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Let ∆ be a symmetric generalized Cartan matrix, and g = g(∆) the corresponding
Kac–Moody Lie–algebra with triangular decomposition g = n−⊕h⊕n+ (see [K].
We denote by b+ = b+(∆) = h ⊕ n+ the Borel subalgebra. Let Uq(b+) be the
quantization of the universal enveloping algebra of b+, it is defined by generators
and relations as we will recall below. For ∆ of finite or affine type, we want to survey
a construction of Uq(b+) using the representation theory of quivers, following [R2],
[R3], [R4] and [R5].

1. Representations of quivers

A (finite) quiver Q = (Q0, Q1, s, e) is given by two finite sets Q0, Q1 and two
maps s, e : Q1 −→ Q0, the elements of Q0 will be called vertices or points, those
of Q1 arrows; if α is an arrow, then s(α) is called its start vertex, e(α) its end
vertex, and α is said to go from s(α) to e(α), written α : s(α) −→ e(α). (Thus,
a quiver is nothing else than a directed graph with possibly multiple arrows and
loops, or a diagram scheme in the sense of Grothendieck; so the concept is old, the
denomination “quiver” being due to Gabriel.) Given a quiver Q = (Q0, Q1, s, e),
there is the opposite quiver Q∗ = (Q0, Q1, e, s) with the same set of vertices but
with the reversed orientation for all the arrows. Recall that an n×n–matrix (aij)ij

with aii = 2 and aij = aji ≤ 0 for all i 6= j is called a symmetric generalized Cartan
matrix [K]. Given a symmetric generalized Cartan n× n–matrix ∆ = (aij)ij , we
associate the following quiver Q(∆); its set of vertices is Q(∆)0 = {1, 2, . . . , n},
and for 1 ≤ i < j ≤ n, we draw −aij arrows from i to j. The quivers of the
form Q(∆) have the following property: their vertices may be labelled by 1, . . . , n
such that for any arrow α, we have s(α) < e(α) : conversely, any quiver with this
property is of the form Q(∆). The reader should be aware that the construction
of Q(∆) takes into account the order of the rows and columns of ∆.

Given a quiver Q, a path in Q of length ℓ ≥ 1 is of the form (x|α1, . . . , αℓ|y),
where αi are arrows with x = s(α1), e(αi) = s(αi+1) for 1 ≤ i < ℓ, and e(αℓ) = y;
a path in Q of length 0 is of the from (x|x) with x ∈ Q0. A path of the form
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(x|α1, . . . , αℓ|x) with ℓ ≥ 1 is called a cyclic path. Note that the quivers of the
form Q(∆) with ∆ a symmetric generalized Cartan matrix are precisely the quivers
without a cyclic path.

Let k be a field. The path algebra kQ of Q over k is the free vectorspace over
k with basis the set of paths in Q, with distributive multiplication given on the
basis by

(x|α1, . . . , αℓ|y) · (x
′|α′1, . . . , α

′
ℓ′ |y
′) =

{
(x|α1, . . . αℓ, α

′
1, . . . , α

′
ℓ′ |y
′) if y = x′

0 if y 6= x′ .

The elements (x|x) with x ∈ Q0 are primitive and orthogonal idempotents, and
1 =

∑
x∈Q0

(x|x) is the unit element of kQ. Note that kQ is finite–dimensional if and

only if Q has no cyclic path.

Recall that a ring of global dimension ≤ 1 is said to be hereditary, a finite-
dimensional k–algebra A with radical N is said to be split basic provided A/N is a
product of copies of k. It is easy to see that the algebras kQ(∆) with ∆ a symmetric
generalized Cartan matrix are precisely the finite–dimensional k–algebras which
are hereditary and split basic. Again, we stress that the algebra kQ(∆) depends
on the given ordering of the rows and columns of ∆; different orderings of the rows
and columns usually will lead to algebras which are not isomorphic. For example,

the Cartan matrix ∆ =

[
2 −1 0

−1 2 −1

0 −1 2

]
yields the quiver

1
◦ −→

2
◦ −→

3
◦, and the

path algebra of Q(∆) is given by kQ(∆) =

[
k k k

0 k k

0 0 k

]
, the ring of upper triangular

matrices, whereas for ∆′ =

[
2 0 −1

0 2 −1

−1 −1 2

]
, the corresponding quiver is

1
◦ −→

3
◦ ←−

2
◦,

and its path algebra is the algebra kQ(∆′) =

[
k k k

0 k 0

0 0 k

]
; note that dimk kQ(∆) = 6,

whereas dimk kQ(∆′) = 5.

A ring A is called an artin algebra provided its center C is artinian, and A
is a finitely generated C–module. Given an artin algebra A, the A–modules we
are interested in usually will be right A–modules of finite length, and we denote
the category of these modules by modA. The composition of two A–module maps
f : M −→ M ′, g : M ′ −→ M ′′ will be denoted by gf : M −→M ′′ (applying such
maps on the opposite side of the scalars).

Given an artin algebra A, we denote by K(A) the Grothendieck group of all
(finite–dimensional) A–modules modulo exact sequences. Similarly, let K(modA)
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be the Grothendieck group of all (finite–dimensional) A–modules modulo split
exact sequences. The theorem of Jordan–Hölder asserts that K(A) is the free
abelian group on the set of isomorphism classes of simple A–modules. Given an
A–module M, we denote by dimM its equivalence class in K(A). The theorem
of Krull–Schmidt asserts that K(modA) is the free abelian group on the set of
isomorphism classes of indecomposable A–modules. If M is an indecomposable A–
module, we denote by u[M ] = uM the corresponding element in K(modA); always,
[M ] will denote the isomorphism class of a module M. Also note that K(modA)
has a canonical K(A)–grading: given x ∈ K(A), let K(modA)x be the subgroup
generated by all u[M ] where M is indecomposable with dimM = x. It follows
that for ∆ a symmetric generalized Cartan n × n–matrix, and A = kQ(∆), we
have K(A) ∼= Zn, whereas K(modA) does not have to be finitely generated. An
algebra A is said to be representation–finite provided there are only finitely many
isomorphism classes of indecomposable A–modules.

