Iyama's finiteness theorem via strongly quasi-hereditary algebras.

Claus Michael Ringel

Abstract. Let Λ be an artin algebra and X a Λ -module. Iyama has shown that there exists a module Y such that the endomorphism ring $\Gamma(X)$ of $X \oplus Y$ is quasi-hereditary, with a heredity chain of length d(X), where d(X) is the smallest natural number such that the "iterated derivative" $\partial^{d(X)}X$ is the zero module. As one knows, any quasi-hereditary algebra Γ has finite global dimension: if Γ has a heredity chain of length n, then the global dimension of Γ is at most 2n - 2. Now Iyama asserts that the global dimension of $\Gamma(X)$ is at most d(X), which is a much better estimate than 2 d(X) - 2 (except in case d(X) = 1 so that Γ is semisimple). We are going to reformulate the better bound as follows: The endomorphism ring $\Gamma(X)$ is strongly quasi-hereditary with a heredity chain of length d(X), and any strongly quasi-hereditary algebra with a heredity chain of length n has global dimension at most n. By definition, the strongly quasi-hereditary algebras are the quasi-hereditary algebras with all standard modules of projective dimension at most 1.

Preliminaries. If Λ is an artin algebra, then mod Λ denotes the category of finitely generated left Λ -modules. Morphisms will be written on the opposite side of the scalars, thus if $f: X \to Y$ and $g: Y \to Z$ are Λ -homomorphisms between Λ -modules, then the composition is denoted by fg.

Recall that the radical rad of mod Λ is defined as follows: If X, Y are Λ modules and $f: X \to Y$, then f belongs to $\operatorname{rad}(X, Y)$ provided for any indecomposable direct summand X' of X with inclusion map $u: X' \to X$ and any indecomposable direct summand Y' of Y with projection map $p: Y \to Y'$, the composition $ufp: X' \to Y'$ is non-invertible.

1. Derivation. Let X be a (left) Λ -module, let **r** be the radical of the endomorphism ring of X. We put $\partial X = X$ **r**, this is a Λ -submodule of X.

Warning 1. Note that the two submodules rad X and X**r** of X usually are incomparable. As an example, consider the Kronecker algebra Λ . Let X = R[2] be a 4-dimensional indecomposable regular Kronecker module with a 2-dimensional regular submodule R[1]. Here, rad $X = \operatorname{soc} X$ is semisimple and of length 2, whereas $X\mathbf{r} = R[1]$ is also of length 2, but indecomposable.

(10) The module X generates the module ∂X . Proof: Let ϕ_1, \ldots, ϕ_m be a generating set of rad(X, X), say as a k-module, where k is the center of Λ . Then $\partial X = \sum_i \phi_i(X)$, thus the map $\phi = (\phi_i)_i \colon X^t \to \partial X$ is surjective.

Warning 2. One is tempted to say that X generates ∂X by radical maps, but this is usually not true! For example, let X be the regular representation of the quiver of type A_2 . Then ∂X is simple projective and the non-zero maps $X \to \partial X$ are not radical maps. (What is true, is the following: ∂X is generated by X using

maps which have the property that when we compose them with the inclusion map $\partial X \subseteq X$, then they become radical maps.)

(20) Any radical map $X \to X$ factors through ∂X . Proof: This follows directly from the construction.

(3₀) If $X = \bigoplus_i X_i$, then $\partial X = \bigoplus_i X \operatorname{rad}(X, X_i)$.

(4₀) If X is non-zero, then ∂X is a proper submodule of X. Proof. The ring $\Gamma = \text{End}(X)$ is again an artin algebra and the radical of a non-zero Γ -module is a proper submodule (it is enough to know that Γ is semi-primary).

2. Iterated derivative. We define inductively $\partial^0 X = X$, $\partial^{t+1} X = \partial(\partial^t X)$.

Warning 3. Note that $\partial^2 X$ usually is different from $X\mathbf{r}^2$, a typical example will be given by a serial module with composition factors 1, 1, 2, 1, 1 (in this order) such that the submodule of length 2 and the factor module of length 2 are isomorphic. Here, $X\mathbf{r}^2 = 0$, whereas $\partial^2 X$ is simple.

