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Abstract: Following the well-established terminology in commutative algebra, any (not nec-

essarily commutative) finite-dimensional local algebra A with radical J will be said to be short

provided J3=0. As in the commutative case, we show: If a short local algebra A has an inde-

composable non-projective Gorenstein-projective module M , then either A is self-injective (so

that all modules are Gorenstein-projective) and then, of course, |J2|≤1, or else |J2|=|J/J2|−1

and |JM|=|J2||M/JM|. More generally, we focus the attention to semi-Gorenstein-projective and

∞-torsionfree modules, even to ℧-paths of length 2, 3 and 4. In particular, we show that the ex-

istence of a non-projective reflexive module implies that |J2|<|J/J2| and further restrictions. In

addition, we consider exact complexes of projective modules with a non-projective image. Again,

as in the commutative case, we see that if such a complex exists, then A is self-injective or satisfies

the condition |J2|=|J/J2|−1. Also, we show that any non-projective semi-Gorenstein-projective

module M satisfies Ext1(M,M)6=0. In this way, we prove the Auslander-Reiten conjecture (one

of the classical homological conjectures) for arbitrary short local algebras.

Many arguments used in the commutative case actually work in general, but there are

interesting differences and some of our results may be new also in the commutative case.

Key words. Short local algebra, Gorenstein-projective module, semi-Gorenstein-projective mod-

ule, reflexive module, n-torsionfree module, ∞-torsionfree module, ℧-quiver, exact complex of

projective modules, Auslander-Reiten conjecture.

2010 Math Subject classification. Primary 16G10, Secondary 13D07, 16E65, 16G50, 20G42.

Supported by NSFC 12131015, 11971304.

1. Introduction.

1.1. The algebras and their modules

Let A be a finite-dimensional algebra with radical J = J(A). The modules to be
considered are left A-modules of finite length (if not otherwise asserted). We denote by
|M | the length of the module M . If M is a module, let p:PM →M be a projective cover
of M and ΩM the kernel of p. The modules ΩiM with i ≥ 1 are the syzygy modules of M .
The module topM = M/JM will be called the top of M and we write t(M) = | topM |.

All algebras A considered here will be local finite-dimensional k-algebras, where k is
a field, and for simplicity, we will assume that A/J = k. The module A/J will always be
denoted by S; it is the unique simple module. Let e = e(A) = |J/J2|. A local algebra A
is said to be short provided J3 = 0. Usually, we will assume that A is short and then we
write a = a(A) = |J2| and call (e(A), a(A)) the Hilbert-type of A.

If M is a module with Loewy length at most 2, we call dimM = (t(M), |JM |) (or its
transpose) the dimension vector of M (note that dimM is only defined for modules M of
Loewy length at most 2; we have dimS = (1, 0) and there is no module with dimension
vector (0, 1)). We call a module M bipartite provided socM = JM . A module has Loewy
length at most 2 if and only if it is the direct sum of a bipartite and a semisimple module.

1



1.2. Complexes and A-duality

For any module M , let M∗ = Hom(M,AA) be the A-dual of M (it is a right A-module,
thus an Aop-module), and φM :M → M∗∗ the canonical map defined by φ(m)(α) = α(m)
for m ∈ M and α ∈ M∗. A module M is torsionless if M is a submodule of a projective
module, or, equivalently, if φM is a monomorphism. The module M is said to be reflexive if
φM is bijective. Note that an indecomposable module which is torsionless and not projective
has Loewy length at most 2.

We will consider exact complexes of projective modules, they are of the form P• =
(Pi, di:Pi → Pi−1)i, thus

· · · −→ P1
d1−→ P0

d0−→ P−1
d−1

−−→ P−2 −→ · · · ,

with projective modules Pi such that Im di = Ker di−1, for all i ∈ Z. A module M is said
to be an image in P•, provided M = Im di for some i ∈ Z. The exact complex P• is said
to be minimal provided that any map di maps into the radical of Pi−1. Given a complex
P• of projective modules, we may form the A-dual complex P ∗

• , forming the A-dual of the
modules Pi and of the maps di.

A module M is Gorenstein-projective provided it is an image in an exact complex
P• of projective modules, with P ∗

• again being exact; M is semi-Gorenstein-projective
provided Exti(M,A) = 0 for all i ≥ 1, and M is ∞-torsionfree, provided TrM is semi-
Gorenstein-projective, where Tr is Auslander’s transpose operator. Note that a module M
is Gorenstein projective iff M is both semi-Gorenstein-projective and ∞-torsionfree.

1.3. The topics to be considered

The topics to be discussed in this paper (and its sequel [RZ3]) concern the module
theory for a short local algebra A. The main results of the present paper are stated in Sec-
tions 1.4 to 1.8. The central question concerns the existence of non-projective Gorenstein-
projective modules or of related ones, and properties of such modules. The case of A being
commutative has been considered before in several papers published between 1980 and
2010 (in particular, see [L, Y, HSV, CV, AIS]). Our aim is to extend the results known
for commutative rings to general rings. Some of our observations may be new also in the
commutative case.

Two properties of Gorenstein-projective modules are important: Gorenstein-projective
modules are reflexive, and they are images in exact complexes of projective modules. Theo-
rems 1.1 and 1.2 announced in Section 1.4 deal with the existence of non-projective reflexive
modules. Theorem 1.3 stated in Section 1.5 concerns the existence of non-projective images
in exact complexes of projective modules.

1.4. Existence of reflexive modules

We say that a non-zero module M of Loewy length at most 2 is solid provided any en-
domorphism of M is a scalar multiplication on socM (as a consequence, any non-invertible
endomorphism vanishes on the socle). A solid module is of course indecomposable (a char-
acterization of the solid modules using covering theory will be given in Proposition A.3 of
Appendix A).
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Theorem 1.1. Let A be a short local algebra which is not self-injective. If there exists
a reflexive module which is not projective, then 2 ≤ a ≤ e − 1. Also, AJ and the right
module JA are solid.

The bound a ≤ e − 1 cannot be improved, since Proposition 15.1 shows that for any
a with 1 ≤ a ≤ e − 1, there exists an algebra of Hilbert type (e, a) with non-projective
reflexive modules.

Also note that in general, AJ may be solid, whereas JA is not solid, as Example 4.8
shows.

Theorem 1.1 can be rephrased: If A is any artin algebra, there exists a non-projective
reflexive module iff there exists a non-projective moduleN with Exti(N,A) = 0 for i = 1, 2.
Namely, there is the following recipe: If N is a non-projective module with Exti(N,A) = 0
for i = 1, 2, then the module Ω2N is non-projective and reflexive. The reverse construction
is given by the agemo-functor ℧ = TrΩTr: If M is reflexive, then Exti(℧2M,A) = 0, for
i = 1, 2. This recipe is part of general considerations outlined in Section 2, which focus the
attention to what we call the ℧-paths of A. With reference to ℧-paths of A, the existence
assumption in Theorem 1.1 just says that there exists an ℧-path of length 2.

Theorem 1.1 assumes that there exists a non-projective reflexive module, thus an ℧-
path of length 2, or equivalently, a non-projective module M with Exti(M,A) = 0, for
1 ≤ i ≤ 2. The next theorem shows that the existence of a non-projective module M
with Exti(M,A) = 0, for 1 ≤ i ≤ 4, yields a stronger assertion. Again using Section
2.4, there are several reformulations. The existence of a non-projective module M with
Exti(M,A) = 0, for 1 ≤ i ≤ 4 is equivalent to the existence of an ℧-path of length 4,
and also to the existence of a non-projective reflexive module M with Exti(M,A) = 0 for
i = 1, 2.

Theorem 1.2. Let A be a short local algebra which is not self-injective. Assume that
M is an indecomposable, reflexive and non-projective module with Exti(M,A) = 0 for 1 =
1, 2. Then 2 ≤ a = e− 1. If t = t(M), then dimX = (t, at) for X ∈ {Ω2M,ΩM,M,℧M}.

1.5. Existence of exact complexes of projective modules

Theorem 1.3. Let A be a short local algebra which is not self-injective, with a non-
zero minimal exact complex P• = (Pi, di)i of projective modules. Then 1 ≤ a = e− 1.

Also, Mi = Im di is bipartite for i ≪ 0. Let ti = t(Pi) = t(Mi). There is v ∈ Z such
that for i ≤ v, we have ti = t and dimMi = (t, at). And, there are just two possibilities:

Type I. For all i ∈ Z, the module Mi is bipartite with dimMi = (t, at) (thus ti = t).

Type II. We can choose v in such a way that first, ti+1 > ti for i ≥ v, second, the
module Mv+1 is not bipartite, and third, |JMi| < ati for i > v.

For commutative rings, Theorem 1.3 is due to Christensen-Veliche [CV]; here, the
case a = 1 does not occur. But in general, the case a = 1 is possible, see Example
9.2. Also, for A commutative, and P• a complex of type II, all the modules Mi with
i ≤ v are bipartite, whereas we do not know whether this holds true in general. For A
commutative, the existence of a non-zero minimal exact complex P• of projective modules
implies that J2 = socA, whereas in general, it does neither imply that J2 = socAA, nor
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that J2 = socAA, see Examples 9.2 and 9.3. If J2 = socAA, then all the modules Mi with
i ≤ v are bipartite, see Corollary 13.3.