Let Q be a quiver and k a field. A representation V = (Vx, Vα) of Q over k is
given by a family of (finite–dimensional) vectorspaces Vx (x ∈ Q0), and a family
of linear maps Vα : Vs(α) −→ Ve(α) (α ∈ Q1). Given two representations V, V ′, a
map f = (fx) : V −→ V ′ is given by linear maps fx : Vx −→ V ′x such that for any
α ∈ Q1, we have V ′αfs(α) = fe(α)Vα. Note that the category mod kQ is equivalent
to the category of representations of the opposite quiver Q∗ of Q, and we may
(and will) identify these categories. Given a representation V, its dimension vector
dim V has, by definition, coordinates (dim V )x = dimk Vx, for x ∈ Q0; it belongs
to ZQ0 , and

∑
x∈Q0

(dim V )x is called the dimension of V. For any vertex x ∈ Q0, we

will consider the one–dimensional representation S(x) of Q∗ defined by S(x)x = k,
S(x)y = 0 for y 6= x ∈ Q0 and S(x)α = 0 for α ∈ Q1. Assume now that Q has no
cyclic path, say let Q = Q(∆) with ∆ = (aij)ij a symmetric generalized Cartan
n× n–matrix. Then S(1), . . . , S(n) are the simple kQ(∆)–modules, and we have

Ext1(S(i), S(j)) = 0 for i ≥ j,

and
dimk Ext1(S(i), S(j)) = −aij for i < j.

(For, let I(i) be the subspace of kQ(∆)
generated by all paths in Q(∆) different from (i|i), and u(i) the inclusion map
of I(i) into kQ(∆). Clearly, I(i) is a twosided ideal, and kQ(∆)/I(i) and S(i) are
isomorphic right kQ(∆)–modules. It follows that Ext1(S(i), S(j)) is isomorphic
as a k–space to the cokernel of HomkQ(∆)(u(i), S(j)), and therefore to the k–
dual of the subspace of kQ(∆) generated by the paths of the form (i|α|j).) In



4

particular, we see how to recover ∆ from kQ(∆). Also, we note the following:
Given a representation V of Q, and x ∈ Q0, the k–dimension of Vx is just the
Jordan–Hölder multiplicity of S(x) in V, thus the two definitions of dim V given
above coincide; in particular, M 7→ dimM yields the canonical identification of
K(kQ(∆)) with Zn.

Let us write down at least a few representations explicitly. First, consider the
quiver Q

5
◦
↓

◦
1
→ ◦

2
→ ◦

6
← ◦

4
← ◦

3

of type E6, and its representation V

U
↓

k02 → k20→ k3 ← 0k2 ← 02k

with U = V5 the 2–dimensional subspace of k3 generated by (110) and (011). It is
an indecomposable representation and its dimension vector is

2
1 2 3 2 1,

where we arrange its coordinates according to the shape of the quiver. The reader
should observe that dealing with this particular quiver Q, we obtain a lot of
representations by considering (as in the example above) a vectorspace V6 endowed
with five subspaces V1, . . . , V5 such that V1 ≤ V2, and V3 ≤ V4. Actually, one may
observe without difficulties that all but seven isomorphism classes of indecomposable
representations of Q are obtained in this way. Second, for the quiver

◦
↓
◦
↓

◦ → ◦ → ◦ ← ◦ ← ◦

of type Ẽ6, we obtain a 1–parameter family of indecomposable representations

Uλ

↓
U
↓

k02 → k20→ k3 ← ok2 ← 02k

,
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where U is as above, and Uλ is the 1–dimensional subspace of k3 generated by
(1, 1 + λ, λ), with λ a fixed element of k.

We recall that in 1972, Gabriel has shown that the path algebra of a quiver
Q is representation–finite if and only if Q is the disjoint union of quivers of the
form Q(∆), with ∆ of finite type (thus of type An, Dn, E6, E7, or E8), and that
for Q = Q(∆), with ∆ of finite type, dim furnishes a bijection between the set B0

of isomorphism classes of indecomposable representations of Q and the set Φ+ of
positive roots for ∆. We can reformulate this result as follows: K(mod kQ(∆))⊗C
is the free C–space with basis (u[M ])[M ]∈B0

, whereas for the semisimple complex
Lie algebra g = g(∆) with triangular decomposition g = n−⊕h⊕n+, the C–space
n+ has a canonical decomposition n+ = ⊕

α∈Φ+
gα into weight spaces gα, and all gα

are 1–dimensional. Thus,

K(mod kQ(∆))⊗ C ∼= n+

as C–spaces, and in fact as Zn–graded C–spaces: here, K(mod kQ(∆)) is graded
by Zn = K(kQ(∆)), whereas n+ is graded by the root lattice.

We may ask whether the representation theory of quivers may be used to endow
K(mod kQ(∆))⊗C, or even K(mod kQ(∆)) itself with a Lie structure so that this
isomorphism becomes an isomorphism of Lie algebras.

2. Hall algebras

Let R be a finite ring. We denote by modR the category of finitely generated R–
modules. Note that an R–module is finitely generated if and only if it is of finite
length if and only if it has finitely many elements, so we call these R–modules
just the finite R–modules. Given finite R–modules M,N1, . . . , Nt let FM

N1...Nt
be

the number of filtrations M = M0 ⊇ M1 ⊇ . . . ⊇ Mt = 0 of M such that
Mi−1/Mi

∼= Ni, for 1 ≤ i ≤ t. The Hall algebra H(R) is, by definition, the free
abelian group with basis (u[M ])[M ]∈B indexed by the set of B of isomorphism classes
[M ] of finite R–modules M, with multiplication given by

u[N1]u[N2] =
∑

[M ]

FM
N1N2

u[M ];

note that we have FM
N1N2

6= 0 only in case dimM = dimN1 + dimN2, and that
the number of isomorphism classes of modules M with given dimM is finite, thus
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the sum considered above always is a finite sum. We note that the multiplication
is associative, in fact we have

u[N1]u[N2]u[N3] =
∑

[M ]

FM
N1N2N3

u[M ],

and u[0] is the unit element for this multiplication, thus H(R) is a ring.

