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Abstract. Let ∆ be a wild connected directed quiver. We show
that any generic representation M is the union of its subrepresentations
of finite length which are regular. As a consequence, we see that the
direct limit closure of the preprojective component does not contain any
generic module.

Let ∆ be a finite quiver which is connected and directed. We consider representations
of ∆ with coefficients in the field k, or, what is the same, Λ-modules, where Λ = k∆ is
the path algebra of ∆. Note that the path algebra of a quiver is hereditary, and since we
assume that ∆ is directed, Λ is finite-dimensional.

Given a module M , let E(M) = End(M)op. We may consider M as an E(M)-module.
The module M is said to be endo-finite, provided it is of finite length when considered as
an E(M)-module.

Theorem. Let ∆ be a connected directed finite quiver. Let M be an indecomposable

endo-finite representation of infinite length. If ∆ is wild, then M is the union of its

subrepresentations of finite length which are regular.

Corollary. Let ∆ be a connected directed finite quiver. If ∆ is wild, then the direct

limit closure of the preprojective component contains no indecomposable endo-finite modules

of infinite length.

This answers a question raised by Henning Krause, see [K] for consequences. Inde-
composable endo-finite modules of infinite length are sometimes called generic modules.
If ∆ is representation-finite, then there is no generic module. If ∆ is tame, then there is
a unique generic module M and Hom(R,M) = 0 for any finite length module R which is
regular. In this case, M is in the direct limit closure of the preprojective component.

The main tool for the proof is the endo-length vector DimM of an endo-finite module
M which will be introduced in section 2. In section 3, we first will show that given a generic
module M , there is a regular module R with Hom(R,M) 6= 0, and we use this result in
order to provide the proof of the Theorem.

Acknowledgment. The author is indebted to O. Kerner and H. Krause for helpful
comments concerning the presentation of the results.
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1. Preliminaries on finite length modules.

Let ∆0 be the set of vertices, ∆1 the set of arrows of the quiver ∆. Given an arrow α, let
s(α) be its starting vertex, t(α) its terminal vertex. Let Λ = k∆ and ModΛ be the category
of Λ-modules, and modΛ the full subcategory of all Λ-modules of finite length. We denote
by K0(Λ) the Grothendieck group of modΛ (with respect to all exact sequences), we may
identify it with the set of functions ∆0 → Z, thus with Z

n if ∆0 has cardinality n. Given
a module M of finite length, the corresponding element in K0(Λ) is called its dimension
vector and denoted by dimM , the coefficient (dimM)i for i ∈ ∆0 is the Jordan-Hölder
multiplicity of the simple module S(i) in M . For x = (xi)i, y = (yi)i ∈ K0(Λ), one defines

〈x, y〉 =
∑

i∈∆0

xiyi −
∑

α∈∆1

xs(α)yt(α),

and one obtains in this way an integral bilinear form 〈−,−〉 on K0(Λ). Since

〈dimX,dimY 〉 = dimk Hom(X, Y )− dimk Ext
1(X, Y ),

(and Exti(X, Y ) = 0 for i ≥ 2) the form 〈−,−〉 is called the Euler form.
We denote by τ the Auslander-Reiten translation on the category of modΛ. Recall

that an indecomposable module X of finite length is called preprojective or preinjective
provided τ tX = 0 or τ−tX = 0, respectively, for some natural number t. A module will be
said to be regular provided it has finite length and has no indecomposable direct summand
which is preprojective or preinjective. We denote by Φ the Coxeter transformation on
K0(Λ), it is a linear transformation and dim τX = ΦdimX for any indecomposable
non-projective module X of finite length.

We say that a module X is in general position provided X = X ′ ⊕ X ′′ implies that
Ext1(X ′, X ′′) = 0. If x is a dimension vector, then the modules X with dimX = x such
that dimk End(X) is minimal, are in general position.

Lemma 1. The following conditions are equivalent for x ∈ K0(Λ).
(i) Φt(x) ≥ 0 for all t ∈ Z.

(ii) The finite length modules in general position with dimension vector x are regular.

(iii) There exists a regular module with dimension vector x.

Note that in (iii) we cannot expect that there exists a regular module which is indecom-
posable, typical examples are the elements in the Φ-orbits of (1, 1, 0, 1, 1) and (1, 1, 3, 1, 1)
for the quiver

◦ ◦ ◦ ◦ ◦...................................................................
...................................................................