For a typical example of a complex P• = (Pi, di) of type I, see Proposition 10.7: Let
A be of Hilbert type (e, e − 1), with e ≥ 2 and x ∈ A with x2 = 0 and Jx = J2 (a left
Conca element). For all i, let Pi = AA and di the right multiplication by x. Then all
images in P• are equal to Ax. If x is also right Conca, then also P ∗

• is exact, thus Ax is
Gorenstein-projective.

Theorem 1.3 describes the structure of a minimal exact complex of projective modules,
if A is not self-injective. For A being self-injective, see Corollary A.8 in Appendix A.

1.6. Semi-Gorenstein-projective and ∞-torsionfree modules

Both Theorems 1.2 and 1.3 imply: If A is a short local algebra which is not self-
injective, with a Gorenstein-projective module which is not projective, then 2 ≤ a = e− 1.
There is the following strengthening.

Theorem 1.4. Let A be a short local algebra which is not self-injective. Assume that
there exists a non-projective indecomposable module M which is semi-Gorenstein-projective
or ∞-torsionfree. Then 2 ≤ a = e− 1 and J2 = socAA = socAA. Moreover, let t = t(M).
We have in addition:
(1) If M is torsionless and semi-Gorenstein-projective, then dimΩiM = (t, at) for all

i ≥ 0.
(2) If M is ∞-torsionfree, then dim℧iM = (t, at) for all i ≥ 0.
(3) If M is reflexive and semi-Gorenstein-projective, or if M is ∞-torsionfree, then also

dimM∗ = (t, at).
(4) If M is Gorenstein-projective, then dimX = (t, at) for X = ΩiM and X = ℧iM ,

where i ≥ 0, as well as for X = M∗.

Remark. In general, if A is a short local algebra and M is semi-Gorenstein-projective,
its Loewy length may be 3; and if it is 2, we may have dimM∗ 6= dimM (see the algebra
A mentioned in Example 9.5: the right A-module M = m1A is semi-Gorenstein-projective
and has dimM = (1, 2), whereas dimM∗ = (2, 1), the right A-module ℧(m1A) is also
semi-Gorenstein-projective and its Loewy length is 3).

1.7. The Auslander-Reiten conjecture

Using Theorem 1.4 as well as Proposition A,5 in Appendix A we get the following
result.

Theorem 1.5. Let A be a short local algebra and M a non-projective semi-Gorenstein-
projective module. Then Ext1(M,M) 6= 0. Moreover, if A is not self-injective, then
Exti(M,M) 6= 0 for all i ≥ 1.

Recall that the Auslander-Reiten conjecture [AR] for an artin algebra A asserts: If
M is a non-projective semi-Gorenstein-projective module, then Exti(M,M) 6= 0 for some
i ≥ 1. Thus, Theorem 1.5 shows that the Auslander-Reiten conjecture holds true for short
local algebras in a stronger from. For A self-injective, Theorem 1.5 is due to Hoshino [Ho1],
1982. For commutative short local rings, a proof of the Auslander-Reiten conjecture was
given by Huneke-Şega-Vraciu in 2004.
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Let A be a short local algebra which is self-injective. Let M be a non-projective
module. Then Theorem 1.5 asserts that Ext1(M,M) 6= 0 (over a self-injective algebra,
all modules are semi-Gorenstein projective). If A is, in addition, commutative, then we
even have Exti(M,M) 6= 0 for all i ≥ 1, see Huneke-Şega-Vracio [HSV]. However, for A
non-commutative, this is not true: we may have Exti(M,M) = 0 for some or even for all
i ≥ 2, see Proposition A.19 in Appendix A.

1.8. Existence of ℧-paths of length 3

We have mentioned that for any pair (e, a) with 1 ≤ a ≤ e − 1, there are short local
algebras of Hilbert type (e, a) with a non-projective reflexive module (see Proposition 15.1),
thus with an ℧-path of length 2, whereas the existence of an ℧-path of length 4 implies
that a = e − 1 (see Theorem 1.1). Proposition 15.2 provides an example of a short local
algebra of Hilbert type (6, 2) with a non-projective 3-torsionfree module, thus with an
℧-path of length 3.

We do not know whether for any pair (e, a) with 2 ≤ a ≤ e − 2 there is a short local
algebra which has non-projective 3-torsionfree modules, thus ℧-paths of length 3.

1.9. Summary

The short local algebras A with e ≤ 1 are self-injective Nakayama algebras, thus let
us restrict to the short local algebras A with e ≥ 2. They can be separated as follows:

(1) a = 0 (thus A is a radical-square-zero algebra). Reflexive modules and images in exact
complexes of projective modules are projective. (Theorems 1.1 and 1.3).

(2) a = 1 (this includes the self-injective algebras). There may be ℧-paths of arbitrary
length. There may be non-projective images in exact complexes of projective modules.

(3) 2 ≤ a ≤ e − 2. There may be ℧-paths of length 3, but never of length 4 (Theorem
1.2). Images in exact complexes of projective modules are projective (Theorem 1.3).

(4) 2 ≤ a = e − 1. There may be ℧-paths of arbitrary length, and there may be non-
projective images in exact complexes of projective modules.

(5) e ≤ a. Reflexive modules and images in exact complexes of projective modules are
projective (Theorems 1.1 and 1.3).

The paper [RZ3] shows a further separation, namely between a ≤ 1
4 e

2 and 1
4 e

2 < a.

It has turned out that several short local algebras with a = e− 1 are of great interest,
see Gasharov-Peeva [GP, 1990], Avramov-Gasharov-Peeva [AGP, 1997], Veliche [V, 2002],
Yoshino [Y, 2002], Jorgensen-Şega [JS2, 2006], Christensen-Veliche [CV, 2007], Hughes-
Jorgensen-Şega [HJS, 2009], all dealing with commutative rings. A non-commutative al-
gebra A of Hilbert type (3, 2) has been analyzed in [RZ1,RZ2]; the construction will be
generalized in Section 11.

For e ≥ 3, Section 11 exhibits a short local algebra Λ with a = e − 1 which has a
non-projective Gorenstein-projective module M , a semi-Gorenstein-projective module M ′

which is not torsionless, and an ∞-torsionfree module M ′′ with Ext1(M ′′, A) 6= 0. In
particular, Λ has complexes of type I and II.
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1.10. Outline of the paper

The proofs of Theorems 1.1 and 1.2 are given in Section 4 and 6, respectively. The
proofs of Theorems 1.3 and 1.4 can be found in Section 9. The proof of Theorem 1.5 is
given in Section 12.

Many arguments used in the commutative case work in general, but there are also
some decisive differences. For the convenience of the reader, we will provide complete
proofs, the only exceptions are the use of the appendix of [CV], see Lemma 9.1 below, and
of basic properties of the ℧-quiver and the ℧-paths, see Section 2 (here we follow [RZ1]).

Throughout the paper, L(e) denotes the local k-algebra with J2 = 0, |J | = e and
L(e)/J = k. If A is any local algebra with e(A) = e (and A/J = k), then A/J2 = L(e)
and we will interpret the L(e)-modules as the A-modules annihilated by J2, thus as the
A-modules of Loewy length at most 2.

Often, we will assume that A is not self-injective. After all, over a self-injective al-
gebra, all modules are Gorenstein-projective. Appendix A provides an overview over the
module theory of self-injective (equivalently, Gorenstein) short local algebras and the local
radical-square-zero algebras L(e), based on the relationship between these algebras and
the Kronecker quivers K(e).

The essence of Sections 6 and 7 is: If one is interested in exact complexes of projective
modules, or in long ℧-paths, then the cases e ≤ a and 2 ≤ a ≤ e− 2 can be discarded, and
one has to look at the case a = e− 1. This case is considered in Sections 7, 10, 11, 12 and
in the examples 9.3 and 9.4. In particular, we show in Corollary 10.5 that a commutative
short local algebra of Hilbert type (e, e − 1) has no complex of type II which involves a
projective module of rank 1.

Examples of algebras with or without non-projective modules which are reflexive or
are images in exact complexes of projective modules are constructed in Sections 14 and
15. In particular, we show that for any pair (e, a) of integers with 2 ≤ a ≤ e − 1, there is
an algebra of Hilbert type (e, a) with a non-projective reflexive module. Also, we provide
an example of an algebra of Hilbert type (6, 2) with a non-projective 3-torsionfree module.

Sections 3 and 8 are devoted to the simple module S, its syzygies and the ℧-component
which contains S. We stress that for any local algebra, if S is reflexive or the image in an
exact complex of projective modules, then A is self-injective, see Lemma 3.2.

The main tool in the paper will be the use of the transformation ωe
a on Z2 as defined

in Section 5: It describes for suitable modules M in which way dimM is changed when we
apply ΩA (see the Main Lemma 5.4 and 13.1, but also [RZ3]). The Main Lemma draws the
attention to the possible equality t(Ω2M) = et(ΩM)− at(M). Appendix B is devoted to
the numbers bn = b(e, a)n defined recursively by the corresponding rule bn+1 = ebn−abn−1,
starting with b−1 = 0, b0 = 1. It presents an explicit formula for these numbers bn due to
Avramov, Iyengar, Şega, provided a < 1

4e
2.