More generally, we may start with a ring R having the property that given two
simple R–modules S1, S2 with only finitely many elements, then also Ext1R(S1, S2)
has only finitely many elements, and take for B the set of isomorphism classes
of R–modules with finitely many elements. If R = Z(p) then B is just the set
of isomorphism classes of finite abelian p–groups. It is this case which has been
considered in detail in the literature, first in 1900, by Steinitz [S], then in 1959 by
Ph. Hall [H]: he called H(Z(p)) the “algebra of partitions”, since the isomorphism
classes of finite abelian p–groups correspond bijectively to the partitions. The main
reference for this particular Hall algebra is a book by Macdonald [M]. (The Hall
algebra H(Z(p)) can also be interpreted as a Hecke algebra: Let G+

n be the set of
n× n–matrices over Z(p) which are invertible over Q, and Kn the subset of those

elements which are invertible over Z(p). The canonical embedding of G+
n into G+

n+1

yields a semigroup G+ =
⋃

nG
+
n , with a subgroup K =

⋃
nKn, and H(Z(p)) may

be identified with the Hecke algebra for the inclusion of K into G+ (note that the
double cosets of K in G+ correspond bijectively again to the partitions), see [M].)

If R1, R2 are finite rings, then H(R1×R2) = H(R1)⊗H(R2), thus for studying
Hall algebras H(R), we may assume that R is connected, or, equivalently, that the
center C = C(R) of R is a local ring, and we denote by q = q(R) the cardinality
of C/ radC, and by lC(M) the length of the C–module M. Since C/ radC is the
only simple C–module, we have |M | = qlC(M) for any (finite) C–module M. Note
that if X is an R–module, then X,End(X), and radEnd(X) all are C–modules.

The Hall algebra H(R) usually is non–commutative, in contrast to the classical

case of R = Z(p). For example, let R =
[

k k

0 k

]
, the ring of upper triangular 2× 2–

matrices over the finite field k. Then there are two simple R–modules S1, S2, one
of them, say S1, is injective, the other one, S2, is projective. It follows that in
H(R), we have

uS2
uS1

= uS1⊕S2
,

uS1
uS2

= uS1⊕S2
+ uP ,

where P is the unique indecomposable R–module of length 2. In particular,

uP = uS1
uS2
− uS2

uS1
= [uS1

, uS2
],
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so the basis element uP corresponding to the indecomposable R–module P is
expressed as a commutator of other basis elements (corresponding to other inde-
composable modules). This is a rather general feature and it demonstrates the
usefulness of H(R) : we obtain large indecomposable modules (or better, their
counterparts in H(R)) by forming iterated commutators or related algebraic
operations, starting with small indecomposable modules, say simple, or at least
serial ones. Note that by, definition, K(modR) is a subgroup of H(R), namely the
subgroup generated by the elements u[M ], with M indecomposable. We claim that
up to multiples of q − 1, the subgroup K(modR) is closed under commutators:

Proposition 1. Let R be a finite connected ring, and q = q(R). Let N1, N2

be indecomposable R–modules, let M be a decomposable R–module. Then q − 1
divides FM

N1N2
− FM

N2N1
.

For example, consider the “3–subspace quiver”

2
◦
↓

◦
1
→ ◦

0
← ◦

3

We denote by P (i) the indecomposable projective, by Q(i) the indecomposable
injective module corresponding to the vertex i. For 1 ≤ i ≤ 3, let M(i) be the
maximal submodule of Q(0) with Q(0)/M(i) ∼= Q(i), and let M be the unique

indecomposable module with dimension vector 1

1 2 1
. Then

uP (0)uQ(0) = uP (0)⊕Q(0),

uQ(0)uP (0) = quP (0)⊕Q(0) + (q − 1)
3∑

i=1

uP (i)⊕M(i) + (q − 2)uM ,

thus
[uP (0), uQ(0)] ≡ uM mod(q − 1).

Proof of Proposition 1. We can assume that N1 6≈ N2. Let M = M ′ ⊕M ′′

with M ′ indecomposable and M ′′ 6= 0. Let U be the set of submodules U of M
with U 6= M ′, U 6= M ′′, U ∼= N2 and M/U ∼= N1. We claim that q− 1 divides |U|.
Note that for U ∈ U , we have that U∩M ′ is a proper submodule of M ′. Otherwise,
M ′ ⊆ U, thus U = M ′ ⊕ (U ∩M ′′); but U is indecomposable, therefore U = M ′,
contrary to our assumption. Let G = AutM ′, the automorphism group of M ′.
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Then |G| = |EndM ′| − | radEndM ′| = qr(qe − 1), where r = ℓC(rad EndM ′)
and e = ℓC(EndM ′/ radEndM ′). We identify G with a subgroup of AutM via
g 7→ g⊕1M ′′ , thus G also acts on U via g∗U = {(gu′, u′′)|(u′, u′′) ∈ U} where g ∈ G
and U ∈ U . To compute the stabilizerGU of U in G, note first that we may consider
Hom(M ′, U ∩M ′) as a subset of radEndM ′. Now, if f ∈ Hom(M ′, U ∩M ′), then
(1+f)∗U ⊆ U, since for (u′, u′′) ∈ U, also ((1+f)u′, u′′) = (u′, u′′)+(fu′, 0) ∈ U,
thus (1 + f) ∗ U = U. Conversely, if g ∗ U = U, then for all (u′, u′′) ∈ U also
(gu′, u′′) ∈ U, thus (gu′− u′, 0) ∈ U, consequently g− 1 ∈ Hom(M ′, U ∩M ′), thus

g ∈ 1 + Hom(M ′, U ∩M ′). It follows that |GU | = |Hom(M ′, U ∩M ′)| = qr′

for
some r′ ≤ r, and therefore |G/GU | is divisible by qe− 1. Since |G/GU | is the orbit
length of U, and U was arbitrary, we see that qe − 1 divides |U|, so q − 1 divides
|U|.

