Quiver Grassmannians for Wild Acyclic Quivers

Claus Michael Ringel

Abstract

A famous result of Zimmermann-Huisgen, Hille and Reineke asserts that any projective variety occurs as a quiver Grassmannian for a suitable representation of some wild acyclic quiver. We show that this happens for any wild acyclic quiver.

Let k be an algebraically closed field, and Q a finite acyclic quiver. The modules which we consider are the (finite-dimensional) $k Q$-modules, where $k Q$ is the path algebra of Q, thus the (finite-dimensional) representations of Q (with coefficients in k). We denote by $\bmod k Q$ the corresponding module category.

Let M be a representation of Q and \mathbf{d} a dimension vector for Q. The quiver Grassmannian $\mathbb{G}_{\mathbf{d}}(M)$ is the set of submodules of M with dimension vector $\operatorname{dim} M=\mathbf{d}$; this is a projective variety. A famous result of Zimmermann-Huisgen, Hille and Reineke asserts that any projective variety occurs as the quiver Grassmannian for a representation of some wild acyclic quiver Q, see for example [R2]. We are going to show:

Theorem. Let Q be any wild acyclic quiver. Any projective variety occurs as a quiver Grassmannian $\mathbb{G}_{\mathbf{d}}(M)$ for some representation M of Q and some dimension vector \mathbf{d}.

Typical wild acyclic quivers are the Kronecker quivers $Q=K(n)$ with $n \geq 3$ (the Kronecker quiver $K(n)$ has two vertices 1 and 2 and n arrows pointing from 2 to 1). A representation of $K(n)$ will be said to be reduced provided N has no simple injective direct summand. In [R3] we have shown that for any projective variety \mathcal{V} there is a natural number n (depending on \mathcal{V}) such that \mathcal{V} can be realized as the quiver Grassmannian $\mathbb{G}_{(1,1)}(N)$ of a reduced representation N of $K(n)$ (see also $[\mathrm{H}]$). Our present investigation relies on this special case.

Note that the elements of $\mathbb{G}_{(1,1)}(N)$ are certain submodules of N of length 2, and all the indecomposable submodules of length 2 belong to $\mathbb{G}_{(1,1)}(N)$. We call indecomposable modules of length 2 bristles. For any representation N of $K(n)$, the set $\beta(N)$ of bristle submodules of N is an open subset of $\mathbb{G}_{(1,1)}(N)$ which we call the bristle variety of N. In general, $\beta(N)$ is a proper subset of $\mathbb{G}_{(1,1)}(N)$, but for a reduced representation N, we have $\beta(N)=\mathbb{G}_{(1,1)}(N)$.

The procedure of the present paper is as follows: Given any wild acyclic quiver Q, and a natural number m, we will construct for some $n \geq m$ an orthogonal pair X, Y of bricks with $\operatorname{dim} \operatorname{Ext}^{1}(Y, X)=n$ (a brick is a module with endomorphism ring k and X, Y are said to be orthogonal provided $\operatorname{Hom}(X, Y)=0=\operatorname{Hom}(Y, X))$. Always, \mathbf{x} and \mathbf{y} will denote the dimension vectors of X and Y, respectively. Let $\mathcal{E}=\mathcal{E}(Y, X)$ be the full subcategory of all $k Q$-modules M with an exact sequence of the form

$$
0 \rightarrow X^{a} \rightarrow M \rightarrow Y^{b} \rightarrow 0,
$$

where a, b are natural numbers. Note that \mathcal{E} is equivalent to $\bmod k K(n)$ with an equivalence being given by an exact fully faithful functor

$$
\eta: \bmod k K(n) \rightarrow \bmod k Q
$$

with image \mathcal{E}. We say that a module M in \mathcal{E} is \mathcal{E}-reduced provided it has no direct summand isomorphic to Y, thus provided it is the image of a reduced $k K(n)$-module under η.