We hope that the use of two independent numbering systems as suggested by the
journal does not lead to confusion: the sections and subsections are numbered consecu-
tively; independently, the assertions, examples and some of the remarks are also numbered
consecutively.
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2. The ℧-quiver and the ℧-paths

In this section, A will be an arbitrary artin algebra. We provide a survey on the
℧-quiver (and the ℧-paths), following [RZ1, Sections 1.5, 4.4 (and also 1.9)].

The ℧-quiver was introduced in [RZ1] in order to formalize ideas which are due to
Auslander (1968), Auslander-Bridger (1969) and Auslander-Reiten (1996) (and which were
further elaborated by many others) building up the realm of Gorenstein-projective mod-
ules (for historical references, in particular for the bibliographical data of relevant papers,
see [RZ1]). The ℧-quiver provides the general frame for several important module the-
oretical concepts which carry deviating names: torsionless modules, reflexive modules,
(semi-)Gorenstein-projective modules, n-torsionfree modules (a module M is said to be n-
torsionfree, provided Exti(TrM,A) = 0 for 1 ≤ i ≤ n), ∞-torsionfree modules, and so on;
in particular, it explains the wording “totally reflexive” used by Avramov-Martsinkovsky
(2002) for the Gorenstein-projective modules. Finally, it highlights the duality between
semi-Gorenstein-projective modules and ∞-torsionfree modules.

2.1. The operator ℧

Let M be a module. We denote by ℧M the cokernel of a minimal left addA-
approximation of M (equivalently, we may define ℧M = TrΩTrM , where Tr is Aus-
lander’s transpose operator, see [RZ1], Lemma 4.4); the operator ℧ is called the agemo
operator.

Let M be a module.
• The module ℧M has no indecomposable projective direct summands.
• If M is indecomposable, not projective and torsionless, then ℧M is indecomposable
(and not projective).
• The module M is reflexive iff both M and ℧M are torsionless.

2.2. The ℧-quiver

The vertices of the ℧-quiver are the isomorphism classes [X ] of the indecomposable
non-projective modules X and there is an arrow

[X ] [Z]..........................................................

provided X = ΩZ and Ext1(Z,A) = 0, or, equivalently, provided X is torsionless and
Z = ℧X . If X is torsionless (and indecomposable and non-projective), then there is a
(uniquely determined) exact sequence 0 → X → P → ℧X → 0 with P projective (thus
X → P is a minimal left addA-approximation); such a sequence is called an ℧-sequence.
In this way, the arrows of the ℧-quiver just correspond to the ℧-sequences. This explains
the direction of the arrow [X ] ← [℧X ] used here: The usual convention for using arrows
in order to draw attention to short exact sequences 0 → X → Y → Z → 0 is to draw an
arrow [X ]← [Z] (and often one uses a dashed arrow).

Paths in the ℧-quiver will be called ℧-paths, the connected components of the ℧-quiver
will be called ℧-components.

A decisive feature of the ℧-quiver is the following: Any module M is the start of at
most one arrow in the ℧-quiver (and then this arrow ends in ΩM) and also the end
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of at most one arrow in the ℧-quiver (and then this arrow starts in ℧M). Thus any

℧-component is a linearly oriented quiver An with n ≥ 1 vertices, or an oriented cycle Ãn

with n+1 ≥ 1 vertices, or of the form −N, or N, or Z. (Note that we consider any subset I
of Z as a quiver, with an arrow from z to z−1 provided that both z−1 and z belong to I.)

2.3. Dictionary

Let M be an indecomposable non-projective module.

• M is torsionless iff M is the end of an ℧-path of length 1.
• M is reflexive iff M is the end of an ℧-path of length 2.
• M is n-torsionfree iff M is the end of an ℧-path of length n.
• M is ∞-torsionfree iff M is the end of an infinite ℧-path.

• Exti(M,A) = 0 for 1 ≤ i ≤ t iff M is the start of an ℧-path of length t.
• M is semi-Gorenstein-projective iff M is the start of an infinite ℧-path.

• M is Gorenstein-projective iff M is the start of an infinite ℧-path and the end of an
infinite ℧-path (thus iff the ℧-component containing M is an oriented cycle Ãn, or of
the form Z).

2.4. Some bijections

The operators Ω2 and ℧2 provide inverse bijections between isomorphism classes as
follows:




indecomposable
non-projective modules M

which are reflexive









indecomposable
non-projective modules M

with Exti(M,A) = 0 for i = 1, 2





.................................................................................................................................................... ............

................................................................................................................................................................

Ω2

℧2

this is the bijection between the end and the start of the ℧-paths of length 2.
In the same way, we may look at the ℧-paths of length 4. We obtain the following

bijections (again, all modules M are assumed to be indecomposable and non-projective)
looking at the end, the middle and the start, respectively, of any ℧-path of length 4.

{
M

4-torsionfree

} {
M reflexive,

Exti(M,A) = 0
for i = 1, 2

} {
Exti(M,A) = 0
for i = 1, 2, 3, 4

}
....................................................................................................................... ............

...................................................................................................................................

Ω2

℧2
....................................................................................................................... ............

...................................................................................................................................

Ω2

℧2

2.5. A-duality

Let 0 → X → P → Z → 0 be an ℧-sequence. If Z is reflexive, then also 0 → Z∗ →
P ∗ → X∗ → 0 is an ℧-sequence and X (thus also X∗) is reflexive.

Proof. For the first assertion, see [RZ1], 4.2(b). If Z is reflexive, then ℧X = Z and
℧2X = ℧Z both are torsionless, thus X is reflexive. �

In terms of ℧-paths, the assumption that Z is reflexive means that there is an ℧-path
(in modA) of length 3 as shown below on the left, the conclusion that X∗ is reflexive
concerns the existence of the ℧-path of length 3 in modAop shown on the right.

X Z ◦ ◦...................................... ...................................... ...................................... Z∗ X∗ ◦ ◦...................................... ........................................ ......................................
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3. The ℧-component of S

We collect some general observations concerning finite-dimensional local algebras A
which are not necessarily short, mostly well-known.

Lemma 3.1. Let A be a local artinian ring. Any module of finite projective dimension
is projective.

Proof. Let m be the Loewy length of A. Assume that M is a module with finite
projective dimension t ≥ 1. Let

0→ Pt → · · · → P0 →M → 0

be a minimal projective resolution, thus Pt 6= 0. Now Pt is a submodule of radPt−1. But
Pt has Loewy length m, whereas radPt−1 has Loewy length m− 1, impossible. �

Several characterizations of finite dimensional local algebras which are self-injective:

Lemma 3.2. Let A be a finite-dimensional local algebra. The following assertions are
equivalent:
(i) socAA is simple.
(ii) A is self-injective.
(iii) All modules are Gorenstein-projective.
(iv) All modules are reflexive.
(v) S is reflexive.
(vi) ℧S has Loewy length at most m− 1, where m is the Loewy length of A.
(vii) All modules are images in exact complexes of projective modules.
(viii) S is the image in an exact complex of projective modules.
(ix) S is the kernel of a map g:P → P ′ with P, P ′ projective.
(x) I(AA) has finite projective dimension.
(xi) socAA is simple.

The left-right-symmetry of the assertions (i) and (xi) means that we may also add the
right module versions of the assertions (ii) to (x).

Proof. (i) =⇒ (ii): If socAA is simple, then the injective envelop of AA is inde-
composable. But the indecomposable injective A-module has the same dimension as A,
thus AA is injective. (ii) =⇒ (iii) is well-known. Any Gorenstein-projective module is
reflexive and is an image in an exact complex of projective modules. Thus we have (iii)
=⇒ (iv) =⇒ (v), as well as (iii) =⇒ (vii) =⇒ (viii). Of course, there are the obvious
implications (viii) =⇒ (ix), then (v) =⇒ (ix), and also (ii) =⇒ (x).

(v) =⇒ (vi). If M is indecomposable, reflexive and not projective, then ℧M is
indecomposable, torsionless and not projective (see Section 2.1), thus there is an embedding
℧M ⊆ JP with P projective. Therefore, the Loewy length of ℧M is at most m− 1.

(vi) =⇒ (i). We assume that ℧S has Loewy length at most m−1. Let a = |Jm−1|. By

assumption, a ≥ 1. Since S is torsionless, there is an ℧-sequence 0→ S
u
−→ P

p
−→ ℧S → 0.

Let P be of rank t. Thus t ≥ 1 and |Jm−1P | = at. Since ℧S has Loewy length at most
m− 1, Jm−1P is contained in the kernel of p, thus at ≤ 1, and therefore a = 1 and t = 1.
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Assume now that there is a simple submodule U of AA which is not contained in Jm−1.
Let v:U → A be the inclusion map. Let f :S → U be an isomorphism. Since u is a left
add(A)-approximation, there is f ′:P → A with f ′u = vf.

Let us assume that f ′ is not surjective. Then the image of f ′ is a module of Loewy
length at most m− 1, thus Jm−1P is contained in the kernel of f ′. We have Jm−1 6= 0.
Since Jm−1P ⊆ Ker(p) = Im(u) and Im(u) is simple, we see that Jm−1P = Im(u). It
follows that f ′u = 0 in contrast to vf 6= 0.