In order to finish the proof, we have to distinguish to cases. If let M 6≈ N1⊕N2,
then any submodule U of M with U ∼= N2, M/U ∼= N1 satisfies in addition
U 6= M ′, U 6= M ′′, thus FM

N1N2
= |U|, and therefore q − 1|FM

N1N2
. The same

argument shows q − 1|FM
N2N1

.

Otherwise, we can assume M ′ = N1 and M ′′ = N2. Then, besides the elements
of U , there is just one additional submodule U of M with U ∼= N2, M/U ∼= N1,
namely U = M ′′. Therefore FM

N1N2
≡ 1 mod(q − 1), and similarly, FM

N2N1
≡

1 mod(q − 1).

Given a specific R–module M, it usually is not easy to decide whether M
is indecomposable or not. Proposition 1 yields an effective procedure for certain
cases. For example, consider the E6–quiver and its representation V with dim V =

2

1 2 3 2 1
, exhibited in section 1. There is a unique submodule V ′ with dimension

vector 1

1 1 2 1 1
, namely

{(x0x)}
↓

k02 → k02 → k0k ← 02k ← 02k
,

V ′ is indecomposable, and V/V ′ is isomorphic to the indecomposable representation

k
↓

0 → k → k ← k ← 0.

Thus FV
V/V ′,V ′ = 1. On the other hand, we clearly have Hom(V/V ′, V ) = 0,

therefore FV
V ′,V/V ′ = 0. So Proposition 1 asserts that V is indecomposable. (Of
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course, we can apply Proposition 1 only in case k is a finite field, and there are
other methods which may be used for the example above in case k is arbitrary:
We have Hom(V ′, V/V ′) = 0, therefore V has to be indecomposable!)

We will see in the next section that for special rings R we can calculate FM
N1N2

modulo q − 1 for all indecomposable R–modules N1, N2,M .

In order to deal with presentations of Hall algebras, we mention the following

fundamental relations, where
[
n
t

]
T

= ϕn(T )
ϕt(T )ϕn−t(T ) is the Gauss polynomial, with

ϕn(T ) = (1− T ) · · · (1− Tn).

Proposition 2. Let R be a finite ring, let Si, Sj be simple R–modules with

Ext1(Si, Sj) = 0. Let qi = |End(Si)|, qj = |End(Sj)|, and let

aij = −dim End(Si)Ext1(Sj , Si), aji = −dim Ext1(Sj, Si)End(Sj).

Let ui = u[Si], uj = u[Sj]. If Ext1(Si, Si) = 0, then

n∑

t=0

(−1)t

[
n

t

]

qi

q
(t

2)
i ut

iuju
n−t
i = 0 with n = 1− aij,

if Ext1(Sj, Sj) = 0, then

n∑

t=0

(−1)t

[
n

t

]

qj

q
(t
2)

j un−1
j uiu

t
j = 0 with n = 1− aji.

These relations look rather similar to those used by Drinfeld and Jimbo in order
to define quantizations of Lie algebras, this similarity will be discussed in the next
section. But the reader may observe already here that the polynomials

ρ+
n (T,X, Y ) =

n∑

t=0

(−1)t

[
n

t

]

T

T (t

2)XtY Xn−t

+ρn(T,X, Y ) =
n∑

t=0

(−1)t

[
n

t

]

T

T (t

2)Xn−tY Xt

both yield for T = 1 an iterated commutator:

ρ+
n (1, X, Y ) = (ad X)nY,

+ρn(1, X, Y ) = (−1)n(ad X)nY.
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The proof of Proposition 2 (see [R4]) is not difficult:
We assume that Ext1(Si, Si) = 0. By the definition of the multiplication in

H(R), the elements ut
iuju

n−t
i are linear combinations of elemens u[M ] where M

is an R–module with dimM = dim Sj + n dim Si. Since Ext1(Si, Si) = 0,

Ext1(Si, Sj) = 0, such a module M is the direct sum of an indecomposable
module M ′ with M ′/ rad M ′ = Sj , and several copies of Si, say M = M ′ ⊕ dSi.

Since dimEnd(Si) Ext1(Sj , Si) < n, it follows that d ≥ 1. The coefficient of u[M ] in

ut
iuju

n−t
i just counts the number of composition series of M of the form

M = M0 ⊃M1 ⊃ . . . ⊃Mn+1 = 0

with Mt/Mt+1
∼= Sj . If t > d, then there is no such composition series, if t ≤ d,

then the number of such composition series is αi(qi), where

αt(T ) =
ϕd(T )ϕn−t(T )

(1− T )nϕd−t(T )

and
d∑

t=0

(−1)t

[
n

t

]

T

T (t

2)αt = 0.

The ring H(R) is K(R)–graded: for x ∈ K(R), let H(R)x be the subgroup
generated by the elements u[M ] with dimM = x; clearly, for x, y ∈ K(R), we
have H(R)x · H(R)y ⊆ H(R)x+y. As a consequence, any element d ∈ K(R)∗ =
Hom(K(R),Z) gives rise to a derivation δd : H(R) −→ H(R), defined by δd(u[M ]) =
d(dimM) · u[M ]. In particular, let S1, . . . , Sn be the simple R–modules, thus
dim S1, . . . ,dimSn is a basis of K(R), and we denote by d1, . . . , dn the dual
basis of K(R)∗; thus di(dimM) = (dimM)i is the Jordan Hölder multiplicity of
Si in M. In this way, we obtain derivations δi = δdi

of H(R), and we may form
the skew polynomial ring

H′(R) = H(R)[Ti, δi]i,

where T1, . . . , Tn are indeterminates satisfying the commutation rules

[Ti, Tj] = 0

[Ti, u[M ]] = δi(u[M ]) = (dimM)iu[M ].

We call H′(R) the extended Hall algebra of R.
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For e ∈ N0, let ψe(T ) = (1−T )···(1−T e)
(1−T )e .