- (1) If $i \leq j$, then $\partial^i X$ generates $\partial^j X$.
- (2) Any radical map $\partial^{i-1}X \to \partial^{i-1}X$ factors through $\partial^i X$.
- (3) Let $t \ge 1$. If $\partial^{t-1} X = \bigoplus_i N_i$, then

$$\partial^t X = \bigoplus_i (\partial^{t-1} X) \operatorname{rad}(\partial^{t-1} X, N_i)$$

(here, $(\partial^{t-1}X) \operatorname{rad}(\partial^{t-1}X, N_i)$ is a sumodule of N_i).

(3') In particular, an indecomposable summand N of $\partial^t X$ is a submodule of an indecomposable summand of $\partial^{t-1}X$, thus by induction we see: an indecomposable summand N of $\partial^t X$ is a submodule of an indecomposable summand of X.

(4) We have $\partial^{|X|}X = 0$, where |X| denotes the length of X.

Thus if we define d(X) as the smallest natural number with $\partial^{d(X)}X = 0$, then this number exists and $d(X) \leq |X|$.

Let $C_i = C_i(X) = \operatorname{add} \{ \partial^j X \mid i \leq j \}$. Thus we obtain a filtration

$$\mathcal{C}_0 \supseteq \mathcal{C}_1 \supseteq \cdots \supseteq \mathcal{C}_{n-1} \supseteq \mathcal{C}_n = \{0\}$$

(5) Main Lemma. Let $i \ge 1$. Let N be an indecomposable direct summand of $\partial^{i-1}X$ which is not a direct summand of $\partial^i X$. Let

$$\alpha(N) = (\partial^{i-1}X) \operatorname{rad}(\partial^{i-1}X, N).$$

Then $\alpha(N)$ is a proper submodule of N and the inclusion map $\alpha(N) \to N$ is a right C_i -approximation (and of course right minimal).

Proof: First, we show that $\alpha(N)$ is a proper submodule of N. Namely, if $\alpha(N) = N$, then (3) shows that N belongs to add $\partial^i X$. But this is not the case.

Second, observe that $\alpha(N)$ belongs to \mathcal{C}_i . Namely, since N is a direct summand of $\partial^{i-1}X$, we see that $\alpha(N) = (\partial^{i-1}X) \operatorname{rad}(\partial^{i-1}X, N)$ is a direct summand of $\partial^i X$, again using (3).

Third, in order to see that the inclusion map $u: \alpha(N) \to N$ is a right C_i -approximation, we have to show that any map $g: \partial^j X \to N$ with $j \geq i$ factors through u, thus that the image of g is contained in $\alpha(N)$. By (1), there are surjective maps

$$\left(\partial^{i-1}X\right)^t \xrightarrow{\eta} \left(\partial^i X\right)^{t'} \xrightarrow{\eta'} \partial^j X$$

We claim that the composition $\eta \eta' g$

$$\left(\partial^{i-1}X\right)^t \xrightarrow{\eta} \left(\partial^i X\right)^{t'} \xrightarrow{\eta'} \partial^j X \xrightarrow{g} N$$

is a radical map. Otherwise, there is an indecomposable direct summand U of $(\partial^{i-1}X)^t$ such that the composition

$$U \to \left(\partial^{i-1} X\right)^i \xrightarrow{\eta} \left(\partial^i X\right)^{t'} \xrightarrow{\eta' g} N$$

is an isomorphism, but then N is a direct summand of $\partial^i X$, but this is not the case.

It follows that the image of $\eta \eta' g$ is contained in $(\partial^{i-1}X) \operatorname{rad}(\partial^{i-1}X, N) = \alpha(N)$. Since $\eta \eta'$ is surjective, it follows that the image of g itself is contained in $\alpha(N)$.

(6) Let N be an indecomposable summand of $\partial^{i-1}X$ which is not a direct summand of $\partial^i X$. Then N is not a direct summand of $\partial^j X$ for any $j \ge i$. Proof: If N would be a direct summand of $\partial^j X$ for some $j \ge i$, then we can factor the identity map $N \to N$ through the inclusion map $\alpha(N) \to N$. But then $\alpha(N) = N$ and N is a direct summand of $\partial^i X$, a contradiction.