Thus we see that f ′ is surjective. There is f ′′:℧S → A/U such that the following
diagram commutes:

0 −−−−→ S
u

−−−−→ P
p

−−−−→ ℧S −−−−→ 0
yf

yf ′

yf ′′

0 −−−−→ U
v

−−−−→ AA −−−−→ A/U −−−−→ 0.

Since f ′ is surjective, also f ′′ is surjective. Since Jm−1 is not contained in U , the module
A/U has Loewy length m. Therefore also ℧S has Loewy length m, a contradiction. This
shows that socAA ⊆ Jm−1. Since a = 1, it follows that socAA is simple.

(ix) =⇒ (xi). Let S be the kernel of a map g:P → P ′ with P, P ′ projective. Write
both P and P ′ as direct sums of copies of AA, thus g is given by a matrix with entries
gij ∈ End(AA) = A and we can assume that all entries belong to J . But this implies
that

⊕
socAA is contained in the kernel of g. Since the kernel of g is simple, we see that

(P = AA and that) socAA is simple.

(xi) =⇒ (ii). In the previous parts of the proof, we have seen that ii) implies (xi). If
we apply this to the opposite algebra of A, we see that (xi) implies (ii).

(x) =⇒ (ii). If I(AA) has finite projective dimension, then Lemma 3.2 asserts that
I(AA) is projective. �

Remark 3.3. We recall that an algebra A is said to be Gorenstein provided both mod-
ules AA and AA have finite injective dimension, or, equivalently, provided both modules
I(AA) and I(AA) have finite projective dimension. The equivalence of (ii) and (x) shows
that a finite dimensional local algebra is Gorenstein iff it is self-injective (in commutative
algebra, it is customary to refer to these algebras as Gorenstein algebras).

Remark 3.4. Both (vi) and (ix) imply that S is the kernel of a map g:P → Z with
P projective and Z of Loewy length at most m − 1. However, S may be the kernel of a
map g:P → Z with P projective and Z of Loewy length at most m− 1, whereas A is not
self-injective: Take the algebra A = k〈x, y〉/〈x2, y2, xy〉 and Z = A/Ayx.

Remark 3.5. The implication (v) =⇒ (ii) has been shown by Marczinzik in [M1],
and he used this opportunity to ask whether any finite-dimensional algebra is self-injective
provided all simple modules are reflexive. This is not true, see [R2].

Remark 3.6. According to Theorems 1.1 and 1.3, the existence of a non-projective
reflexive module or a non-projective image in an exact complex of projective modules,
implies severe restrictions on the algebra A, however there do exist many algebras which
are not self-injective with such modules. As we see in Lemma 3.2, the situation is different,
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if S itself is reflexive, or is the image in an exact complex of projective: This can happen
only if A is self-injective.

Lemma 3.7. Let A be a local algebra. The following conditions are equivalent.
(i) Ext1(S,AA) = 0.
(ii) A is self-injective.

Proof. Of course, (ii) implies (i). Conversely, assume that Ext1(S,AA) = 0. Then
Ext1(M,AA) = 0 for all A-modules M , thus AA is injective. �

Corollary 3.8. Let A be a local algebra which is not self-injective. Then the ℧-
component of A which contains S is of type A2 with [S] as its sink.

Proof. Since S is torsionless, there is an arrow ending in S. Since S is not reflexive,
there is no ℧-path of length 2 ending in S. Since Ext1(S,A) 6= 0, no arrow starts in S. �

Proposition 3.9. A short local algebra is self-injective if and only if either a = 0 and
e ≤ 1 or else a = 1 and J2 = socAA.

Proof. According to Lemma 3.2, A is self-injective if and only if socAA is simple. If
a = 0 and e ≤ 1 or if a = 1 and J2 = socAA, then socAA is simple, thus A is self-injective.
Conversely, assume that A is self-injective. If J2 = 0, and J 6= 0, then socAA = J , thus
a = 0, e = 1; if J2 6= 0, then J2 ⊆ socAA, thus we must have a = 1 and J2 = socAA. �

4. Reflexive modules and the proof of Theorem 1.1

4.1. Reflexive modules

We assume that A is a short local algebra. We want to analyze the structure of reflexive
modules. As we will see, the existence of a reflexive module which is not projective puts
severe restrictions on A.

Lemma 4.1. Let A be a short local algebra. Let M be indecomposable, torsionless
and not projective. Then M is bipartite or simple.

Proof. Since M is torsionless, there is an embedding u:M → P with P projective.
Let P =

⊕
i Pi with Pi = AA for all i. The composition of u with any projection P → Pi

cannot be surjective, since otherwise it would split and M would have a direct summand
isomorphic to AA. Thus the image of u is contained in JP and therefore of Loewy length
at most 2. It follows that M is the direct sum of a bipartite module and a semi-simple
module. Since M is indecomposable, it is bipartite or simple. �

Lemma 4.2. Let A be a short local algebra which is not self-injective. Let M be a
module which is indecomposable, reflexive and not projective. Then both modules M and
℧M are bipartite.

Proof. According to Lemma 4.1, M is bipartite or simple. According to Lemma 3.2,
M cannot be simple, thus M is bipartite. Since M is indecomposable, reflexive, and not
projective, ℧M is indecomposable, torsionless, and not projective. Using again 4.1, we see
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that ℧M has Loewy length at most 2. Since Ext1(℧M,A) = 0 (see Section 2.2), Lemma
3.2 asserts that ℧M cannot be simple. Thus also ℧M is bipartite. �

Lemma 4.3. Let A be a short local algebra which is not self-injective. Then, the
module AB = AA/J2 is not reflexive.

Proof. Any map AB → AA maps into J , thus Hom(AB,AA) = Hom(AB,AJ), and
we can identify Hom(AB,AJ) with JA, sending φ:AB → AJ to φ(1). Thus, AB

∗ = JA.
It is sufficient to show that dim (JA)

∗ = dimHom(JA, AA) > 1 + e, since dimB = 1 + e.
But Hom(JA, AA) has the proper subspace Hom(topJA, socAA), and this subspace has
dimension at least 2e, since socAA is not simple. �

4.2. Proof of Theorem 1.1

Let us repeat the assertion.

Let A be a short local algebra which is not self-injective. Let M be a module which
is reflexive and not projective. Assume that there exists a reflexive module which is not
projective, then 2 ≤ a ≤ e− 1. Also, the module AJ and the right A-module JA are solid.

Proof. By assumption, there is a reflexive module M which is not projective. In
addition, we can assume thatM is indecomposable. Let dimM = (t, s) and z = | top℧M |.

Let 0→M
u
−→ P

p
−→ ℧M → 0 be an ℧-sequence, where P is projective of rank z, thus also

z = | top℧M |. Of course, we can assume that u is an inclusion map.

In the following, we denote by X(z) the direct sum of z copies of a module X . We
have P = AA

(z), with JP = AJ
(z) and M is a submodule of JP.

(1) We have s < et.

Proof. Let B = A/J2, thus B = L(e). Since A is not self-injective, we have e ≥ 2.
Since M is bipartite, it is a B-module. Its projective cover as a B-module is of the form
p′:P ′ →M with dimP ′ = (t, et). Since p′ is surjective, we have s ≤ et.

Now assume that s = et. Then p′ is an isomorphism, thus M is a projective B-
module. SinceM is indecomposable, M is the projective left B-module of rank 1. However,
according to Lemma 4.3, the module AB is not reflexive.

(2) We have socM = J2P and therefore s = az.

Proof. Since ℧M has Loewy length at most 2, we have J2P ⊆ Ker(p) = M. Since
J2P is semisimple, it follows that J2P ⊆ socM. On the other hand, M ⊆ JP implies that
socM = JM ⊆ J2P , thus socM = J2P.

By definition, a = |J2|. Altogether, s = |JM | = | socM | = |J2P | = |J2|z = az. �

(3) We have J2 = socAA and therefore a ≥ 2.

Proof. If J2 6= socAA, there is a simple submodule U of AA which is not contained
in J2. Let f :M → U be a homomorphism with image f(M) = U, and v:U → AA the
inclusion map. Since u:M → P is a left add(A)-approximation, there is f ′:P → AA such
that vf = f ′u. If f ′ is not surjective, then f ′(P ) ⊆ J , thus f ′(JP ) ⊆ J2 and therefore
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f ′u(M) ⊆ J2. But f ′u = vf and vf(M) = v(U) = U is not contained in J2. This shows
that f ′ is surjective. There is the following commutative diagram

0 −−−−→ M
u

−−−−→ P
p

−−−−→ ℧M −−−−→ 0
yf

yf ′

yf ′′

0 −−−−→ U
v

−−−−→ AA −−−−→ A/U −−−−→ 0.

Since f ′ is surjective, also f ′′ is surjective. Since U is not contained in J2, the module
A/U has Loewy length 3. Thus, also ℧M has Loewy length 3. But ℧M has Loewy length
at most 2, see Lemma 4.2. This contradiction shows that J2 = socAA.

By definition, a = |J2|, thus a = | socAA|. Since A is not self-injective, we have
| socAA| ≥ 2, see Lemma 3.2. �

(4) AJ is solid.