................................................................... ...................................................................

...................................................................

...................................................................

Let us call x ∈ K0(Λ) regular provided the equivalent conditions of Lemma 1 are satisfied.

Proof of Lemma 1: (i) =⇒ (ii): Let X be a module in general position and dimX =
x. Let us assume that X has an non-zero preprojective direct summand, say let X =
X ′ ⊕ τ−tP , where P is a non-zero projective module, t ≥ 1. We can assume that X ′ has
no non-zero direct summand of the form τ−sP ′ with P ′ projective and 0 ≤ s ≤ t. With X
also τ tX = τ tX ′ ⊕ P is in general position, thus

0 = Ext1(τ tX ′, P ) = DHom(P, τ t+1X ′)
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(here, D denotes the k-duality). This means that (dim τ t−1X ′)j = 0 for every vertex j
such that the corresponding indecomposable projective module P (j) is a direct summand
of P . Now

Φt+1 dimX = Φt+1 dimX ′ − dim νP = dim τ t−1X ′ − dim νP,

where ν is the Nakayama functor (it sends P (i) to the corresponding indecomposable
injective module I(i)). Since P is non-zero, there is a vertex j such that P (j) is a direct
summand of P , therefore I(j) is a direct summand of νP . Since (dim τ t−1X ′)j = 0 and
(dim νP )j > 0, we see that Φt+1 dimX has a negative coefficient.

Using duality, we similarly see that X has no indecomposable preinjective direct sum-
mand. Therefore X is regular.

(iii) =⇒ (i) follows from the fact that for a regular module R, also τR and τ−R are
regular and Φ(dimR) = dim τR and Φ−1(dimR) = dim τ−R.

Lemma 2. Let x be a non-zero regular element of K0(Λ). Then 〈Φ−tx, x〉 > 0 for

t ≫ 0.

Proof: Let X be a non-zero regular module with dimX = x and apply Baer [B],
Proposition 2.1 for X = S.

2. The endo-length vector DimM of an endo-finite module M .

In [R3], for any endo-finite module M whose endomorphism ring is a division ring an
element DimM inK0(Λ) has been defined (in a similar setting, Lenzing [L] has called such
an invariant DimM the “characteristic class” of M). We extend the definition from [R3]
to arbitrary endo-finite modules. Note that for any representation M = (Mi,Mα) of ∆, the
vector spaces Mi are E(M)-modules. If M is endo-finite, all the E(M)-modules Mi have
finite length |E(M)Mi| and |E(M)M | =

∑
i∈∆0

|E(M)Mi|. We introduce the endo-length

vector DimM as the function ∆0 → Z with

(DimM)i = |E(M)Mi|,

thus DimM is an element of K0(Λ).

Remark. If M is an indecomposable module of finite length, then both dimM
and DimM are defined, and are multiples of each other, namely we have dimM =
dimk EndM · DimM , where EndM = EndM/ radEndM. Of course, in case k is an al-
gebraically closed field, EndM = k for all indecomposable modules M , thus dimM =
DimM . But if k is not algebraically closed, then already for the Kronecker quiver there
exist indecomposable modules of finite length with dimk EndM > 1.

Recall that Bernstein-Gelfand-Ponomarev [BGP] have defined reflection functors. If i
is a vertex of ∆, the quiver σi∆ is obtained from ∆ by changing the orientation of all the
arrows starting or ending in i. Given a sink i of the quiver, there is the reflection functor
σi : Mod k∆ → Mod k(σi∆), it provides an equivalence between the full subcategory of
Mod k∆ of all k∆-modules without direct summands S(i) and the full subcategory of
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Mod k(σi∆) of all k(σi∆)-modules without direct summands S(i). Similarly, for i a sink,
there is the corresponding reflection functor σi : Mod k∆ → Mod k(σi∆). In addition, we
also denote by σi the reflection σi : Z

n → Z
n such that dimσiM = σi dimM for any finite

length module M without a direct summand of the form S(i) (and i a sink or a source).

Lemma 3. Let M be a generic module. If i is a sink of the quiver ∆, then DimσiM =
σi DimM. If i is a source of the quiver ∆, then Dimσ−

i M = σi DimM.