An indecomposable $k Q$-module U will be called an \mathcal{E}-bristle provided there is an exact sequence of the form $0 \rightarrow X \rightarrow U \rightarrow Y \rightarrow 0$, thus provided U is the image of a bristle in $\bmod k K(n)$ under η. For any $k K(n)$-module N with $M=\eta N$, the functor η identifies the bristle variety $\beta(N)$ of N with the set $\beta_{\mathcal{E}}(M)$ of submodules of M which are \mathcal{E}-bristles. Since \mathcal{E}-bristles have dimension vector $\mathbf{x}+\mathbf{y}$, we have $\beta_{\mathcal{E}}(M) \subseteq \mathbb{G}_{\mathbf{x}+\mathbf{y}}(M)$. It remains to find conditions such that any submodule U of M with dimension vector $\mathbf{x}+\mathbf{y}$ is indeed an \mathcal{E}-bristle.

To be precise, we are looking for $k Q$-modules X, Y so that the following closure condition (C) is satisfied:
(C) If M is an \mathcal{E}-reduced module in $\mathcal{E}(Y, X)$ and U is a submodule of M with $\operatorname{dim} U=$ $\mathbf{x}+\mathbf{y}$, then U is an \mathcal{E}-bristle.

If the condition (C) is satisfied, then for any reduced representation N of $K(n)$, there is a canonical bijection between $\mathbb{G}_{(1,1)}(N)$ and $\mathbb{G}_{\mathbf{x}+\mathbf{y}}(M)$, where $M=\eta N$. Namely, if B is a submodule of the $k K(n)$-module N with $\operatorname{dim} B=(1,1)$, then ηB is a submodule of M with dimension vector $\mathbf{x}+\mathbf{y}$. Conversely, if U is a submodule of M with $\operatorname{dim} U=\mathbf{x}+\mathbf{y}$, then, by condition (C), U belongs to $\mathcal{E}(Y, X)$, say $U=\eta B$ for some $K(n)$-submodule B and the dimension vector of B is $(1,1)$.

The minimal wild acyclic quivers.

As we have mentioned, our aim is to exhibit for any wild acyclic quiver Q and any natural number m an orthogonal pair X, Y of $k Q$-modules which are bricks such that $\operatorname{dim}_{k} \operatorname{Ext}^{1}(Y, X)=n \geq m$ and such that the condition (C) is satisfied. Of course, it is sufficient to deal with minimal wild acyclic quivers. (We recall that a quiver Q is wild provided it is not the disjoint union of Dynkin and Euclidean quivers, and Q is said to be minimal wild provided it is wild, and no quiver obtained from Q by deleting a vertex or an arrow is wild.)

The following well-known proposition suggests to deal with two different cases.
Proposition. A minimal wild acyclic quiver Q different from $K(3)$ is obtained from a Euclidean quiver Q^{\prime} by adding a vertex ω and a single arrow which connects ω with some vertex of Q^{\prime} (in particular, ω is a sink or a source).

Sketch of proof. If Q has cycles, then there is a subquiver Q^{\prime} of type $\widetilde{\mathbb{A}}_{n}$ for some n such that Q^{\prime} is obtained from Q by deleting one vertex and one arrow.

Now assume that Q is a tree. If there is a vertex with at least four neighbors, then Q^{\prime} is obtained from a quiver of type $\widetilde{\mathbb{D}}_{4}$ by deleting one vertex and one arrow. If Q has two vertices which have three neighbors each, then Q^{\prime} is obtained from a quiver of type $\widetilde{\mathbb{D}}_{n}$ with $n \geq 5$ by deleting one vertex and one arrow. If Q has is a star with three arms,
then Q^{\prime} is obtained from a quiver of type $\widetilde{\mathbb{E}}_{m}$ with $m=6,7,8$ by deleting one vertex and one arrow.

Case 1. One-point extensions of representation-infinite quivers.

We assume now that Q is a connected quiver with a vertex ω which is a sink or a source such that the quiver Q^{\prime} obtained from Q by deleting ω and the arrows which start or end in ω is connected and representation-infinite. Up to duality, we can assume that ω is a source, thus there is an arrow $\omega \rightarrow p$ with $p \in Q_{0}^{\prime}$.