Proposition 3. Let X1, . . . , Xm be indecomposable modules with End(Xi)
the field with qi elements. Assume that Ext1(Xi, Xj) = 0 for i ≤ j and that
Hom(Xi, Xj) = 0 for i > j. Let a ∈ Nm

0 . Then

u
a(1)
[X1]
· · ·u

a(m)
[Xm] = (

m∏

i=1

ψa(i)(qi)) · u[⊕a(i)Xi],

and
u[a(1)X1] · · ·u[a(m)Xm] = u[⊕a(i)Xi].

Proof: First, we show the second formula. Given M with a filtration

M = M0 ⊇M1 ⊇ . . . ⊇Mm = 0

such thatMi−1/Mi
∼= a(i)Xi, then allMi are direct summands andM ∼=

m
⊕

i=1
a(i)Xi,

since Ext1(Xi, Xj) = 0 for i ≤ j. Thus, let M =
m
⊕

i=1
a(i)Xi. Using the condition

Hom(Xi, Xj) = 0 for i > j, we conclude that Mi = ⊕
j>i
a(j)Xj is uniquely

determined, and thereforeM has precisely one filtration with the prescribed factors
a(i)Xi.

It remains to show that

u
a(i)
[Xi]

= ψa(i)(qi) · u[a(i)Xi].

However, since End(Xi) is a field, the filtrations of a(i)Xi with factorsXi correspond
bijectively to the complete flags in the a(i)–dimensional End(Xi)–space, but the
number of such flags is ψa(i)(qi).

We callR representation–directed providedR has only finitely many indecomposable
modules and they can be ordered as X1, . . . , Xm such that Hom(Xi, Xj) = 0 for

i > j. Clearly, such an ordering satisfies in addition Ext1(Xi, Xj) = 0 for i ≤ j.

3. Generic Hall algebras

We return to the path algebra of a quiver, and consider the representation–finite
case. Thus, let ∆ be a symmetric Cartan matrix (therefore of type An, Dn, E6, E7,
or E8), and let R = kQ(∆). Recall that Φ+ denotes the set of positive roots
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for ∆. Given α ∈ Φ+, let M(α) = M(α,R) be the indecomposable R–module
with dimM(α) = α. Given a function a : Φ+ −→ N0, let M(a) = M(a,R) =
⊕

α∈Φ+
a(α)M(α). In this way, we obtain a bijection between the set of functions

Φ+ −→ N0 and B.

Proposition 4. Given a, b, c : Φ+ −→ N0, there exists a polynomial ϕb
ac ∈

Z[T ] with the following property: if k is a finite field, q = |k|, then

F
M(b,R)
M(a,R),M(c,R) = ϕb

ac(q).

For the proof, we refer to [R2]. The polynomials ϕb
ac occurring in this way will

be called Hall polynomials. This proposition allows us to introduce generic Hall
algebras. Before we do this, let us write down several of these ploynomials explicitly.
If α ∈ Φ+, we will denote the corresponding characteristic function Φ+ −→ N0

also by α. If α, γ ∈ Φ+, we have to distinguish the two possible additions: the
addition inside the root lattice will be denoted by +, the addition of functions
Φ+ −→ N0 may be denoted by ⊕, but we will not need the notation.

The symmetric generalized Cartan matrix ∆ (with its fixed ordering of rows
and columns) determines a usually non–symmetric bilinear form 〈−,−〉 on the
root lattice Zn as follows: Let ∆ be the (uniquely determined) lower triangular

matrix with ∆ = ∆ + ∆
t
, thus ∆ = (aij)ij , with aii = 1, aij = aij for i > j, and

aij = 0 for i < j, and let 〈α, β〉 = α∆βt. The importance of this bilinear form for
the representation theory of Q(∆)∗ is well–known: given representations V, V ′ of
Q(∆)∗, we have

〈dim V,dim V ′〉 = dimk Hom(V, V ′)− dimk Ext1(V, V ′).

Proposition 5. Let α, γ ∈ Φ+ with 〈α, γ〉 < 0. Let β = α+ γ. Then β ∈ Φ+,
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and ϕβ
αγ is as follows:

〈γ, α〉 ϕβ
αγ

0 1

1 T − 2

2 (T − 2)2

3 (T − 2)3 or T 3 − 5T 2 + 10T − 7

4 (T − 2)(T 3 − 4T 2 + 8T − 6)

5 T 5 − 6T 4 + 15T 3 − 23T 2 + 25T − 13

The proof is rather tedious, see [R3].

Corollary. Let α, γ ∈ Φ+ with 〈α, γ〉 < 0. Let β = α + γ. Then ϕβ
αγ(1) =

(−1)〈γ,α〉, whereas ϕβ
γα = 0.

The first assertion is a direct consequence of Proposition 5. The second assertion
is shown as follows: From 〈α, γ〉 < 0 we conclude that Ext1(M(α,R),M(γ, R)) 6= 0,
and therefore Ext1(M(γ, R),M(α,R)) = 0, for R = kQ(∆). But this implies that

F
M(β,R)
M(γ,R)M(α,R) = 0, and therefore ϕβ

γα = 0, by Proposition 3.

Let us change the notation as follows: we will denote by q instead of T the
indeterminate we are dealing with, thus Z[q] is the polynomial ring over Z in one
variable, and given a, b, c : Φ+ −→ N0, then ϕb

ac ∈ Z[q]. Let Λ be the completion
of the polynomial ring C[q] at the maximal ideal generated by q− 1. In Λ we may
consider h = ln q, thus Λ is a complete discrete valuation ring and h (or also q−1)
generates its radical.

As before, ∆ is a symmetric Cartan n × n–matrix. The generic Hall algebra
H(∆) is the free Z[q]–module with basis (ua)a indexed by the set of functions
a : Φ+ −→ N0, with multiplication

uauc =
∑

b

ϕb
acub.

