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Abstract. Let Λ be an artin algebra and X a Λ-module. Iyama has shown
that there exists a module Y such that the endomorphism ring Γ(X) of X ⊕ Y is
quasi-hereditary, with a heredity chain of length d(X), where d(X) is the smallest
natural number such that the “iterated derivative” ∂d(X)X is the zero module. As
one knows, any quasi-hereditary algebra Γ has finite global dimension: if Γ has a
heredity chain of length n, then the global dimension of Γ is at most 2n− 2. Now
Iyama asserts that the global dimension of Γ(X) is at most d(X), which is a much
better estimate than 2 d(X)−2 (except in case d(X) = 1 so that Γ is semisimple).
We are going to reformulate the better bound as follows: The endomorphism ring
Γ(X) is strongly quasi-hereditary with a heredity chain of length d(X), and any
strongly quasi-hereditary algebra with a heredity chain of length n has global
dimension at most n. By definition, the strongly quasi-hereditary algebras are the
quasi-hereditary algebras with all standard modules of projective dimension at
most 1.

Preliminaries. If Λ is an artin algebra, then modΛ denotes the category of
finitely generated left Λ-modules. Morphisms will be written on the opposite side
of the scalars, thus if f : X → Y and g : Y → Z are Λ-homomorphisms between
Λ-modules, then the composition is denoted by fg.

Recall that the radical rad of mod Λ is defined as follows: If X, Y are Λ-
modules and f : X → Y , then f belongs to rad(X, Y ) provided for any inde-
composable direct summand X ′ of X with inclusion map u : X ′ → X and any
indecomposable direct summand Y ′ of Y with projection map p : Y → Y ′, the
composition ufp : X ′ → Y ′ is non-invertible.

1. Derivation. Let X be a (left) Λ-module, let r be the radical of the endo-
morphism ring of X . We put ∂X = Xr, this is a Λ-submodule of X .

Warning 1. Note that the two submodules radX and Xr of X usually are in-
comparable. As an example, consider the Kronecker algebra Λ. Let X = R[2] be a
4-dimensional indecomposable regular Kronecker module with a 2-dimensional re-
gular submodule R[1]. Here, radX = socX is semisimple and of length 2, whereas
Xr = R[1] is also of length 2, but indecomposable.

(10) The module X generates the module ∂X. Proof: Let φ1, . . . , φm be a
generating set of rad(X, X), say as a k-module, where k is the center of Λ. Then
∂X =

∑

i φi(X), thus the map φ = (φi)i : Xt → ∂X is surjective.

Warning 2. One is tempted to say that X generates ∂X by radical maps,
but this is usually not true! For example, let X be the regular representation of the
quiver of type A2. Then ∂X is simple projective and the non-zero maps X → ∂X
are not radical maps. (What is true, is the following: ∂X is generated by X using
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maps which have the property that when we compose them with the inclusion map
∂X ⊆ X , then they become radical maps.)

(20) Any radical map X → X factors through ∂X. Proof: This follows directly
from the construction.

(30) If X =
⊕

i Xi, then ∂X =
⊕

i X rad(X, Xi).

(40) If X is non-zero, then ∂X is a proper submodule of X. Proof. The ring
Γ = End(X) is again an artin algebra and the radical of a non-zero Γ-module is a
proper submodule (it is enough to know that Γ is semi-primary).

2. Iterated derivative. We define inductively ∂0X = X, ∂t+1X = ∂(∂tX).

Warning 3. Note that ∂2X usually is different from Xr2, a typical example
will be given by a serial module with composition factors 1, 1, 2, 1, 1 (in this or-
der) such that the submodule of length 2 and the factor module of length 2 are
isomorphic. Here, Xr2 = 0, whereas ∂2X is simple.

(1) If i ≤ j, then ∂iX generates ∂jX.

(2) Any radical map ∂i−1X → ∂i−1X factors through ∂iX.

(3) Let t ≥ 1. If ∂t−1X =
⊕

i Ni, then

∂tX =
⊕

i
(∂t−1X) rad(∂t−1X, Ni)

(here, (∂t−1X) rad(∂t−1X, Ni) is a sumodule of Ni).

(3′) In particular, an indecomposable summand N of ∂tX is a submodule of an
indecomposable summand of ∂t−1X, thus by induction we see: an indecomposable
summand N of ∂tX is a submodule of an indecomposable summand of X.

(4) We have ∂|X|X = 0, where |X | denotes the length of X.

Thus if we define d(X) as the smallest natural number with ∂d(X)X = 0, then
this number exists and d(X) ≤ |X |.

Let Ci = Ci(X) = add{∂jX | i ≤ j}. Thus we obtain a filtration

C0 ⊇ C1 ⊇ · · · ⊇ Cn−1 ⊇ Cn = {0}.

