Iyama’s finiteness theorem via strongly quasi-hereditary algebras.
Claus Michael Ringel

Abstract. Let A be an artin algebra and X a A-module. Iyama has shown
that there exists a module Y such that the endomorphism ring I'(X) of X @Y is
quasi-hereditary, with a heredity chain of length d(X ), where d(X) is the smallest
natural number such that the “iterated derivative” 94X) X is the zero module. As
one knows, any quasi-hereditary algebra I' has finite global dimension: if " has a
heredity chain of length n, then the global dimension of I' is at most 2n — 2. Now
Iyama asserts that the global dimension of I'(X) is at most d(X ), which is a much
better estimate than 2d(X) —2 (except in case d(X) = 1 so that I' is semisimple).
We are going to reformulate the better bound as follows: The endomorphism ring
['(X) is strongly quasi-hereditary with a heredity chain of length d(X), and any
strongly quasi-hereditary algebra with a heredity chain of length n has global
dimension at most n. By definition, the strongly quasi-hereditary algebras are the
quasi-hereditary algebras with all standard modules of projective dimension at
most 1.

Preliminaries. If A is an artin algebra, then mod A denotes the category of
finitely generated left A-modules. Morphisms will be written on the opposite side
of the scalars, thus if f: X — Y and ¢g: Y — Z are A-homomorphisms between
A-modules, then the composition is denoted by fg.

Recall that the radical rad of mod A is defined as follows: If X,Y are A-
modules and f: X — Y, then f belongs to rad(X,Y’) provided for any inde-
composable direct summand X’ of X with inclusion map u: X’ — X and any
indecomposable direct summand Y’ of Y with projection map p: Y — Y’, the
composition ufp: X’ — Y’ is non-invertible.

1. Derivation. Let X be a (left) A-module, let r be the radical of the endo-
morphism ring of X. We put 0X = Xr, this is a A-submodule of X.

Warning 1. Note that the two submodules rad X and Xr of X usually are in-
comparable. As an example, consider the Kronecker algebra A. Let X = R[2] be a
4-dimensional indecomposable regular Kronecker module with a 2-dimensional re-
gular submodule R[1]. Here, rad X = soc X is semisimple and of length 2, whereas
Xr = R[1] is also of length 2, but indecomposable.

(1o) The module X generates the module 0X. Proof: Let ¢1,..., ¢, be a
generating set of rad(X, X), say as a k-module, where k is the center of A. Then
0X =3, ¢i(X), thus the map ¢ = (¢;);: X' — 90X is surjective.

Warning 2. One is tempted to say that X generates 0X by radical maps,
but this is usually not true! For example, let X be the regular representation of the
quiver of type As. Then 0X is simple projective and the non-zero maps X — 0X
are not radical maps. (What is true, is the following: 0.X is generated by X using
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maps which have the property that when we compose them with the inclusion map
0X C X, then they become radical maps.)

(20) Any radical map X — X factors through 0X . Proof: This follows directly
from the construction.

(30) If X = P, X;, then 0X = @, Xrad(X, X,).

(40) If X is non-zero, then 0X is a proper submodule of X. Proof. The ring
I' = End(X) is again an artin algebra and the radical of a non-zero I'-module is a
proper submodule (it is enough to know that I' is semi-primary).

2. Iterated derivative. We define inductively 9°X = X, 91X = 9(9'X).

Warning 3. Note that 92X usually is different from Xr?, a typical example
will be given by a serial module with composition factors 1,1,2,1,1 (in this or-
der) such that the submodule of length 2 and the factor module of length 2 are
isomorphic. Here, Xr? = 0, whereas 92X is simple.

(1) If i < j, then 0'X generates 87X .

(2) Any radical map 0'~1X — 0°=1X factors through 0'X .

(3) Let t > 1. If 9"~ ' X = €, N;, then

OX =P (0" X)rad(0"' X, ;)

(here, (01 X)rad(0'"1 X, IV;) is a sumodule of N;).

(3") In particular, an indecomposable summand N of 3*X is a submodule of an
indecomposable summand of =1 X, thus by induction we see: an indecomposable
summand N of 0'X is a submodule of an indecomposable summand of X .

(4) We have X1 X = 0, where | X| denotes the length of X.

Thus if we define d(X) as the smallest natural number with 94X) X = 0, then
this number exists and d(X) < |X]|.