Proof. Let φ be an endomorphism of AJ.
Recall that P = AA

(z) with inclusion map u:M → P, thus we can write u as the trans-
pose of [u1, . . . , uz], where ui:M → AA = Ai. As we know, socM = J2P =

⊕z
i=1 J

2Ai,
thus J2Ai = Ai ∩ socM.

We denote the inclusion map JA1 ⊂ A1 by v1 and write u1 = v1u
′
1, where u′

1:M →
JA1. Let f :M → AA be the composition

M
u′

1−→ JA1
φ
−→ JA1

v1−→ A1 = AA.

Since u is an add(AA)-approximation, there are maps gi:AA → AA such that g =
[g1, . . . , gz] satisfies f = gu =

∑
giui. The map g1:AA → AA is the right multiplica-

tion by some element λ ∈ A.
Given x ∈ A1 ∩ socM = J2A1, we consider the element [x, 0, . . . , 0] ∈ M and apply

the map f =
∑

giui to it. Since f = v1φu
′
1, we have f([x, 0 . . . , 0]) = φ(x). On the other

hand, we have ui([x, 0, . . . , 0]) = 0 for i ≥ 2, thus
∑

giui([x, 0, . . . , 0]) = g1(x) = xλ. This
shows that

φ(x) = f([x, 0 . . . , 0]) =
∑

giui([x, 0, . . . , 0]) = xλ

for all x ∈ J2A1. Now J2A1 is annihilated from the right by J , thus xλ = λx, where
λ = λ+ J is an element of A/J = k. This shows that the restriction of φ to J2A1 = J2 is
the scalar multiplication by λ. By (3), J2 = socAA. It follows that AJ is solid. �

(5) We have ez ≥ at.

Proof. We use again the decomposition P = AA
(z). We have JP = AJ

(z) and M is a
submodule of JP. Let u′:M → J (z), v: J → A and w: J2 → A be the canonical inclusion
maps. Thus u = v(z)u′. Given a ∈ A, we denote by r(a):AA→ AA the right multiplication
by c. If c ∈ J , then r(c) maps J into J2 and the map r(c): J → J2 depends only on the
residue class c of c modulo J2. Thus we may write r(c) = r(c): J → J2 and there is the
following commutative diagram

J
v

−−−−→ A

r(c)

y
yr(c)

J2 w
−−−−→ A

13



In this way, we obtain the following linear map

Φ: (J/J2)(z) → Hom(M,J2), defined by Φ(c1, . . . , cz) = [r(c1), . . . , r(cz)]u
′.

Let us show that Φ is surjective. Let f :M → J2 be any homomorphism. By assump-
tion, the inclusion map u = v(z)u′:M → A(z) is a left add(AA)-approximation. Thus,
there is f ′:A(z) → AA such that wf = f ′u. We write f ′ as [r(c1), . . . , r(cz)] with elements
ci ∈ A. Since f vanishes on socM = (J2)(z), we have (J2)ci = 0, thus ci ∈ J , for all
1 ≤ i ≤ z.

Thus, we have the following diagram.

M J (z)
AA

(z)

J2
AA

............................................................................................
......
......
......

............................................................................................
......
......
......

.................................................................................................. ............ .................................................................................................. ............

................................................................................................................................................................................................................................................ ............

....................................................................................................................................................
.....
............

f f ′ = [r(c1), . . . , r(cz)][r(c1),...,r(cz)]

u′ v(z)

w

Here, the outer rectangle commutes by the choice of f ′. Since ci ∈ J , we have r(ci)v =
wr(ci), thus [r(c1), . . . , r(cz)]v

(z) = w[r(c1), . . . , r(cz)]. Since w is a monomorphism, it
follows that also the triangle on the left commutes: f = [r(c1), . . . , r(cz)]u

′. Thus, we see
that

f = [r(c1), . . . , r(cz)]u
′ = Φ(c1, . . . , cz).

In this way, we see that Φ is surjective, thus dim (J/J2)(z) ≥ dimHom(M,J2)
Now, dim (J/J2)(z) = ez. Second, any map M → J2 factors through the projection

M → topM , thus dimHom(M,J2) = dimHom(topM,J2) = ta. Therefore ez ≥ ta. �

(6) We have a < e.

Proof. Assume for the contrary, that e ≤ a. Using (2) and (1), we have az = s < et ≤
at, and therefore z < t. Using (5), we have at ≤ ez ≤ az, thus t ≤ z. Thus, we obtain a
contradiction. �

(7) The right A-module JA is solid.

Proof. If M is a reflexive and non-projective module, then M∗ is a reflexive and
non-projective Aop-module. Thus (3) asserts that JA is solid. �

The assertions (4), (6) and (3) and (7) are as required. This completes the proof. �

Corollary 4.4. Let A be a short local algebra which is not self-injective. If there exists
a reflexive module which is not projective, then both modules AJ and JA are solid and of
Loewy length 2. In particular, socAA = J2 = socAA.

Proof. Theorem 1.1 asserts that AJ is solid, and that a ≥ 2, thus AJ is bipartite
and of Loewy length 2. It follows that socAA = socAJ = J2. If M is reflexive and not-
projective, then M∗ is a reflexive and non-projective Aop-module, thus Aop satisfies also
the assumptions of Theorem 1.1. �
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Remark 4.5. Note that an element c ∈ J belongs to socAA = soc JA if and only if
cJ = 0. As a consequence, J2 = socAA if and only if AJ is a faithful A/J2-module.

4.3. Some Examples

Example 4.6. A short local algebra with J2 = socAA ⊂ socAA. Since our general
assumption is J3 = 0, we always have J2 ⊆ socAA as well as J2 ⊆ socAA. We may have
J2 = socAA and J2 6= socAA as the following example shows. Let A be the k-algebra
with radical generators x, y and relations

yx, y2, x3, x2y.

x y

x2 xy

..............................................
......
......
......

..............................................
......
......
......

x x
AJ

Here, J2 = Ax2 + Axy = socAA is of length 2, whereas socAA = x2A + yA + xyA is of
length 3.

Examples 4.7. Short local algebras with AJ indecomposable, but not solid. First
example: Here, AJ has a non-zero nilpotent endomorphism.

Let A be generated by x, y, z with relations

z2, xy, yx, yz, zy, zx− xz, y2 − xz, x3.

x y z

x2 y2

.................................................
......
......
......

................................................................................................................. ........
....

.................................................
......
......
......

.............................................................................................................
....
............

x xyzAJ

There is the endomorphism f of AJ given by f(y) = f(z) = 0 and f(x) = z.
Second example: Here we exhibit an R-algebra such that End(AJ) ∼ C. We consider

the R-algebra with generators x, y, and the relations are

xy − yx, x2 + y2.
x y

x2 y2

.................................................
......
......
......

................................................................................................................. ........
....

.................................................
......
......
......

.........................................................................

x x
y y

AJ

(Note that the 2-Kronecker module J̃ as mentioned in Section A.2 of Appendix A is
(C,C; 1, i), where we write 1 for the identity map C→ C and i:C→ C for the multiplication
by i; of course, End(C,C; 1, i) = C.)

Note that both algebras are commutative.

Example 4.8. A short local algebra with AJ solid, whereas JA is not solid. Let A be
generated by x, y, z with relations

x2, y2, z2, yx, yz, zx− xy, zy − xz.

x y z

zx xz

............................................................. .......
.....

........................................................
.....
............

............................................................. .......
.....

........................................................
.....
............

x xz z
AJ x y z

zx xz

................................................................. .......
.....

............................................................................................................................................................... ..........
..

.......................................................................................................................................................
..

............

............................................................
.....
............

x

y y

zJA
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Here, AJ is solid, whereas JA is the direct sum of a module with dimension vector (2, 2)
and a simple module (generated by y). Note that AJ is solid, but not faithful.

Note that Theorem 1.1 and its Corollary 4.4 assert that the algebras exhibited in
Examples 4.6, 4.7 and 4.8 do not have non-projective reflexive modules, thus all semi-
Gorenstein-projective and all ∞-torsionfree modules are projective.

4.4. Short local algebras A with a ≤ 1

Recall that a module of finite length is said to be uniform provided it has a simple
socle. If the module M has Loewy length at most 2, then JM is simple if and only if M is
the direct sum of a uniform module and a semisimple module. Thus, if A is a short local
algebra, then a ≤ 1 and e ≥ 1 if and only if AJ is the direct sum of a uniform module and
a semisimple module.

Lemma 4.9. Let A be a short local algebra with a ≤ 1. The following assertions are
equivalent:
(i) A is self-injective and J 6= 0.
(ii) There exists a non-projective reflexive module.
(iii) AJ is solid.
(iv) AJ is indecomposable.
(v) AJ is uniform.
(vi) AJ is simple or bipartite.
(vii) Either a = 0 and e = 1, or else a = 1 and J2 = socAA.