(5) Main Lemma. Let i ≥ 1. Let N be an indecomposable direct summand
of ∂i−1X which is not a direct summand of ∂iX. Let

α(N) = (∂i−1X) rad(∂i−1X, N).

Then α(N) is a proper submodule of N and the inclusion map α(N) → N is a
right Ci-approximation (and of course right minimal).

Proof: First, we show that α(N) is a proper submodule of N . Namely, if
α(N) = N, then (3) shows that N belongs to add ∂iX . But this is not the case.
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Second, observe that α(N) belongs to Ci. Namely, since N is a direct summand
of ∂i−1X , we see that α(N) = (∂i−1X) rad(∂i−1X, N) is a direct summand of ∂iX,
again using (3).

Third, in order to see that the inclusion map u : α(N) → N is a right Ci-
approximation, we have to show that any map g : ∂jX → N with j ≥ i factors
through u, thus that the image of g is contained in α(N). By (1), there are sur-
jective maps

(

∂i−1X
)t η

−→
(

∂iX
)t′ η′

−→ ∂jX

We claim that the composition ηη′g

(

∂i−1X
)t η

−→
(

∂iX
)t′ η′

−→ ∂jX
g
−→ N

is a radical map. Otherwise, there is an indecomposable direct summand U of
(

∂i−1X
)t

such that the composition

U −→
(

∂i−1X
)i η

−→
(

∂iX
)t′ η′g

−−→ N

is an isomorphism, but then N is a direct summand of ∂iX , but this is not the
case.

It follows that the image of ηη′g is contained in (∂i−1X) rad(∂i−1X, N) =
α(N). Since ηη′ is surjective, it follows that the image of g itself is contained in
α(N).

(6) Let N be an indecomposable summand of ∂i−1X which is not a direct
summand of ∂iX. Then N is not a direct summand of ∂jX for any j ≥ i. Proof:
If N would be a direct summand of ∂jX for some j ≥ i, then we can factor the
identity map N → N through the inclusion map α(N) → N . But then α(N) = N
and N is a direct summand of ∂iX , a contradiction.

3. Theorem. Let X be a module. Write Ci = Ci(X). Choose a module M
such that C0 = addM and let Γ = End(M). Let N be indecomposable in Ci−1 \ Ci

for some i ≥ 1. Then the minimal right Ci-approximation u : α(N) → N yields an
exact sequence

0 −→ Hom(M, α(N))
Hom(M,u)
−−−−−−−→ Hom(M, N) −→ Hom(M, N)/〈Ci〉 −→ 0

of Γ-modules.
The module R(N) = Hom(M, α(N)) is projective, and the composition factors

of top R(N) are of the form S(N ′′) with N ′′ ∈ Ci.
The endomorphism ring of ∆(N) = Hom(M, N)/〈Ci〉 is a division ring and

any composition factor of rad ∆(N) is of the form S(N ′) where N ′ is an indecom-
posable Λ-module in C0 \ Ci−1.
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Proof: Since u is injective, also Hom(u,−) is injective. Now α(N) belongs
to Ci, thus Hom(M, α(N)) is mapped unter u to a set of maps f : M → N which
factor through Ci. But since u is a right Ci-approximation, we see that the converse
also is true: any map M → N which factors through Ci factors through u. This
shows that the cokernel of Hom(M, u) is Hom(M, N)/〈Ci〉.

Of course, R(N) is projective. If we decompose α(N) as a direct sum of
indecomposable modules N ′′, then Hom(M, α(N)) is a direct sum of the corre-
sponding projective Γ-modules Hom(M, N ′′) with N ′′ indecomposable and in Ci,
and topR(N) is the direct sum of the corresponding simple Γ-modules S(N ′′).

Now we consider ∆(N). Let N ′ be an indecomposable direct summand of M
such that S(N ′) is a composition factor of ∆(N). This means that there is a map
f : N ′ → N which does not factor through Ci. In particular, N ′ itself does not
belong to Ci, thus N ′ is a direct summand of ∂j−1X with j ≤ i. Also N is a direct
summand of ∂i−1X . Now, according to (2) any radical map ∂i−1X → ∂i−1X
factors through ∂iX , thus f has to be invertible. This shows that for N ′ ∈ Ci,
the only possibility is that N ′ is isomorphic to N and that the composition factor
of ∆(N) given by the map f is the top composition factor. Thus, S(N) appears
exactly once as composition factor of ∆(N), namely at the top: this shows that
the endomorphism ring of ∆(N) is a division ring. Also we have shown that the
remaining composition factors of ∆(N), thus those of rad ∆(N) are of the form
S(N ′) with N ′ indecomposable and in Ci−1.

4. Strongly quasi-hereditary algebras. Let Γ be an artin algebra. Let
S = S(Γ) be the set of isomorphism classes of simple Γ-modules. For any module
M , let P (M) be the projective cover of M.