Proof: We only discuss the case of i being a sink. By definition, (σiM)i is the kernel
of the map ⊕

t(α)=i

Ms(α) → Mi

whose restriction to Ms(α) is Mα. Since M has no direct summand of the form S(i), this
map is surjective. Also, this is an E(M)-module homomorphism. Altogether, we see that
we deal with the exact sequence

0 → (σiM)i →
⊕

t(α)=i

Ms(α) → Mi → 0

of E(M)-modules. Looking at the length of these E(M)-modules, we have

|E(M)(σiM)i| =
∑

t(α)=i

|E(M)Ms(α| − |E(M)Mi| = (σi DimM)i.

This shows that Dimσi(M) = σi DimM.

If we label the vertices of ∆ as ∆0 = {1, 2, . . . , n} so that there is no arrow i → j
for i ≤ j, then the composition Φ = σn · · ·σ1 of the reflection functors σi is defined and
is called Coxeter functor, the corresponding composition Φ = σn · · ·σ1 of the reflections
σi : Z

n → Z
n is the Coxeter transformation mentioned already.

Lemma 4. Let M be a generic module. Then ΦM, Φ−1M are generic modules and

DimΦM = ΦDimM, DimΦ−1M = Φ−1 DimM.

Proof. This follows immediately from the fact that M has no non-zero projective
direct summands.

Lemma 5. Let M be a generic module. Then DimM is a non-zero regular element

of K0(Λ).

Proof: Let x = DimM . According to Lemma 4, all the vectors Φtx are endo-length
vectors of non-zero modules, thus non-negative.

Lemma 6. Let X be of finite length and M endo-finite. Then there is an exact

sequence of E(M)-modules

0 −→ Hom(X,M) →
⊕

i

Homk(Xi,Mi)
δXM−−−→

⊕

α

Homk(Xs(α),Mt(α)) −→ Ext1(X,M) −→ 0.
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Proof. Let us refer to [R1] where the special case of both X,M being of finite length
has been considered, but without taking into account the E(M)-module structure. As in
the special case, the map δXM is defined in general as follows: it sends an element f = (fi)i
with fi ∈ Homk(Xi,Mi) to δXM (f) with components (δXM (f))α = ft(α)Xα − Mαfs(α).
It is clear that this map is an E(M)-homomorphism. Now it is trivial to verify that the
kernel of δXM is just Hom(X,M), thus only the assertion that the cokernel of δXM is equal
to Ext1(X,M) has to be shown. The proof given in [R1] remains true in our more general
setting.

As an immediate consequence we obtain:

Lemma 7. Let X be of finite length and M endo-finite. Then

〈dimX,DimM〉 = |E(M) Hom(X,M)| − |E(M) Ext
1(X,M)|.

Proof: Let dimX = x. Note that for any d-dimensional vector space V , we have
|E(M) Homk(V,Mi)| = d|E(M)Mi|. The direct sum decompositions

⊕
iHomk(Xi,Mi) and⊕

α Homk(Xs(α),Mt(α)) are direct sums of E(M)-modules, thus, using Lemma 6, we have

|E(M) Hom(X,M)| − |E(M) Ext
1(X,M)|

=
∑

i

|E(M) Homk(Xi,Mi)| −
∑

α

|E(M) Homk(Xs(α),Mt(α))|

=
∑

i

xi|E(M)Mi| −
∑

α

xs(α)|E(M)Mt(α)|

= 〈dimX,DimM〉

This implies:

Lemma 8. Let X be of finite length and M endo-finite. If 〈dimX,DimM〉 > 0,
then Hom(X,M) 6= 0.

We should note that for Lemma 8, we only need the trivial part of Lemma 6: that the
kernel of δXM is equal to Hom(X,M). Namely, if 〈dimX,DimM〉 > 0, then δXM cannot
be a monomorphism, thus the kernel of δXM is non-zero.

3. Proof of Theorem.

Lemma 9. A generic module M has indecomposable regular submodules, but no

indecomposable preinjective submodules.

Proof. If X is an indecomposable preinjective module and N is any indecomposable
module with Hom(X,N) 6= 0, then also N is preinjective (see for example [R2]). This
shows that a generic module M has no indecomposable preinjective submodule

Let x = DimM . Then x is a non-zero regular element of K0(Λ), according to Lemma
5. According to Lemma 2, we have 〈Φ−tx, x〉 > 0 for some t ≥ 0. With x also Φ−tx is a
regular element of K0(Λ), thus according to Lemma 1, there is a regular module R with
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dimR = Φ−tx. According to Lemma 8, we have Hom(R,M) 6= 0. Let φ : R → M be
a non-zero homomorphism and let X be the image of φ. As a factor module of R, the
module X is a direct sum of indecomposable modules which are preinjective or regular.
But as we have noted, M has no preinjective submodules, thus X is regular and of course
non-zero.