The proof is straightforward: (i) =⇒ (ii): If J 6= 0, then there are non-projective
modules. For A self-injective, all modules are reflexive. (ii) =⇒ (iii): See Theorem 1.1.
(iii) =⇒ (iv): Solid modules are indecomposable. (iv) =⇒ (v): An indecomposable
module M with |JM | ≤ 1 is uniform. (v) =⇒ (vi): Clear. (vi) =⇒ (vii): If AJ is
simple, then a = 0, e = 1. Otherwise J2 is the socle of AJ , and thus a = 1. (vii) =⇒ (i):
See Lemma 3.2. �

4.5. Short local algebras A with e ≤ 2

Lemma 4.10. Let A be a short local algebra with e ≤ 2. The following assertions are
equivalent:
(i) A is self-injective and J 6= 0.
(ii) There exists a non-projective reflexive module.
(iii) AJ is uniform.
(iv) Either a = 0 and e = 1, or else a = 1 and J2 = socAJ .

Again, the proof is straightforward: (i) =⇒ (ii): If J 6= 0, then there are non-
projective modules. For A self-injective, all modules are reflexive. (ii) =⇒ (iii): Since
there exists a non-projective reflexive module, e ≥ 1. If e = 1, then a = 0 or a = 1 and in
both cases AJ is of course uniform. Thus, according to Theorem 1.1, we can assume that
a < e = 2 and that M = AJ is solid. Since M is indecomposable, it follows that a 6= 0.
But |JM | = a = 1 implies that M = AJ is uniform. (iii) =⇒ (iv): Assume that AJ is
uniform. Either AJ is simple, then a = 0 and e = 1, or else J2 = socAJ and a = |J2| = 1.
(iv) =⇒ (i): See Lemma 3.2. �
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Example 4.11. The algebra A = k[x, y]/(x, y)3 is a short local algebra with e = 2
such that AJ is solid, thus indecomposable, but (of course) not uniform.

5. Bipartite modules

5.1. ℧-sequences over short local algebras

First, let us apply the observations of Section 3 to ℧-sequences over short local algebras.

Corollary 5.1. Let A be a short local algebra and 0 → X → P → Z → 0 an
℧-sequence.

(a) If A is self-injective, then either X is bipartite, or else X is simple and then
Z = A/ socAA.

(b) If A is not self-injective, and Z has Loewy length at most 2, then Z is bipartite,
and either X is also bipartite or else X is simple and a = 0, e ≥ 2.

Proof. (a) The module X is indecomposable and of Loewy length at most 2. Thus, if
X is not simple, then X is bipartite. If X = S is simple, then Z = A/ socAA.

(b) Both X and Z are indecomposable modules of Loewy length at most 2. Now Z
cannot be simple, since otherwise Lemma 3.2 asserts that A is self-injective. Since X is
indecomposable, it is either bipartite or simple. If X = S is simple, then Lemma 3.1 shows
that the Loewy length of A cannot be 3 (since we assume that Z = ℧S has Loewy length
at most 2). Thus a = 0. Since A is not self-injective, we have e ≥ 2. �

Let us add also the following observation.

Lemma 5.2. Let A be a short local algebra. If M is a reflexive module which is
bipartite, then also M∗ is (reflexive and) bipartite.

Proof. We can assume that M is indecomposable. If M is projective, then M = AA
implies that A has Loewy length 2, thus also M∗ = AA is bipartite. Thus, we assume
that M is not projective. Of course, M∗ is torsionless. If M∗ would be projective, also M
would be projective. Thus M∗ has Loewy length at most 2. Also M∗ cannot be simple,
since otherwise A is self-injective and also M is simple. �

Proposition 6.1 will provide more information on the A-dual M∗ of a bipartite reflexive
module M .

Example 5.3. If M is torsionless and bipartite, then M∗ has Loewy length at most
2, but does not have to be bipartite.

Namely, if M is bipartite, then M is annihilated by J2, thus any map f :M → AA
maps into J . If x ∈ J2, then the right multiplication r(x):AA → AA by x sends J to 0,
thus r(x)f = 0. Thus shows that M∗ has Loewy length at most 2.

A typical example is given by the algebra A = Λ0 considered in Section 11 (and before
in [RZ1]), namely the right A-module m1A = (x− y)A, as discussed in [RZ1]. Of course,
m1A is torsionless and bipartite, but (m1A)∗ = M(q)∗∗ = ΩM(1) (see 6.5 (8) and Theorem
1.6 in [RZ1]) has a simple direct summand.
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5.2. The Main Lemma

Given arbitrary integers a and e, let

ωe
a =

[
e −1
a 0

]
.

If M is a module of Loewy length at most 2, we write ωe
a dimM for multiplying ωe

a with
(the transpose of) dimM .

Lemma 5.4. If M is a module of Loewy length at most 2, then there is a natural
number w ≥ 0 such that

dimΩM = ωe
a dimM + (w,−w),

and such that ΩM has a direct summand of the form Sw. In particular, if ΩM is bipartite,
then

dimΩM = ωe
a dimM.

Proof. Let M ′ = ΩM . There is an exact sequence 0 → M ′ → P → M → 0 with P
projective and we can assume that the map M ′ → P is an inclusion map. Let U = J2P.
Since M has Loewy length at most 2, U is mapped under P → M to zero, thus U ⊆ M ′.
Since U is semisimple, we have U ⊆ socM ′. Also, M ′ is a submodule of JP , thus M ′/U
is a submodule of JP/J2P and therefore semisimple. This shows that JM ′ ⊆ U. Let
w = |U/JM ′|. Then

dimM ′ = (|M ′/JM ′|, |JM ′|) = (|M ′/U |+ w, |U | − w) = (|M ′/U |, |U |) + (w,−w).

It remains to calculate |U | and |M ′/U |. Let dimM = (t, s). Then P = AA
t, thus |U | =

|J2P | = at. Also, |M ′/U | = |JP/J2P | − |JM | = et− s. This shows that (|M ′/U |, |U |) =
ωe
a dimM. This completes the proof of the first formula.

WriteM ′ = X⊕Y withX bipartite and Y semisimple. Then socM ′ = socX⊕soc Y =
JX ⊕ Y (here we use that X is bipartite), and JM ′ = JX ⊕ JY = JX ⊕ 0 = JX. Since
JM ′ ⊆ U ⊆ socM ′, the direct decomposition socM ′ = JX ⊕Y yields U = JX ⊕ (Y ∩U).
As a submodule of Y , the module Y ∩ U is a direct sum of copies of S. Since Y ∩ U is
isomorphic to U/JM ′, we have |Y ∩ U | = |U/JM ′| = w, thus Y ∩ U is isomorphic to
Sw. Since Y is semisimple, the submodule Y ∩ U is a direct summand of Y , thus a direct
summand of M ′. This shows that M ′ has a direct summand of the form Sw, namely Y ∩U.

It remains to show the second assertion: If ΩM is bipartite, then ΩM has no direct
summand isomorphic to S, thus w = 0. �

Remark 5.5. The Main Lemma 5.4 focuses the attention to a direct summand of
ΩM which is of the form Sw. However, we should stress that Sw may not be the largest
semisimple direct summand of ΩM , as already the case e = 1, a = 0 and M = S shows:
here is ΩM = S and w = 0, thus Sw = 0 (see also Remark 13.4). Section 13 is devoted to
a discussion of ΩM and its semisimple direct summands.
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5.3. Aligned modules

Let A be a short local algebra of Hilbert type (e, a). We say that a module M of Loewy
length at most 2 is aligned provided dimΩM = ωe

a dimM . Note that if M is aligned,
then |JΩM | = a · t(M). Here is a reformulation of part of the Main Lemma 5.4.

Corollary 5.6. Let A be a short local algebra and M a module of Loewy length at
most 2. If ΩM is bipartite, then M is aligned. �

The converse is not true: We have ΩS = AJ , thus the module S is always aligned
(since ωe

a dimS = ωe
a(1, 0) = (e, a) = dimAJ), whereas ΩS is bipartite iff J2 = socAA.

In particular, for a = 1, AJ is bipartite iff A is self-injective (as mentioned already in 4.10).

Corollary 5.7. Let A be a short local algebra which is not self-injective. Let M be
indecomposable, reflexive and not projective. Then ℧M is aligned.

Proof. According to 4.2, M has Loewy length at most 2 and ℧M is bipartite. Since
M is torsionless, Ω(℧M) = M. �

Remark 5.8. The subsequent paper [RZ3] will provide several characterizations of
the aligned modules.

5.4. The module class Z(q), where q is a rational number

If A is a short local algebra with a ≥ 1, and q is a non-negative rational number, let
Z(q) = ZA(q) be the class of all indecomposable modules M with Loewy length at most
2 such that |JM | = q · a · t(M). Note that Z(0) = {S}.

Lemma 5.9. If M ∈ Z(q) is aligned, then ΩM ∈ Z( 1
e−qa ).

Proof. If dimM = (t, qat), then dimΩM = (et − qat, at) = ((e − qa)t, at) and thus
|J(ΩM)| = at = 1

e−qa · a · t(ΩM). �

5.5. Bipartite sequences and bipartite syzygy modules

We say that an exact sequence

ǫ: 0 −→ X −→ P
p
−→ Z −→ 0

is bipartite, provided P is projective, both X,Z have Loewy length at most 2 and X is
bipartite, or, equivalently, provided Z has Loewy length at most 2, p is a projective cover,
and S is not a direct summand of X . Note that if M has Loewy length at most 2, then
ΩM is bipartite if and only if the projective cover p:PM →M yields a bipartite sequence

0→ ΩM −→ PM
p
−→M → 0.