Let C; = C;(X) = add{®? X | i < j}. Thus we obtain a filtration
Co2C2---2Cph1 2C, ={0}.

(5) Main Lemma. Let i > 1. Let N be an indecomposable direct summand
of 0°=' X which is not a direct summand of 0°X. Let

a(N) = (0" 'X)rad(0" ' X, N).

Then a(N) is a proper submodule of N and the inclusion map a(N) — N is a
right C;-approzimation (and of course right minimal).

Proof: First, we show that a(N) is a proper submodule of N. Namely, if
a(N) = N, then (3) shows that N belongs to add 3°X. But this is not the case.
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Second, observe that a (V) belongs to C;. Namely, since NV is a direct summand
of 371X we see that a(N) = (01 X) rad(9'~1 X, N) is a direct summand of 9" X,
again using (3).

Third, in order to see that the inclusion map u: a(N) — N is a right C;-
approximation, we have to show that any map ¢g: X — N with j > i factors
through u, thus that the image of ¢ is contained in a(N). By (1), there are sur-
jective maps

@1x)" 5 (X)L oix

We claim that the composition nn’g
(@1x) 2 (o'x)" Looix LN

is a radical map. Otherwise, there is an indecomposable direct summand U of
(8i_1X )t such that the composition

U— (X)L (9ix)" 2L N

is an isomorphism, but then N is a direct summand of 9°X, but this is not the
case.

It follows that the image of nn'g is contained in (97! X)rad(0'~1X,N) =
a(N). Since nn’ is surjective, it follows that the image of g itself is contained in
a(N).

(6) Let N be an indecomposable summand of 0°~1X which is not a direct
summand of 'X. Then N is not a direct summand of & X for any j > i. Proof:
If N would be a direct summand of 87X for some j > i, then we can factor the
identity map N — N through the inclusion map «(N) — N. But then o(N) = N
and N is a direct summand of 9°X, a contradiction.

3. Theorem. Let X be a module. Write C; = C;(X). Choose a module M
such that Cy = add M and let I' = End(M). Let N be indecomposable in C;—1 \ C;
for some i > 1. Then the minimal right C;-approximation u: o(N) — N yields an
exact sequence

0 — Hom(M, a(N)) 222 gom(M, N) — Hom(M, N)/(Ci) — 0

of I'-modules.

The module R(N) = Hom (M, a(N)) is projective, and the composition factors
of top R(N) are of the form S(N") with N € C;.

The endomorphism ring of A(N) = Hom(M, N)/(C;) is a division ring and
any composition factor of rad A(N) is of the form S(N') where N’ is an indecom-
posable A-module in Cy \ C;_1.



Proof: Since u is injective, also Hom(u, —) is injective. Now «(N) belongs
to C;, thus Hom(M, «(N)) is mapped unter u to a set of maps f: M — N which
factor through C;. But since u is a right C;-approximation, we see that the converse
also is true: any map M — N which factors through C; factors through w. This
shows that the cokernel of Hom (M, u) is Hom(M, N)/(C;).

Of course, R(N) is projective. If we decompose a(N) as a direct sum of
indecomposable modules N”, then Hom(M, a(N)) is a direct sum of the corre-
sponding projective I'-modules Hom (M, N”) with N indecomposable and in C;,
and top R(NV) is the direct sum of the corresponding simple I'-modules S(N").

Now we consider A(N). Let N’ be an indecomposable direct summand of M
such that S(N’) is a composition factor of A(N). This means that there is a map
f: N' — N which does not factor through C;. In particular, N’ itself does not
belong to C;, thus N' is a direct summand of &’ ~' X with j < i. Also N is a direct
summand of 9*~'X. Now, according to (2) any radical map 9°~ !X — 971X
factors through 9°X, thus f has to be invertible. This shows that for N’ € C;,
the only possibility is that N’ is isomorphic to N and that the composition factor
of A(N) given by the map f is the top composition factor. Thus, S(IN) appears
exactly once as composition factor of A(N), namely at the top: this shows that
the endomorphism ring of A(N) is a division ring. Also we have shown that the
remaining composition factors of A(NNV), thus those of rad A(/N) are of the form
S(N') with N” indecomposable and in C;_1.

4. Strongly quasi-hereditary algebras. Let I' be an artin algebra. Let
S = S§(T') be the set of isomorphism classes of simple I'-modules. For any module
M, let P(M) be the projective cover of M.