Here is now the proof of Theorem. Let M be an indecomposable endo-finite module
of infinite length. Let R(M) be the sum of all regular submodules (since the sum of two
regular submodules is again regular, this actually is the union of all regular submodules).
According to Lemma 9, we know that R(M) 6= 0. Of course, R(M) is a Λ-submodule: if
M ′ is a regular submodule and φ an endomorphism of M , then also φ(M) is regular. Let
us consider the factor module M/R(M). Since R(M) is both a Λ-submodule as well as an
E(M)-submodule, it follows that M/R(M) is endo-finite.

We claim that any indecomposable submodule of M/R(M) of finite length is pre-
projective. Consider a finite length submodule U of M/R(M) which is regular or prein-
jective. Then there is a finite length submodule M ′ of M such that the canonical map
M ′ ⊂ M → M/R(M) maps onto U . Since R(M) is the filtered union of regular modules,
and M ′ ∩ R(M) is a finite length submodule of R(M), there is a regular submodule M ′′

of R(M) which contains M ′ ∩ R(M). It follows from M ′ ∩ R(M) ⊆ M ′′ ⊆ R(M) that
M ′ ∩M ′′ = M ′ ∩R(M), thus

(M ′ +M ′′)/M ′′ ≃ M ′/(M ′ ∩M ′′) = M ′/(M ′ ∩R(M) ≃ U.

This shows that M ′ +M ′′ is an extension of the regular module M ′′ by the finite length
module U which is regular or preinjective, thus M ′ +M ′′ is a direct sum of regular and
preinjective modules. Clearly,M has no non-zero preinjective submodules, thusM ′+M ′′ ⊆
R(M). But M ′ ⊆ R(M) implies that the image U of the canonical map M ′ ⊂ M →
M/R(M) is zero.

Since M/R(M) is endo-finite, it is a direct sum of copies of a finite number of inde-
composable endo-finite modules, say N1, . . . , Nt. As we have shown, none of the modules
Ni can be regular or preinjective. Also, if Ni has infinite length, then according to Lemma
9 the module Ni has a non-zero regular submodule, but this is impossible. This shows that
all the modules Ni are preprojective. But this implies that R(M) is a direct summand of
M , see for example [R2]. Since M is indecomposable, we conclude that M = R(M).

As Krause has pointed out, R(M) is the torsion submodule of M for a torsion pair
and R(M) is a pure submodule of M . Thus, if M is indecomposable and endo-finite, then
either R(M) = 0 or R(M) = M.
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4. Remarks.

(1) A question. It seems to be of interest to determine the set of endo-length vectors
of the generic modules. One may conjecture that it is the set of all positive imaginary roots
which are not proper multiples of zero roots. (Here, we call a root x a zero root provided
〈x, x〉 = 0.)

(2) Hereditary artin algebras. The assertions of Theorem and its Corollary are
true in the more general setting of dealing with an arbitrary hereditary artin algebra Λ,
and not just the path algebras of finite directed quivers. Namely: If Λ is a wild connected

hereditary artin algebra, then any generic module is the union of its regular submodules

and the limit closure of the preprojective component does not contain any generic module.

The proof of the general result follows the given one, step by step, only few alterations
are necessary. The actual calculations depend on the decision which kind of dimension
vectors for finite length modules one wants to use. There are two obvious choices. Let
Λ be a k-algebra, where k is a commutative artinian ring such that Λ is a finite length
k-module, and let M be a Λ-module of finite length. First of all, one may look at the
equivalence class dimM of M in K0(Λ), this means that the coefficient (dimM)i is just
the Jordan-Hölder multiplicity of S(i) in M . But one may also take the vector dimk M
with coefficient (dimk M)i being the length of Mi as a k-module. Of course, for the path
algebra Λ = k∆ of a directed quiver ∆, we have dim = dimk, but in general dimk is
obtained from dim by a non-trivial diagonal linear transformation: we have to multiply
the coefficient (dimM)i by dimk S(i).
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