\alpha, \beta, \gamma)$, with $M / U$ isomorphic to $\bigoplus_{1 \leq i \leq t} I_{i}{ }^{2}$. But the case $t=1$ shows that $U$ has a submodule $U^{\prime}$ isomorphic to $X(\alpha, \beta, \gamma)$ with $U / U^{\prime}$ isomorphic to $S(2)^{2}=I_{0}{ }^{2}$. The embedding of $U / U^{\prime}$ into $M / U^{\prime}$ has to split, since $I_{0}$ is injective. This completes the proof.

## Appendix 1. Elementary modules.

According to $[\mathrm{K}]$, Proposition 4.4, a regular representation $M$ is elementary if and only if for any nonzero regular submodule $U$ of $M$, the factor module $M / U$ is preinjective. Let us include the proof of a slight improvement of this criterion.

We deal with the general setting where $\Lambda$ is a hereditary artin algebra.
Proposition. Let $M$ be non-zero regular module $M$. Then $M$ is elementary if and only if given any submodule $U$ of $M$, the submodule $U$ is preprojective or the factor module $M / U$ is preinjective.

Proof. Let $M$ be non-zero and regular. First, assume that for any submodule $U$ of $M$, the submodule $U$ is preprojective or the factor module $M / U$ is preinjective. Then $M$ cannot be a proper extension of regular modules, thus $M$ is elementary.

Conversely, let $M$ be elementary. Let $U$ be a submodule which is not preprojective. Since $M$ has no non-zero preinjective submodules, we can write $U=U_{1} \oplus U_{2}$ with $U_{1}$ preprojective and $U_{2}$ regular. Since $U$ is not preprojective, we know that $U_{2}$ is nonzero. Since $M$ has no non-zero preprojective factor modules, we decompose $M / U_{2}$ as a direct sum of a regular and a preinjective module: there are submodules $V_{1}, V_{2}$ of $M$ with $V_{1} \cap V_{2}=U, V_{1}+V_{2}=M$ (thus $M / U=V_{1} / U_{2} \oplus V_{2} / U_{2}$ ) such that $V_{1} / U_{2}$ is regular, and $V_{2} / U_{2}$ is preinjective.

Consider $V_{2}$. First of all, $V_{2} \neq 0$, since $U_{2}$ is a non-zero submodule of $V_{2}$. Second, we claim that $V_{2}$ is regular. Namely, $V_{2}$ is an extension of the regular module $U_{2}$ by the preinjective module $V_{2} / U_{2}$, thus is has no non-zero preprojective factor module. Thus, we can decompose $V_{2}=W_{1} \oplus W_{2}$ with $W_{1}$ regular, $W_{2}$ preinjective. But $W_{2}$ is a preinjective submodule of $M$, therefore $W_{2}=0$. This shows that $V_{2}=W_{1}$ is regular.

On the other hand, $W / V_{2}$ is isomorphic to $V_{1} / U_{2}$, thus regular. But since $M$ is not a proper extension of regular modules, it follows that $W / V_{2}=0$, thus $V_{2}=M$. Therefore $M / U_{2}=V_{2} / U_{2}$ is preinjective. But $M / U=M /\left(U_{1}+U_{2}\right)$ is a factor module of $M / U_{2}$, and a factor module of a preinjective module is preinjective. This shows that $M / U$ is preinjective.

The definition of an elementary module implies that any regular module has a filtration by elementary modules. But such filtrations are not at all unique. This is well-known, but we would like to mention that the 3 -Kronecker modules provide examples which are easy to remember. Here is the first such example $M$ :


On the right we see that $X(\alpha, \beta, \gamma)$ is a factor module, and the corresponding kernel is $B(\gamma)$ (it is generated by the first base vector of $M_{1}$ ). On the other hand, on the left we see that $V(\beta, \gamma)$ is a factor module, and the corresponding kernel has dimension vector $(1,2)$ (it is generated by the last base vector of $M_{1}$ ).

Here is the second example $N$ :


On the right we see again that $X(\alpha, \beta, \gamma)$ is a submodule, and the corresponding factor module is $V(\alpha, \beta)$ (generated by the first two base vectors of $N_{1}$ ). On the other hand, going from left to right, we see that the module has a filtration whose lowest two factors are of the form $B(\beta)$, whereas the upper factor is $V(\alpha, \gamma)$ (generated by the last two base vectors of $N_{1}$ ).

## Appendix 2: The representations of the 2-Kronecker quiver.

Proposition. Any indecomposable $K(2)$-module is a tree module (with respect to some basis of the arrow space of $K(2))$, and its coefficient quiver is of type $\mathbb{A}$.

Proof. The preprojective and the preinjective modules are exceptional modules, thus they are tree modules with respect to any basis. The remaining indecomposable representations of $K(2)$ are of the form $R[t]$ where $R$ is simple regular, and $R[t]$ denotes the indecomposable regular module of dimension 2 t with regular socle $R$. We may choose a basis of the arrow space such that $R$ is isomorphic to $(k, k ; 1,0)$. Then $R[t]$ is a tree module such that the underlying graph of the coefficient quiver is of type $\mathbb{A}_{2 t}$.

## References

[BGP] I. N. Bernstein, I. M. Gelfand, V. A. Ponomarev: Coxeter functors, and Gabriel's theorem. Russian mathematical surveys 28 (2) (1973), 17-32.
[FR1] Ph. Fahr, C. M. Ringel: A partition formula for Fibonacci numbers. Journal of Integer Sequences, Vol. 11 (2008)
[FR2] Ph. Fahr, C. M. Ringel: Categorification of the Fibonacci Numbers Using Representations of Quivers. Journal of Integer Sequences. Vol. 15 (2012), Article12.2.1
[FR3] Ph. Fahr, C. M. Ringel: The Fibonacci partition triangles. Advances in Mathematics 230 (2012)
[G] P. Gabriel: Auslander-Reiten sequences and representation-finite algebras. Spinger LNM 831 (1980), 1-71.
[K] O. Kerner: Representations of wild quivers. CMS Conf. Proc., vol. 19. Amer. Math. Soc., Providence, RI (1996), 65-.. 107
[KL] O. Kerner, F. Lukas: Elementary Modules, Math.Z. 223(1996),21-434.
[L] F. Lukas: Elementare Moduln über wilden erblichen Algebren. Dissertation, Düsseldorf (1992).
[R1] C. M. Ringel: Representations of $K$-species and bimodules. Representations of Kspecies and bimodules. J. Algebra 41 (1976), 269-302.
[R2] C. M. Ringel: Exceptional modules are tree modules. Lin. Alg. Appl. 5-276 (1998),471-493.
[R3] C. M. Ringel: Distinguished bases of exceptional modules In Algebras, quivers and representations. Proceedings of the Abel symposium 2011. Springer Series Abel Symposia Vol 8. (2013) 253-274.
[R4] C. M. Ringel: Kronecker modules generated by modules of length 2. arXiv:1612.07679.

Claus Michael Ringel
Fakultät für Mathematik, Universität Bielefeld D-33501 Bielefeld, Germany

Department of Mathematics, Shanghai Jiao Tong University
Shanghai 200240, P. R. China.
e-mail: ringel@math.uni-bielefeld.de