Starting with a module M of Loewy length at most 2, we look at all its syzygy
modules ΩiM with i ≥ 1. Of particular interest will be the case that the modules ΩiM
with 1 ≤ i ≤ n are bipartite (thus S is not a direct summand of ΩiM for all 1 ≤ i ≤ n).

Corollary 5.10. Let M be of Loewy length at most 2 and assume that there is n ≥ 1
such that the modules ΩiM with 1 ≤ i ≤ n are bipartite. Then

dimΩnM = (ωe
r)

n dimM.
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5.6. The recursion formula

Let M be a module. Recall that we write t(M) = | topM |. For i ∈ N, let βi(M) =
t(ΩiM). As in commutative algebra [BH, L], one may call these numbers βi(M) the Betti
numbers of M .

Proposition 5.11. Let M be of Loewy length at most 2. If the modules M and ΩM
are aligned, then

β2(M) = eβ1(M)− aβ0(M);

thus either a = 0, or else β0(M) = 1
a
(eβ1(M)− β2(M)).

In particular, if M is a module such that both modules ΩM and Ω2M are bipartite,
then M and ΩM are aligned.

Proof. We write ti = βi(M) = t(ΩiM) for 0 ≤ i ≤ 2. Let s1 = |JΩM |. Since M is
aligned, s1 = at0. Since ΩM is aligned, t2 = et1 − s1. Thus t2 = et1 − s1 = et1 − at0.

The last sentence follows from Corollary 1 in 5.5. �

Remark 5.12. In Lescot [L], modules with Loewy length at most 2 such that the
modules ΩiM with 1 ≤ i ≤ n are bipartite, are called “n-exceptional” modules; the
modules which are n-exceptional for all n ≥ 1 are called “exceptional”. See [RZ3] for a
further discussion of these “exceptional” modules.

6. More on reflexive modules and the proof of Theorem 1.2

6.1. The module class Z(q)

Recall that for q ∈ Q, the class Z(q) consists of all the indecomposable modules M of
Loewy length at most 2 such that |JM | = q · a · t(M).

Proposition 6.1. Let A be a short local algebra of Hilbert type (e, a). Let M be a
reflexive bipartite module with dimM = (t, s). Then a divides s and dimM∗ = (s/a, at).
Thus, if M ∈ Z(q), then M∗ ∈ Z(q−1).

Proof. We have seen already in the proof of Theorem 1.1 that a divides s; the essential
assertion is the formula for dimM∗ (but it implies, of course, that a divides s).

Since there exists a non-projective reflexive module M , we know that AJ is a solid
A-module. Since M is not simple, we also know that a ≥ 1. Let H be the set of ho-
momorphisms f :M → AA with semi-simple image (thus, these are the homomorphisms
with image in J2, and also the homomorphisms with kernel containing the socle of M).
If g:AA → AA is the right multiplication by some element from J , then gf = 0. This
shows that H is contained in the socle of M∗. Of course, |H| = at. On the other hand, if
f :M → AA is any element of M∗, then gf(M) ⊆ g(J) ⊆ J2 shows that gf belongs to H.
This shows that M∗/H is a semi-simple right A-module. Now M∗ is indecomposable and
has no simple direct summand, thus H = socM∗.

Let ui:M → Ai = AA be maps such that u = [u1, . . . , uz]:M →
⊕z

i=1 Ai is a minimal
left add(A)-approximation of M . We can assume that u is an inclusion map. Since the
cokernel of u has Loewy length at most 2, we know that J2P is contained in the socle
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of M and actually equal to socM . It follows that s = | socM | = az. In particular, s is
divisible by a.

We claim that u1, . . . , uz is a basis of M∗/H. First, we show the linear independence.
Thus, let us assume that there are scalars λi ∈ k such that f =

∑
i λiui belongs to H. We

have to show that λi = 0 for all i. Thus, assume that some λi is non-zero, say let λ1 6= 0.
Let 0 6= x ∈ J2A1. We apply f to [x, 0, . . . , 0] and get f([x, 0, . . . , 0]) = λ1x 6= 0. But this
means that f does not vanish on socM , thus f /∈ H, a contradiction.

Second, we have to show that u1, . . . , uz generate M∗ modulo H. Let f :M → AA be
any homomorphism. Since u is a left add(A)-approximation, there are maps fi:AA→ AA
such that f =

∑
i fiui. Write fi = λi · 1M + gi where λi ∈ k and gi maps into J . Then

f =
∑

i fiui =
∑

i λiui + g, with g =
∑

i giui. The image of any ui is contained in J, thus
the image of giui is contained in J2. This shows that g ∈ H.

Altogether, we see that u1, . . . , uz is a basis of M∗/H. Since M∗ is bipartite, topM∗ =
M∗/ socM∗ = M∗/H. Therefore t(M∗) = |M∗/H| = z = s/a.

Since M is not simple, we have s 6= 0. We write q = s
at
, so that M ∈ Z(q). Then

dimM∗ = (s/a, at) shows that M∗ ∈ Z(q−1). �

Corollary 6.2. Let A be a short local algebra of Hilbert type (e, a). Let M be a
reflexive bipartite module with dimM = (t, at). Then dimM∗ = dimM. �

Proposition 6.3. Let A be a short local algebra which is not self-injective. Let M be
indecomposable, reflexive, not projective, with Ext1(M,A) = 0. Then

ΩM ∈ Z(
a+ 1

e
) and M ∈ Z

( e

a+ 1

)
.

We may add that we also have ℧M ∈ Z( e
2−a−1
ae ).

Proof. Since A is not self-injective, the modules ΩM and M are not simple. Also, we
know that a ≥ 2 according to Theorem 1.1.

Let dimM = (z, ay). Therefore dimΩM = (ez − ay, az), according to Lemma 5.4.
By Proposition 6.1, we have dimM∗ = (y, az) and dim(ΩM)∗ = (z, aez−a2y). According
to Section 2.5, the A-dual of the ℧-sequence 0 → ΩM → P → M → 0 is the ℧-sequence
0→M∗ → P ∗ → (ΩM)∗ → 0, and Lemma 5.4 asserts that

dimM∗ = ωe
a dim(ΩM)∗ = ωe

a(z, aez − a2y) = (ez − aez + a2y, az).

Altogether, we see that (y, az) = (ez−aez+a2y, az). Thus ez−aez+a2y = y and therefore
e(1− a)z = (1− a2)y. Since a 6= 1, we see that y = e

a+1
z and therefore | socM | = |JM | =

ay = ae
a+1z = ae

a+1 t(M). This shows that M belongs to Z( e
a+1 ). �

6.2. Proof of Theorem 1.2

Let us recall the assertion.

Let A be a short local algebra which is not self-injective. Assume that M is an inde-
composable, reflexive and non-projective module with Exti(M,A) = 0 for 1 = 1, 2. Then
2 ≤ a = e− 1. If t = t(M), then dimX = (t, at) for X ∈ {Ω2M,ΩM,M,℧M}.
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Proof. We apply Proposition 6.3 to M and to ΩM . Namely, M is reflexive and
Ext1(M,A) = 0, thus we see that M belongs to Z( e

a+1
), and ΩM belongs to Z(a+1

e
).

Also, ΩM is reflexive and Ext1(ΩM,A) = 0. Thus we see that ΩM belongs to Z( e
a+1

). In

this way, we see that ΩM belongs to Z(a+1
e ) ∩ Z( e

a+1 )

But if Z(q) ∩ Z(q′) is non-empty, then q = q′. It follows that e
a+1 = a+1

e , therefore
a = e− 1. The inequality 2 ≤ a is mentioned already in Theorem 1.1.

Let dimM = (t, s). Since M belongs to Z( e
a+1 ) and a + 1 = e, it follows that

s = at. Since the modules ΩM,M,℧M are aligned, and ωe
a(t, at) = (t, at), it follows that

dimX = (t, at) for X ∈ {Ω2M,ΩM,M,℧M}. �

7. The defect, defined in case a = e− 1

Since the case a = 1 does not provide any challenge, the interesting cases are those
with a ≥ 2. But we include the case a = 1 in order to point out that the cases a = e−1 may
be seen as having features which are similar to the self-injective algebras of Hilbert type
(2, 1). The self-injective algebras of Hilbert type (2, 1) are exhibited in detail in Sections
A.8 – A.11 in Appendix A: they are well related to the Kronecker algebra K(2).

If a = e − 1 and M is a module of Loewy length at most 2 with dimM = (t, s), let
δ(M) = at− s. We call δ(M) the defect of M .

Lemma 7.1. Let a = e − 1 ≥ 1. Let 0 → X → P → Z → 0 a bipartite sequence.
Then dimX = dimZ + δ(Z)(1, 1) and δ(X) = aδ(Z).

Proof. We have

dimX = (et− s, at) = ((a+ 1)t− s, at)

= (t, s) + (at− s, at− s) = dimZ + δ(Z)(1, 1),

and δ(X) = a((a+ 1)t− s)− at = a2t− as = a(at− s) = aδ(Z). �

Lemma 7.2. Let 1 ≤ a = e − 1. Let 0 → X → P → Z → 0 be bipartite. Then the
following conditions are equivalent:
(i) δ(X) = 0.
(ii) δ(Z) = 0.
(iii) dimX = dimZ.
(iv) t(X) = t(Z).
(v) |JX | = |JZ|.