Again, H(∆) is a ring, its identity element is the zero function. Also. H(∆) is
generated by the root lattice Zn, thus, as before, we can form the extended generic



14

Hall algebra H′(∆) = H(∆)[Ti, δi]i, where T1, . . . , Tn are indeterminates satisfying
the commutation rules

[Ti, Tj] = 0,

[Ti, ua] = δi(ua) = (dim a)iua,

where (dim a)i =
∑

α∈Φ+

a(α)αi with α = (α1, . . . , αn) ∈ Φ+ ⊆ Zn. The ring we are

interested in is
Ĥ′(∆) := lim

←
m

H′(∆) ⊗
Z[q]

C[q]/(q − 1)m,

it is a complete Λ–algebra containing H′(∆) as a subring. Instead of dealing with
the elements Ti, ui, 1 ≤ i ≤ n, let us consider the elements

Hi :=

n∑

j=1

aijTj

Xi := exp(−
1

2

i−1∑

j=1

aijTj ln q) · ui.

Theorem 1. Let ∆ be a symmetric Cartan matrix. The algebra Ĥ′(∆) is, as
a complete Λ–algebra, generated by H1, . . . , Hn, X1, . . . , Xn with the relations

[H1, Hj] = 0, [Hi, Xj] = aijXj, for all i, j,

n∑

t=0

(−1)t

[
n

t

]

q

q−
t(n−t)

2 Xt
iXjX

n−t
i = 0 with n = 1− aij , and i 6= j.

This shows that Ĥ′(∆) ∼= Uq(b+(∆)), the quantization of U(b+(∆)) in the sense
of Drinfeld and Jimbo [D].

It is not difficult to derive the relations mentioned in the theorem from the
known relations for Ti, ui: since [Ti, Tj] = 0 for all i, j, also [Hi, Hj] = 0 for all i, j;
since [Ti, ui] = ui and [Ti, uj ] = 0 for i 6= j, it follows that [Hi, uj ] = aijuj , and
therefore also [Ti, Xj] = aijXj . Finally, one easily verifies that for c ∈ C

exp(cTi ln q)ui = qc · ui exp(cTi ln q),
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whereas for i 6= j, the elements exp(cTi ln q) and uj do commute. Using this
information one observes without difficulties (see [R4]) that the last relation just
rewrites the relations

ρ+
n (q, ui, uj) = 0, +ρn(q, uj, ui) = 0

which are valid for i < j. Note that the only difference between +ρn, ρ
+
n and the new

relation are the factors q(
n

t) and q−
t(n−1)

2 . Whereas the relations +ρn, ρ
+
n depend

on the ordering of rows and columns of ∆, thus on the orientation of Q(∆), the
Drinfeld–Jimbo relation is independent of this ordering. Of course, the definition
of Xi in terms of ui also takes into account the ordering of ∆.

Starting with the isomorphism Ĥ′(∆) ∼= Uq(b+(∆)), and factoring out on both
sides the ideals generated by q − 1, we obtain the following:

Corollary.

H′(∆) ⊗
Z[q]

C[q]/(q − 1) ∼= U(b+(∆)), and

H(∆) ⊗
Z[q]

C[q]/(q − 1) ∼= U(n+(∆)).

Note that H(∆)1 = H(∆) ⊗
Z[q]

Z[q]/(q − 1) is the free abelian group with basis

(ua)a indexed by the functions a : Φ+ −→ N0, with multiplication

uauc =
∑

b

ϕb
ac(1)ub,

we may call it the degenerate Hall algebra. Proposition 1 implies that the subgroup
generated by all uα, α ∈ Φ+, actually is a Lie subalgebra of H(∆)1. Of course, this
subgroup is canonically identified with K(mod kQ(∆)), with uα corresponding to
uM(α,kQ(∆)). Thus, we have found a Lie structure on K(mod kQ(∆)) which is
derived from the representation theory of the quiver Q(∆), namely

[uM(α), uM(γ)] =
∑

β

(ϕβ
αγ(1)− ϕβ

γα(1))uM(β),

and
K(mod kQ(∆))⊗C and n+
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are isomorphic as Lie algebras. More is true: K(mod kQ(∆)) is a Z–form of
K(mod kQ(∆)) ⊗ C ∼= n+, and in fact it is a Chevalley Z–form of n+, as the
corollary to Proposition 5 shows. Recall that a finite–dimensional semisimple
complex Lie algebra has several Chevalley Z–forms; in order to write down the
corresponding structure constants, the subtle point are the signs. In [T], Tits gave
a complete description of all possible sign choices. The signs which we obtain using
the representation theory of quivers were first exhibited by Frenkel and Kac [FK].

Finally, let us mention that H(∆)1 itself may be considered as a corresponding
Kostant Z–form of U(n+): we can order the positive roots α1, . . . , αm in such a
way that for R = kQ(∆) we have Hom(M(αi, R),M(αi, R)) only in case i ≤ j.
Thus we can apply Proposition 3 in order to conclude that for ui = uαi

and
a(i) ∈ N0 we have

u
a(1)
1 . . . ua(m) =

m∏

i=1

ψa(i) · ua

in H(∆). Now ψa(i)(1) = a(i)!, thus, in H(∆)1, we have

u
a(1)
1 . . . ua(m)

m =

m∏

i=1

a(i)! · ua,

and we can rewrite this as

ua =
u

a(1)
1

a(1)!
. . .

u
a(m)
m

a(m)!
.

The right side is a typical generator in the Kostant Z–form, on the left we just
have the basis element of H(∆)1 corresponding to the module M(a,R); note that
all R–modules are of the form M(a,R), so the rather technical looking generators
in the Kostant Z–form do correspond just to modules.

For a full proof of Theorem 1 we refer to [R3] and [R4]. This proof first
establishes the corollary and derives from this the theorem. The proof of the
corollary presented in [R3] relies on the actual calculation of the Hall polynomials
as stated in Proposition 5. A more direct proof will be given in [R5].