Let $Y=S(\omega)$, the simple $k Q$-module corresponding to the vertex ω. Since Q^{\prime} is connected and representation-infinite, there is an exceptional $k Q^{\prime}$-module X with $\operatorname{dim}_{k} X_{p} \geq$ m. The arrow $\omega \rightarrow p$ shows that $\operatorname{dim}_{k} \operatorname{Ext}^{1}(Y, X) \geq \operatorname{dim}_{k} X_{p}$. This pair X, Y is the orthogonal pair of bricks which we use in order to look at $\mathcal{E}(Y, X)$.

Lemma 1. Let a be a natural number. Any submodule W of X^{a} with $\operatorname{dim} W=\mathbf{x}$ is isomorphic to X.

Proof. We denote by $\langle-,-\rangle$ the bilinear form on the Grothendieck group $K_{0}(k Q)$ with $\left\langle\operatorname{dim} M, \operatorname{dim} M^{\prime}\right)=\operatorname{dim}_{k} \operatorname{Hom}\left(M, M^{\prime}\right)-\operatorname{dim}_{k} \operatorname{Ext}^{1}\left(M, M^{\prime}\right)$. Since X is exceptional, we have $\langle X, W\rangle=\langle X, X\rangle>0$, Therefore, there is a non-zero homomorphism $f: X \rightarrow W$. Let $\iota: W \rightarrow X^{a}$ be the inclusion map. The composition $\iota f: X \rightarrow X^{a}$ is nonzero. Since X is a brick, we see that $f: X \rightarrow W$ is a split monomorphism, in particular injective. Now $\operatorname{dim} X=\operatorname{dim} W$ implies that f is an isomorphism.

Proof of condition (C). Let M be an \mathcal{E}-reduced $k Q$-module in $\mathcal{E}(Y, X)$, say with an exact sequence

$$
0 \rightarrow X^{a} \xrightarrow{\mu} M \xrightarrow{\pi} Y^{b} \rightarrow 0 .
$$

Let U be a submodule of M with dimension vector $\mathbf{x}+\mathbf{y}$ and inclusion map $\iota: U \rightarrow M$. The composition $\pi \iota$ is non-zero, since otherwise U would be a submodule of X^{a}, but $\operatorname{dim}_{k} U_{\omega}=1$ whereas $X_{\omega}=0$. If follows that the image of $\pi \iota$ is isomorphic to Y. If we denote the kernel of $\pi \iota$ by W, we obtain the following commutative diagram with exact rows and vertical monomorphisms:

Of course, $\operatorname{dim} W=\mathbf{x}$, thus Lemma 1 shows that W is isomorphic to X. In particular, U belongs to \mathcal{E}.

It remains to show that U is indecomposable. Otherwise, U would be isomorphic to $W \oplus Y$. Thus M would have a submodule isomorphic to Y. But Y is relative injective inside \mathcal{E}, thus M would have a direct summand isomorphic to Y, in contrast to our assumption that M is \mathcal{E}-reduced. This shows that U is indecomposable, thus an \mathcal{E}-bristle.

Case 2. The Kronecker quiver $K(3)$.
Here we consider the Kronecker quiver $Q=K(3)$, with the three arrows α, β, γ : $2 \rightarrow 1$. Let $\lambda_{1}, \ldots, \lambda_{n}$ be pairwise different non-zero elements of k with $n \geq 2$. Let $X=X\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(k^{n}, k^{n} ; \alpha, \beta, \gamma\right)$ be defined by

$$
\alpha(e(i))=e(i), \quad \beta(e(i))=\lambda_{i} e(i), \quad \gamma(e(i))=e(i+1)
$$