3. Theorem. Let X be a module. Write $C_i = C_i(X)$. Choose a module M such that $C_0 = \operatorname{add} M$ and let $\Gamma = \operatorname{End}(M)$. Let N be indecomposable in $C_{i-1} \setminus C_i$ for some $i \geq 1$. Then the minimal right C_i -approximation $u: \alpha(N) \to N$ yields an exact sequence

$$0 \to \operatorname{Hom}(M, \alpha(N)) \xrightarrow{\operatorname{Hom}(M, u)} \operatorname{Hom}(M, N) \to \operatorname{Hom}(M, N) / \langle \mathcal{C}_i \rangle \to 0$$

of Γ -modules.

The module $R(N) = \text{Hom}(M, \alpha(N))$ is projective, and the composition factors of top R(N) are of the form S(N'') with $N'' \in C_i$.

The endomorphism ring of $\Delta(N) = \text{Hom}(M, N)/\langle \mathcal{C}_i \rangle$ is a division ring and any composition factor of rad $\Delta(N)$ is of the form S(N') where N' is an indecomposable Λ -module in $\mathcal{C}_0 \setminus \mathcal{C}_{i-1}$. Proof: Since u is injective, also $\operatorname{Hom}(u, -)$ is injective. Now $\alpha(N)$ belongs to \mathcal{C}_i , thus $\operatorname{Hom}(M, \alpha(N))$ is mapped unter u to a set of maps $f: M \to N$ which factor through \mathcal{C}_i . But since u is a right \mathcal{C}_i -approximation, we see that the converse also is true: any map $M \to N$ which factors through \mathcal{C}_i factors through u. This shows that the cokernel of $\operatorname{Hom}(M, u)$ is $\operatorname{Hom}(M, N)/\langle \mathcal{C}_i \rangle$.

Of course, R(N) is projective. If we decompose $\alpha(N)$ as a direct sum of indecomposable modules N'', then $\operatorname{Hom}(M, \alpha(N))$ is a direct sum of the corresponding projective Γ -modules $\operatorname{Hom}(M, N'')$ with N'' indecomposable and in \mathcal{C}_i , and top R(N) is the direct sum of the corresponding simple Γ -modules S(N'').

Now we consider $\Delta(N)$. Let N' be an indecomposable direct summand of Msuch that S(N') is a composition factor of $\Delta(N)$. This means that there is a map $f: N' \to N$ which does not factor through \mathcal{C}_i . In particular, N' itself does not belong to \mathcal{C}_i , thus N' is a direct summand of $\partial^{j-1}X$ with $j \leq i$. Also N is a direct summand of $\partial^{i-1}X$. Now, according to (2) any radical map $\partial^{i-1}X \to \partial^{i-1}X$ factors through $\partial^i X$, thus f has to be invertible. This shows that for $N' \in \mathcal{C}_i$, the only possibility is that N' is isomorphic to N and that the composition factor of $\Delta(N)$ given by the map f is the top composition factor. Thus, S(N) appears exactly once as composition factor of $\Delta(N)$, namely at the top: this shows that the endomorphism ring of $\Delta(N)$ is a division ring. Also we have shown that the remaining composition factors of $\Delta(N)$, thus those of rad $\Delta(N)$ are of the form S(N') with N' indecomposable and in \mathcal{C}_{i-1} .

4. Strongly quasi-hereditary algebras. Let Γ be an artin algebra. Let $S = S(\Gamma)$ be the set of isomorphism classes of simple Γ -modules. For any module M, let P(M) be the projective cover of M.

We say that Γ is (left) strongly quasihereditary with n layers provided there is a function $l: S \to \{1, 2, ..., n\}$ (the layer function) such that for any $S \in S(\Gamma)$, there is an exact sequence

$$0 \to R(S) \to P(S) \to \Delta(S) \to 0$$

with the following two properties: First of all, if S' is a composition factor of rad $\Delta(S)$, then l(S') < l(S). And second, R(S) is a direct sum of projective modules P(S'') with l(S'') > l(S).

Proposition. If Γ is strongly quasi-hereditary with n layers, then Γ is quasi-hereditary and the global dimension of Γ is at most n.

Proof. The top of R(S) is given by simple modules S' with l(S') > l(S), thus $\Delta(S)$ is the maximal factor module with composition factors S' such that $l(S') \leq l(S)$. Since S does not occur as composition factor of rad $\Delta(S)$, we see that the endomorphism ring of $\Delta(S)$ is a division ring.