4. Composition algebras and Loewy algebras

In order to deal with symmetric generalized Cartan matrices which are not
of finite type we have to change our view point slightly. For general symmetric
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generalized Cartan matrices, there does not exist a generic Hall algebra: the idea
of constructing a generic Hall algebra relies on the fact that the set of finite–
dimensional kQ(∆)–modules, for ∆ of finite type, is indexed by a fixed set (namely
the set of function Φ+ −→ N0) independent of k, and that on this set we have
various multiplications using different finite fields k. However, if ∆ is not of finite
type, then already the set of finite–dimensional kQ(∆)–modules will depend on
k. Of course, there are classes of kQ(∆)–modules which can be indexed without
reference to k, for example the simple, or more generally, the semisimple modules.

Let R be a finite ring. The subring C(R) of H(R) generated by the elements
u[S] with S simple is called the composition algebra of R, the subring L(R) of
H(R) generated by the elements u[M ] with M semisimple will be called the Loewy
algebra of R, since it encodes the possible Loewy series of modules (a Loewy series
of a module is by definition a filtration with semisimple factors).

The rings C(R) and L(R) may be constructed also as follows: Let S1, . . . , Sn

be a complete set of simple R–modules, we denote the isomorphism class of Si

by si = [Si], and we define S(si) = Si. We use the set S = {s1, . . . , sn} as a set
of letters in order to form words. Thus, let W = W(S) be the set of words in S
(there is the empty word 1, the remaining words are of the form w = a1a2 . . . at

with t ≥ 1 and all ai ∈ S). Of course, words are multiplied using juxtaposition,
thus W is a semigroup. Given w = a1a2 . . . at ∈ W, and M and R–module, let
FM

w = FM
S(a1)...S(at)

, and, of course, FM
1 = 0 for M 6= 0, and F 0

1 = 1. Note

that FM
w counts the number of composition series of M of tye w, the type of

the composition series M = M0 ⊃ M1 ⊃ . . . ⊃ Mt = 0 of M being the word
[M0/M1] . . . [Mt−1/Mt] ∈ W. Note that the free Z–algebra A(S) generated by S
is just the semigroup algebra Z(W(S)). In A(S), we consider the set I(R) of all
finite linear combinations

∑
i

λiwi with λi ∈ Z, wi ∈ W such that
∑
i

λiF
M
wi

= 0 for

all R–modules M. Clearly, I(R) is an ideal, it is just the kernel of the canonical
surjection A(S) −→ C(R) which sends si onto u[S(si)]. Thus,

C(R) ∼= A(S)/I(R).

Similarly, given d ∈ Nn
0 , let sd = [⊕d(i)Si], and S(sd) = ⊕d(i)Si. Again, we may

consider the set W̃ of words in S̃ = {sd|d ∈ Nn
0}. Given a word a1 . . . at ∈ W̃

with ai ∈ S̃, and M an R–module, let FM
a1...at

= FM
S(a1)...S(at)

, this counts the

number of filtrations M = M0 ⊇ M1 ⊇ . . . ⊇ Mt = 0 with ai = [Mi−1/Mi], for

1 ≤ i ≤ t. Thus, here we deal with Loewy series. As before, we denote by A(S̃)

the free Z–algebra generated by S̃, and denote by Ĩ(R) the set of finite linear
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combinations
∑
λiwi with λi ∈ Z, wi ∈ W̃ such that

∑
λiF

M
wi

= 0 for all R–

modules M. Then the canonical map A(S̃) −→ L(R), which sends sd onto u[S(sd)]

yields an isomorphism
L(R) ∼= A(S̃)/Ĩ(R).

Proposition 6. If S1, . . . , Sn are the simple R–modules and Ext1R(Si, Sj) =
0 for i ≥ j, then C(R) ⊗

Z

Q = L(R) ⊗
Z

Q. If R is representation–directed, then

L(R) = H(R).

Proof: We assume Ext1R(Si, Sj) = 0 for i ≥ j, and let ui = u[Si]. For d ∈ Nn
0 ,

let S(d) = ⊕d(i)Si, and ud = u[S(d)]. We can apply Proposition 4 and conclude
that

ud = u[S(d)] =
∏ 1

ψd(i)(qi)
· u

d(1)
1 · · ·ud(n)

n ,

where qi = |End(Si)|. This yields the first assertion.

Assume now that R is representation–directed, with indecomposable modules
X1, . . . , Xm such that Hom(Xi, Xj) = 0 for i > j. Note that this implies that

End(Xi) is a division ring, thus a field, and that Ext1(Xi, Xj) = 0 for i ≤ j. Thus,
again we can use Proposition 4 and conclude that for a ∈ Nm

,

(*) u[⊕a(i)X1] = u[a(1)X1] · · ·u[a(m)Xm].

It remains to see that for X indecomposable, b ∈ N0, the element u[bX] belongs to
L(R). We use induction on the length of bX. Given d ∈ Nn

0 , we have

u[d(n)Sn] · · ·u[d(1)S1] =
∑

dim M=d

u[M ].

For, since Sn is projective, any moduleM with dimM = d has a unique submodule
M1 with M/M1

∼= d(n)Sn, thus for any module M with dimM = d, we have
FM

d(n)Sn,... ,d(1)S1
= 1. Therefore for d = dim bX, we have

u[bX] = u[d(n)Sn] · · ·u[d(1)S1] −
∑

dim M=d
[M ] 6=[bX]

u[M ].

Consider a module M with dimM = dim bX and [M ] 6= [bX ]. It is well–
known that such a module M has at least two non–isomorphic indecomposable
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direct summands, thus M ∼=
m
⊕

i=1
a(i)Xi, and all a(i)Xi are proper submodules. By

induction, u[a(i)Xi] ∈ L(R), and therefore u[M ] ∈ L(R), according to (*). It follows
that u[bX] ∈ L(R). This completes the proof.