for $1 \leq i \leq n$, where $e(1), \ldots, e(n)$ is the canonical basis of k^{n} and $e(n+1)=e(1)$. Let $Y=(k, k ; 1,0,0)$. We denote by Q^{\prime} the subquiver of Q with arrows α, β, this is the 2Kronecker quiver $K(2)$. For the structure of the category $\bmod K(2)$, see for example [R1]. The restriction of X, Y to Q^{\prime} shows that $\operatorname{Hom}(X, Y)=\operatorname{Hom}(Y, X)=0$. The endomorphism ring of $X \mid Q^{\prime}$ is $k \times \cdots \times k$; and the only endomorphisms of $X \mid Q^{\prime}$ which commute with γ are the scalar multiplications. This shows that X is a brick. Also, it is easy to see that $\operatorname{dim}_{k} \operatorname{Ext}^{1}(Y, X)=n$.

Lemma 2. Let a be a natural number. Any submodule W of X^{a} with $\operatorname{dim} W$ of the form (w, w) is isomorphic to X^{s} for some s.

Proof: Let $M=X^{a}$ and decompose $M \mid Q^{\prime}=\bigoplus_{i=1}^{n} M(i)$, where $\beta(x)=\lambda_{i} x$ for $x \in M(i)_{1}$. Here, we use α in order to identify M_{1} and M_{2}. Now we consider the submodule W of M. Note that $W \mid Q^{\prime}$ has to be regular, since it cannot have any non-zero preinjective direct summand. As a regular submodule of a semisimple regular Kronecker module it has to be a direct summand of $M \mid Q^{\prime}$, thus we have a similar direct decomposition $W=\bigoplus W(i)$, where $W(i)=W \cap M(i)$.

The linear map γ restricted to $W(i)_{1}$ is a monomorphism $W(i)_{1} \rightarrow W(i+1)_{2}=$ $W(i+1)_{1}$ for $1 \leq i \leq n$; we obtain in this way a monomorphism $W(1)_{1} \rightarrow W(1)_{2}=W(1)_{1}$. This shows that all the monomorphisms $W(i)_{1} \rightarrow W(i+1)_{2}=W(i+1)_{1}$ are actually bijections. Let $\operatorname{dim}_{k} W(1)_{1}=s$. It follows that W is isomorphic to X^{s}.

Proof of condition (C). Let M be an \mathcal{E}-reduced $k Q$-module in \mathcal{E} and let U be a submodule of M with dimension vector $\mathbf{x}+\mathbf{y}=(n+1, n+1)$ and with inclusion map $\iota: U \rightarrow M$.

Starting with the exact sequence $0 \rightarrow X^{a} \xrightarrow{\mu} M \xrightarrow{\pi} Y^{b} \rightarrow 0$ and the inclusion map $\iota: U \rightarrow M$, let W be the kernel and \bar{U} the image of $\pi \iota: U \rightarrow Y^{b}$. We obtain the following commutative diagram with exact rows and injective vertical maps:

Let us consider the restriction of these modules to Q^{\prime}. Since $M \mid Q^{\prime}$ is regular, it has no non-zero preinjective direct summand. Thus any submodule of $M \mid Q^{\prime}$ with dimension vector $(n+1, n+1)$ has to be regular. This shows that $U \mid Q^{\prime}$ is regular. Actually, $M \mid Q^{\prime}$ is semisimple regular, thus also its regular submodule $U \mid Q^{\prime}$ is semisimple regular (and a direct summand of $\left.M \mid Q^{\prime}\right)$. Next, $\pi \iota$ is a map between regular $k Q^{\prime}$-modules, it follows that the kernel $W \mid Q^{\prime}$ and the image $\bar{U} \mid Q^{\prime}$ are regular $k Q^{\prime}$-modules. In particular, the dimension vector of W is of the form $\operatorname{dim} W=(w, w)$ for some $0 \leq w \leq n+1$.

Now $\bar{U} \mid Q^{\prime}$ is a regular submodule of the semisimple regular $k Q^{\prime}$-module $Y^{b} \mid Q^{\prime}$, thus $\bar{U} \mid Q^{\prime}$ is a direct sum of copies of $Y \mid Q^{\prime}$. By construction, Y is annihilated by γ. Since \bar{U} is a submodule of Y^{b}, it follows that \bar{U} is annihilated by γ. Altogether, we see that \bar{U} is the direct sum of copies of Y.