We say that I" is (left) strongly quasihereditary with n layers provided there
is a function [: S — {1,2,...,n} (the layer function) such that for any S € S(T'),
there is an exact sequence

0— R(S)— P(S)— A(S)—0

with the following two properties: First of all, if S’ is a composition factor of
rad A(S), then 1(S”) < I(S). And second, R(S) is a direct sum of projective mo-
dules P(S”) with [(S”) > I(5).

Proposition. If I is strongly quasi-hereditary with n layers, then I' is quasi-
hereditary and the global dimension of I' is at most n.

Proof. The top of R(S) is given by simple modules S" with [(S") > I(S),
thus A(S) is the maximal factor module with composition factors S’ such that
1(S") < I(S). Since S does not occur as composition factor of rad A(S), we see
that the endomorphism ring of A(S) is a division ring.

It remains to be shown that P(S) has a A-filtration for all S. This we show
by decreasing induction on [(S). If [(S) = n, then P(S) = A(S). Assume we know
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that all P(S) with [(S) > i have a A-filtration. Let [(S) = i. Then R(S) is a direct
sum of projective modules P(S") with [(S") > I(S), thus it has a A-filtration.
Then also P(S) has a A-filtration. This shows that I' is quasi-hereditary (see for
example [DR]).

Now we have to see that the global dimension of I' is at most n. We show by
induction on [(S) that proj.dim S < I(S). We start with [(S) = 1. In this case,
A(S) = S, thus there is the exact sequence 0 — R(S) — P(S) — S — 0 with
R(S) projective. This shows that proj.dim S < 1. For the induction step, consider
some i > 2 and assume that proj.dim .S < (S) for all S with I(S) < i. Now there
is the exact sequence

0 — R(S) —rad P(S) —» rad A(S) — S — 0.

All the composition factors S’ of rad A(S) satisfy [(S’) < 4, thus proj. dim S’ < i.
Also, R(S) is projective, thus proj.dim R(S) = 0 < i. This shows that rad P(S)
has a filtration whose factors have projective dimension less than ¢, and therefore
proj.dimrad P(S) < i. As a consequence, proj.dim S < i.

Since all the simple I'-modules have layer at most n, it follows that all the
simple modules have projective dimension at most n, thus the global dimension of
I' is bounded by n.

5. Theorem. Let X be a A-module. Then there is a A-module Y such that
I'=End(X @Y) is strongly quasi-hereditary with d(X) layers. In particular, the
global dimension of T" is at most d(X).

In addition, we record:
e d(X) < |X|
e The construction of Y yields a module with the following property: Any in-

decomposable direct summand of the module Y is a submodule of an indecom-
posable direct summand of X.

Proof: By definition, 04X) X = 0. Take Y = @;1(51)—1 OX,and M =XY
with endomorphism ring I' = End(M). Also, let C; = C;(X). If N is an indecom-
posable module in C;_; \ C;, with ¢ > 1, we define the layer I(S(N)) = i. Thus we
obtain a layer function with values in {1,2,...,n}. According to theorem, I is left
strongly quasi-hereditary with n layers, thus the global dimension of I" is bounded
by n, according to section 4.

The additional information comes from (4) and (3’) in section 2.

6. Corollary. The representation dimension of A is at most 2|A|.

Proof: Consider the module X = A & DA. Its length is n = |[A & DA| = 2|A|.
Let M = X &Y as in Theorem. By construction, M is a generator-cogenerator,
thus the representation dimension of A is bounded by n.



7. Example. Let us consider in detail the minimal generator-cogenerator
X = A ® DA for the Kronecker algebra A.

TOW 1 o-lx

In row ¢ (1 < i < 3) we have exhibited the indecomposable direct summands N of
the module 0*~'X by specifying a suitable basis of N using bullets; these bullets
are connected by arrows pointing downwards (we draw just line segments) which
indicate scalar multiplications by some elements of A. The modules in C;_; \ C;
are shaded.

The quiver of I' with its layer structure looks as follows:

layer 1 2 3

T

If we denote the simple I'-modules by 1,2, 3,3, where 1,3 correspond to the
projective A-modules, 2,3 to the injective A-modules and 3,3’ to the simple A-
modules, then the indecomposable projective I'-modules look as follows

L1 3 5
33 3 1
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