Generic Loewy algebras

Let ∆ be a symmetric generalized Cartan matrix. For 1 ≤ i ≤ n, and k a field,
we denote by S(i, kQ(∆)) the simple kQ(∆)–module corresponding to the vertex
i of Q(∆). For d ∈ Nn

0 , let S(d, kQ(∆)) = ⊕
i
d(i)S(i, kQ(∆)). We consider the

product ∏

k

H(kQ(∆))

where k runs through all (isomorphism classes of) finite fields, its elements are
of the form x = (x(k))k, where x(k) ∈ H(kQ(∆)). In particular, we will have to
consider the element q = (q(k))k, where q(k) = |k| = |k|u[0], for 1 ≤ i ≤ n the

elements ui = (u
(k)
i )k, and for d ∈ Nn

0 the elements ud = (u
(k)
d )k, where u

(k)
i =

u[S(i,kQ(∆))], u
(k)
d = u[S(d,kQ(∆))]. Note that q is a central element of

∏
H(kQ(∆)).

The generic composition algebra C(∆) is the subring of
∏
H(kQ(∆)) generated

by q and ui, where 1 ≤ i ≤ n. The generic Loewy algebra L(∆) is the subring
generated by q and ud, where d ∈ Nn

0 . Note that we have C(∆)⊗ Q = L(∆)⊗Q,
by propositon 4.

In order to define the corresponding extended algebras, we have to be aware that
the generalized Cartan matrix ∆ = (aij)1≤i,j≤n may be singular, so that we have
to deal with a realisation of ∆ (see [K]). Let l be the rank of ∆, let n′ = 2n−l, and
let ∆′ = (a′ij)1≤i,j≤n′ be a non–singular n′ × n′–matrix with integer coefficients

such that a′ij = aij for all 1 ≤ i, j ≤ n. For 1 ≤ i ≤ n′, let γi =
∑n

j=1 a
′
ijδj , this is

a derivation of H(kQ(∆)). We form the skew polynomial ring

H′(kQ(∆)) = H(kQ(∆))[Hi, γi]1≤i≤n′ ,

thus H1, . . . , Hn′ are indeterminates satisfying the commutation rules

[Hi, Hj ] = 0, for 1 ≤ i, j ≤ n′,

[Hi, uj] = a′ijuj , for 1 ≤ i ≤ n′, 1 ≤ j ≤ n.

In
∏
H′(kQ(∆)) we denote the element (H

(k)
i )k with H

(k)
i = Hi ∈ H

′(kQ(∆))
again by Hi. Let C′(∆) be the subring of

∏
H′(kQ(∆)) generated by q and all
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ui, Hj, where 1 ≤ i ≤ n, 1 ≤ j ≤ n′, and let L′(∆) be its subring generated by q,
and all ud, Hj, where d ∈ Nn

0 , and 1 ≤ j ≤ n′. There is the following alternative
description. The derivations γi of the various H(kQ(∆)) yield a derivation, again
denoted by γi, of

∏
H(kQ(∆)), and both C(∆) and L(∆) are mapped into itself

under γi, thus we can form the corresponding skew polynomial rings and we have

C′(∆) = C(∆)[Hi, γi]1≤i≤n′ , L′(∆) = L(∆)[Ti, γi]1≤i≤n′ .

Note that instead of starting with
∏
H(kQ(∆)), we may consider the Zn–graded

subring ⊕

d

∏

k

H(kQ(∆))d,

since both C(∆) and L(∆) lie inside this subring.

Since q is a central element, we will consider C(∆),L(∆), C′(∆) and L′(∆) as
Z[q]–algebras, and we form

L̂′(∆) := lim
←
m

L′(∆) ⊗
Z[q]

C[q]/(q − 1)m

(since C′(∆) ⊗
Z

Q = L′(d) ⊗
Z

Q, there is no need to introduce also the notation

Ĉ′(∆)). Let (bij)1≤i,j≤n′ = (∆′)−1, and define

Ti =

n′∑

j=1

bijHj ,

for 1 ≤ i ≤ n. Then, clearly,

[Ti, ui] = ui, and [Ti, uj ] = 0 for i 6= j,

since
∑n′

t=1 bita
′
tj = 1 for i = j, and zero otherwise. As before, we consider instead

of ui the element

Xi := exp(−
1

2

i−1∑

j=1

aijTj ln q)ui.

The elements Xi, Hj with 1 ≤ i ≤ n, 1 ≤ j ≤ n′ generate L̂′(∆) as a complete
Λ–algebra. By the definition of Hi, and Xi the following relations are satisfied

(*) [Hi, Hj ] = 0, for 1 ≤ i, j ≤ n′,
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(**) [Hi, Xj] = a′ijXj , for 1 ≤ i ≤ n′, 1 ≤ j ≤ n.

According to Proposition 2, we have

ρ+
n (q, ui, uj) = 0, +ρn(q, uj, ui) = 0 for i < j, where n = 1− aij ,

and, as before, this translates to

(***)
n∑

t=0

(−1)t

[
n

t

]

q

q−
t(n−t)

2 Xt
iXjX

n−t
i = 0 with n = 1− aij, and i 6= j.

Altogether, we see:

Theorem 2. Let ∆ be a symmetric generalized Cartan matrix. Then L̂′(∆)
is generated, as a complete Λ–algebra, by H1, . . . , H2n−l, X1, . . . , Xn, and these
elements satisfy the relations (*), (**), and (***).

It follows that there is a surjective ring homomorphism

η∆ : Uq(b+(∆)) −→ L̂′(∆),

since, by definition, Uq(b+(∆)) is the free complete Λ–algebra, with generators
X1, . . . , Xn, H1, . . . , H2n−l and relations (*), (**) and (***).

We have seen in Theorem 1 that η∆ is an isomorphism for ∆ of finite type. We
want to announce the following result:

Theorem 3. If ∆ is of affine type, then η∆ is an isomorphism.

The proof uses the structure theory of modkQ(∆), it will be given in [R5].

6. Symmetrizable generalized Cartan matrices

The results presented above all generalize to the case of a symmetrizable generalized
Cartan matrix. In this case, we have to deal with species instead of quivers, see
[R2], [R3], [R4] and [R5]. The actual calculation of the corresponding Hall
polynomials as in Proposition 5 above yields direct sign choices for the Chevalley
Z–forms of the Lie algebras of type Bn, Cn, F4, G2 which seem to be new.
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