We claim that $W \neq 0$. Otherwise $U=\bar{U}=Y^{n+1}$, thus Y is a submodule of M. But Y is relative injective in \mathcal{E}, thus Y would be a direct summand of M. However, by assumption, M is \mathcal{E}-reduced. This contradiction shows that $W \neq 0$.

Now W is a submodule of X^{a} with dimension vector (w, w), thus, according to Lemma $2, W$ is a direct summand of say s copies of X and $s \geq 1$. The equality $(w, w)=(s n, s n)$ implies that that $s=1$, since $w \leq n+1$ and $n \geq 2$. In this way, we see that W is isomorphic to X. It follows that $\operatorname{dim} \bar{U}=(1,1)$ and therefore $\bar{U}=Y$.

Finally, as in Case 1, we see that U is indecomposable, using again the assumption that M is \mathcal{E}-reduced. This shows that U is an \mathcal{E}-bristle.

Remark. We should stress that given orthogonal bricks X, Y in $\bmod k Q$, the condition (C) is usually not satisfied. Here is a typical example for $Q=K(3)$. As above, let $Y=(k, k ; 1,0,0)$, but for X we now take $X=X^{\prime}\left(\lambda_{1}, \lambda_{2}\right)=\left(k^{2}, k^{2} ; \alpha, \beta, \gamma\right)$, defined by

$$
\alpha(e(i))=e(i), \quad \beta(e(i))=\lambda_{i} e(i), \quad \gamma(e(1))=e(2), \quad \gamma(e(2))=0
$$

for $1 \leq i \leq 2$. Again, $e(1), e(2)$ is the canonical basis of k^{2} and $\lambda_{1} \neq \lambda_{2}$ are assumed to be non-zero elements of k. Since $\operatorname{dim}_{k} \operatorname{Ext}^{1}(Y, X)=2$, there is an equivalence $\eta: \bmod k K(2) \rightarrow \mathcal{E}(Y, X)$. Let N be an indecomposable $k K(2)$-module with dimension vector $(2, b)$ (note that b has to be equal to 1,2 or 3) and $M=\eta N$. Thus there is an exact sequence

$$
0 \rightarrow X^{2} \rightarrow M \rightarrow Y^{b} \rightarrow 0 .
$$

Since we assume that N is indecomposable, it is reduced, thus M is \mathcal{E}-reduced. Note that X has a (unique) $k Q$-submodule V with dimension vector (1,1): the vector spaces V_{1} and V_{2} both are generated by $e(2)$. The submodule $U=X \oplus V$ of X^{2} is a submodule of M with dimension vector $(3,3)=\mathbf{x}+\mathbf{y}$, and it is not an \mathcal{E}-bristle. Thus, condition (C) is not satisfied. Here, η defines a proper embedding of $\beta(N)=\mathbb{G}_{(1,1)}(N)$ into $\mathbb{G}_{\mathbf{x}+\mathbf{y}}(M)$.

References

[H] L. Hille: Moduli of representations, quiver Grassmannians and Hilbert schemes. arXiv: 1505.06008.
[R1] C. M. Ringel: Tame algebras and integral quadratic forms. Springer Lecture Notes in Math. 1099 (1984).
[R2] C. M. Ringel: Quiver Grassmannians and Auslander varieties for wild algebras. J. Algebra 402 (2014), 351-357.
[R3] C. M. Ringel: The eigenvector variety of a matrix pencil. arXiv:1703.04097. To appear in: Linear Algebra and Appl. DOI: https://doi.org/10.1016/j.laa.2017.05.004.

[^0]
[^0]: Claus Michael Ringel
 Fakultät für Mathematik, Universität Bielefeld
 D-33501 Bielefeld, Germany
 E-mail: ringel@math.uni-bielefeld.de