We say that Γ is (left) strongly quasihereditary with n layers provided there
is a function l : S → {1, 2, . . . , n} (the layer function) such that for any S ∈ S(Γ),
there is an exact sequence

0 → R(S) → P (S) → ∆(S) → 0

with the following two properties: First of all, if S′ is a composition factor of
rad ∆(S), then l(S′) < l(S). And second, R(S) is a direct sum of projective mo-
dules P (S′′) with l(S′′) > l(S).

Proposition. If Γ is strongly quasi-hereditary with n layers, then Γ is quasi-
hereditary and the global dimension of Γ is at most n.

Proof. The top of R(S) is given by simple modules S′ with l(S′) > l(S),
thus ∆(S) is the maximal factor module with composition factors S′ such that
l(S′) ≤ l(S). Since S does not occur as composition factor of rad ∆(S), we see
that the endomorphism ring of ∆(S) is a division ring.

It remains to be shown that P (S) has a ∆-filtration for all S. This we show
by decreasing induction on l(S). If l(S) = n, then P (S) = ∆(S). Assume we know
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that all P (S) with l(S) > i have a ∆-filtration. Let l(S) = i. Then R(S) is a direct
sum of projective modules P (S′) with l(S′) > l(S), thus it has a ∆-filtration.
Then also P (S) has a ∆-filtration. This shows that Γ is quasi-hereditary (see for
example [DR]).

Now we have to see that the global dimension of Γ is at most n. We show by
induction on l(S) that proj. dimS ≤ l(S). We start with l(S) = 1. In this case,
∆(S) = S, thus there is the exact sequence 0 → R(S) → P (S) → S → 0 with
R(S) projective. This shows that proj. dimS ≤ 1. For the induction step, consider
some i ≥ 2 and assume that proj. dimS ≤ l(S) for all S with l(S) < i. Now there
is the exact sequence

0 → R(S) → radP (S) → rad∆(S) → S → 0.

All the composition factors S′ of rad∆(S) satisfy l(S′) < i, thus proj. dimS′ < i.
Also, R(S) is projective, thus proj. dimR(S) = 0 < i. This shows that radP (S)
has a filtration whose factors have projective dimension less than i, and therefore
proj. dim radP (S) < i. As a consequence, proj. dimS ≤ i.

Since all the simple Γ-modules have layer at most n, it follows that all the
simple modules have projective dimension at most n, thus the global dimension of
Γ is bounded by n.

5. Theorem. Let X be a Λ-module. Then there is a Λ-module Y such that
Γ = End(X ⊕ Y ) is strongly quasi-hereditary with d(X) layers. In particular, the
global dimension of Γ is at most d(X).

In addition, we record:

• d(X) ≤ |X |

• The construction of Y yields a module with the following property: Any in-
decomposable direct summand of the module Y is a submodule of an indecom-
posable direct summand of X.

Proof: By definition, ∂d(X)X = 0. Take Y =
⊕d(X)−1

i =1 ∂iX , and M = X ⊕ Y
with endomorphism ring Γ = End(M). Also, let Ci = Ci(X). If N is an indecom-
posable module in Ci−1 \ Ci, with i ≥ 1, we define the layer l(S(N)) = i. Thus we
obtain a layer function with values in {1, 2, . . . , n}. According to theorem, Γ is left
strongly quasi-hereditary with n layers, thus the global dimension of Γ is bounded
by n, according to section 4.

The additional information comes from (4) and (3′) in section 2.

6. Corollary. The representation dimension of Λ is at most 2|Λ|.

Proof: Consider the module X = Λ ⊕ DΛ. Its length is n = |Λ ⊕ DΛ| = 2|Λ|.
Let M = X ⊕ Y as in Theorem. By construction, M is a generator-cogenerator,
thus the representation dimension of Λ is bounded by n.
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7. Example. Let us consider in detail the minimal generator-cogenerator
X = Λ ⊕ DΛ for the Kronecker algebra Λ.
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In row i (1 ≤ i ≤ 3) we have exhibited the indecomposable direct summands N of
the module ∂i−1X by specifying a suitable basis of N using bullets; these bullets
are connected by arrows pointing downwards (we draw just line segments) which
indicate scalar multiplications by some elements of Λ. The modules in Ci−1 \ Ci

are shaded.

The quiver of Γ with its layer structure looks as follows:
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layer 1 2 3

If we denote the simple Γ-modules by 1, 2, 3, 3′, where 1, 3 correspond to the
projective Λ-modules, 2, 3 to the injective Λ-modules and 3, 3′ to the simple Λ-
modules, then the indecomposable projective Γ-modules look as follows

1
3 3

2
1 1
3

3
3′
2 2
1
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