It remains to be shown that P(S) has a Δ -filtration for all S. This we show by decreasing induction on l(S). If l(S) = n, then $P(S) = \Delta(S)$. Assume we know that all P(S) with l(S) > i have a Δ -filtration. Let l(S) = i. Then R(S) is a direct sum of projective modules P(S') with l(S') > l(S), thus it has a Δ -filtration. Then also P(S) has a Δ -filtration. This shows that Γ is quasi-hereditary (see for example [DR]).

Now we have to see that the global dimension of Γ is at most n. We show by induction on l(S) that proj. dim $S \leq l(S)$. We start with l(S) = 1. In this case, $\Delta(S) = S$, thus there is the exact sequence $0 \to R(S) \to P(S) \to S \to 0$ with R(S) projective. This shows that proj. dim $S \leq 1$. For the induction step, consider some $i \geq 2$ and assume that proj. dim $S \leq l(S)$ for all S with l(S) < i. Now there is the exact sequence

$$0 \to R(S) \to \operatorname{rad} P(S) \to \operatorname{rad} \Delta(S) \to S \to 0.$$

All the composition factors S' of rad $\Delta(S)$ satisfy l(S') < i, thus proj. dim S' < i. Also, R(S) is projective, thus proj. dim R(S) = 0 < i. This shows that rad P(S) has a filtration whose factors have projective dimension less than i, and therefore proj. dim rad P(S) < i. As a consequence, proj. dim $S \leq i$.

Since all the simple Γ -modules have layer at most n, it follows that all the simple modules have projective dimension at most n, thus the global dimension of Γ is bounded by n.

5. Theorem. Let X be a Λ -module. Then there is a Λ -module Y such that $\Gamma = \text{End}(X \oplus Y)$ is strongly quasi-hereditary with d(X) layers. In particular, the global dimension of Γ is at most d(X).

In addition, we record:

- $d(X) \leq |X|$
- The construction of Y yields a module with the following property: Any indecomposable direct summand of the module Y is a submodule of an indecomposable direct summand of X.

Proof: By definition, $\partial^{d(X)}X = 0$. Take $Y = \bigoplus_{i=1}^{d(X)-1} \partial^i X$, and $M = X \oplus Y$ with endomorphism ring $\Gamma = \operatorname{End}(M)$. Also, let $\mathcal{C}_i = \mathcal{C}_i(X)$. If N is an indecomposable module in $\mathcal{C}_{i-1} \setminus \mathcal{C}_i$, with $i \geq 1$, we define the layer l(S(N)) = i. Thus we obtain a layer function with values in $\{1, 2, \ldots, n\}$. According to theorem, Γ is left strongly quasi-hereditary with n layers, thus the global dimension of Γ is bounded by n, according to section 4.

The additional information comes from (4) and (3') in section 2.

6. Corollary. The representation dimension of Λ is at most $2|\Lambda|$.

Proof: Consider the module $X = \Lambda \oplus D\Lambda$. Its length is $n = |\Lambda \oplus D\Lambda| = 2|\Lambda|$. Let $M = X \oplus Y$ as in Theorem. By construction, M is a generator-cogenerator, thus the representation dimension of Λ is bounded by n. 7. Example. Let us consider in detail the minimal generator-cogenerator $X = \Lambda \oplus D\Lambda$ for the Kronecker algebra Λ .

In row i $(1 \le i \le 3)$ we have exhibited the indecomposable direct summands N of the module $\partial^{i-1}X$ by specifying a suitable basis of N using bullets; these bullets are connected by arrows pointing downwards (we draw just line segments) which indicate scalar multiplications by some elements of Λ . The modules in $\mathcal{C}_{i-1} \setminus \mathcal{C}_i$ are shaded.

The quiver of Γ with its layer structure looks as follows:

If we denote the simple Γ -modules by 1, 2, 3, 3', where 1, 3 correspond to the projective Λ -modules, 2, 3 to the injective Λ -modules and 3, 3' to the simple Λ -modules, then the indecomposable projective Γ -modules look as follows

References.

- [I1] Iyama, O.: Finiteness of representation dimension. Proc. Amer. Math. Soc. 131 (2003), 1011-1014.
- [I2] Iyama, O.: Rejective subcategories of artin algebras and orders. arXiv:math/0311281. (Theorem 2.2.2 and Theorem 2.5.1).
- [DR] Dlab, V., Ringel C. M.: The module theoretical approach to quasi-hereditary algebras. In: Representations of Algebras and Related Topics. London Math. Soc. Lecture Note Series 168 (1992), 200-224.