Proof. Since δ(X) = aδ(Z), the conditions (i) and (ii) are equivalent. Since dimX =
dimZ + δ(Z)(1, 1), the conditions (ii) and (iii) are equivalent. Of course, (iii) implies
both (iv) and (v). Now dimX = dimZ + δ(Z)(1, 1) means that t(X) = t(Z) + δ(Z) and
|JX | = |JZ|+ δ(Z). Thus, if (iv) of (v) is satisfied, then δ(Z) = 0, thus (ii) holds. �

Lemma 7.3. Let a = e − 1 ≥ 1. If δ(M) = 0, then either t(ΩM) = t(M) and
δ(ΩM) = 0, or else t(ΩM) > t(M), δ(ΩM) > 0 and ΩM is not bipartite.

If δ(M) > 0, then t(ΩM) > t(M) and δ(ΩM) > 0.
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Thus, if δ(M) ≥ 0 and δ(Ω(M) > 0, then

· · · > βi+1(M) > βi(M) > · · · > β1(M) > β0(M) = t(M).

Proof. The Main Lemma 5.4 asserts that dimΩM = ωe
a dimM + (w,−w) for some

w ≥ 0.
First, let δ(M) = 0, then dimM = (t, at) for some t > 0. Now, ωe

a(t, at) = (t, at).
We have dimΩM = (t, at) + (w,−w) for some w ≥ 0. If w = 0, then trivially t(ΩM) =
t = t(M) and δ(ΩM) = 0). If w > 0, then t(ΩM) = t + w > t = t(M) and δ(ΩM) =
a(t+ w)− (at− w) = (a+ 1)w > 0. Also, ΩM is not bipartite, according to Lemma 5.4.

Second, assume that at−s = δ(M) > 0, thus at > s. Now dimΩM = (et−s+w, at−w)
for some w ≥ 0. Then t(ΩM) = et − s + w = at + t − s + w > t + w ≥ t = t(M). Also,
a(et− s+ w) = a(t+ at− s+ w) > a(t+ w) ≥ at ≥ at− w, thus δ(ΩM) > 0.

The last assertion follows by induction. �

Remark 7.4. For further considerations concerning short algebras with a = e−1, we
refer to Sections 10, 11, 12.

8. The syzygy modules of S

Lemma 8.1. If e ≤ a, and 0 → X → P → Z → 0 is a bipartite sequence, then
| socX | > | socZ|.

Proof. Let dimX = (t, s) and dimZ = (t′, s′). The Main Lemma 5.4 asserts that
(t, s) = ωe

a(t
′, s′) = (et′ − s′, at′). Thus | socX | = s = at′ ≥ et′ > s′, since t = et′ − s′ > 0.

�

If (an)n is a sequence of real numbers, we write (as usual) limn an = ∞ provided for
every integer b there is N = N(b) such that an > b for all n ≥ N.

Proposition 8.2. Let A be a short local algebra with e ≥ 2. Then limn βn(S) = ∞,
thus also limn |Ω

nS| =∞. If, in addition, a < e, then the sequence of these Betti numbers
βn(S) of S is strictly increasing: βn(S) < βn+1(S) for all n ∈ N.

Proof. For any module M , we have t(M) ≤ |M | ≤ (e+a+1)t(M), thus limn βn(M) =
∞ if and only if limn |Ω

n(M)| =∞,

Let tn = βn(S) = t(ΩnS). For a < e, we show that the sequence (tn)n is strictly
increasing.

First, let a = 0. Then ΩnS = Sen for all n ≥ 0. Since e ≥ 2, we have en+1 > en, thus
tn < tn+1.

Second, let 1 ≤ a ≤ e − 1. We have t0 = 1, t1 = e. We show by induction that
tn+1 > tn for all n ≥ 0. For n = 0, this holds true since e ≥ 2. Thus, let n ≥ 1. We
assume that tn+1 > tn. The Main Lemma 5.4 asserts that tn+2 ≥ etn+1 − atn. Thus
tn+2 − tn+1 ≥ etn+1 − atn − tn+1 = (e− 1)tn+1 − atn ≥ atn+1 − atn = a(tn+1 − tn) > 0,
where we use that a ≥ 1. This shows that tn+2 > tn+1.
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Finally, let e ≤ a. We show that limn |Ω
nS| = ∞. If all the modules ΩnS are

bipartite, then Lemma 8.1 asserts that | socΩn+1S| > | socΩnS| for all n ≥ 0, thus
|ΩnS| ≥ | socΩnS| > n for all n.

It remains to consider the case that there is some ΩmS which is not bipartite. Let m
be minimal. We claim that ΩmS is not simple.

If m = 1, then AJ = ΩS is of course not simple. Let m ≥ 2. The minimality of m
implies that Z = Ωm−1S is bipartite. Let p:P → Z be a projective cover, thus ΩmS is the
kernel of p. Since Z is of Loewy length 2, we see that J2P is contained in the kernel ΩmS
of p. We have |J2P | ≥ |J2| = a ≥ 2, thus |ΩmS| ≥ 2. This shows that ΩmS is not simple.

Thus, there is m ≥ 1 such that ΩmS is neither bipartite nor simple. We have ΩmS ≃
S⊕X for some X 6= 0. By induction, we have ΩbmS ≃ S⊕

⊕b−1
i=0 Ω

imX, for all b ≥ 0, thus
ΩbmS is the direct sum of b+1 non-zero modules. As a consequence, Ωbm+iS is the direct
sum of b + 1 non-zero modules, for all i ≥ 0, and therefore |Ωbm+iS| > b for all i ≥ 0.
Thus, let N(b) = bm. �

Example 8.3. A short local algebra A with β1(S) = β2(S). In general, the Betti
numbers are not strictly increasing, as the following example shows. Let A be the k-
algebra generated by x, y with relations

yx, x2 − y2, x3

x y

x2 xy

..............................................
......
......
......

..............................................
......
......
......

...............................................................
.....
............

x x
y

AJ

It is a short local algebra of Hilbert type (2, 2). We have ΩS = AJ with dimension vector
(2, 2). As Ω(AJ) we can take the submodule of AA

2 generated by [y, x] and [0, y], and this
is a free L(2)-module of rank 2, thus dimΩ2S = (2, 4). We see that β1(S) = 2 = β2(S).

9. Proof of Theorems 1.3 and 1.4

For the proof of Theorem 1.3, we will use the following result by Christensen and
Veliche.

9.1. The Christensen-Veliche Lemma

Lemma 9.1 (Christensen-Veliche [CV]). Let e > 0 and a > 1 be integers and let
(ci)i≥0 be a sequence of positive integers with

ci = eci+1 − aci+2 for all i ≥ 0.

Then a = e− 1 and ci = c0 for all i.

Proof. See the appendix of [CV]. �

9.2. Proof of Theorem 1.3

Let A be a short local algebra which is not self-injective. Since A is not self-injective,
we have e ≥ 2. Let P• be a non-zero minimal complex of projective modules which is
exact. Let ti be the rank of Pi and Mi the image of di. Since Pi is a projective cover of
Mi, we have t(Mi) = ti.
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Note that we have a ≥ 1. Namely, if a = 0, then the modules Mi are semisimple and
ΩS = Se shows that the sequence · · · , ti+1, ti, · · · is strictly decreasing. Impossible.

Next, we show that Mi is bipartite for i≪ 0. Let t = |M0|. According to Proposition
8.2, there is N = N(b) such that |ΩnS| > b for all n ≥ N. Let n ≥ N and assume that
S is a direct summand of M−n. Then ΩnS is a direct summand of ΩnM−n = M0, and
therefore |ΩnS| ≤ |M0| = b, a contradiction. This shows that all the modules M−n with
n ≥ N are bipartite.

Using, if necessary, an index shift, we can assume that all the modules Mi with i ≤ 0
are bipartite. Let ci = t−i = t(M−i) for i ≥ 0. Since all the modules M−i are bipartite,
Proposition 5.11 provides the recursion formula which asserts that

ci = eci+1 − aci+2

for all i ≥ 0. Thus we can use the Christensen-Veliche Lemma 9.1 in order to conclude that
a = e−1 and that the sequence c0, c1, . . . is constant, thus that the sequence t0, t−1, t−2, . . .
is constant.

There are two possibilities: First, all the modules Mi may be bipartite. In this case,
ti = ti+1 for all i ∈ Z.

Second, not all modules Mi are bipartite, thus there is a minimal index u such that
Mu+1 is not bipartite. As we have seen, this implies that tu = ti for all i ≤ u.

Since S is a direct summand of Mu+1, we use again Proposition 8.2 in order to see that
there is some i ≥ u such that ti+1 > ti. Let v be the minimal index i with this property.
Thus we have

tv+1 > tv = tv−1 = · · · .

We apply Lemma 7.2 to the bipartite sequence 0 → Mu → Pu−1 → Mu−1 → 0. Since
t(Mu) = tu = tu−1 = t(Mu−1), it follows that δ(Mu) = 0. The first part of Lemma 7.3
yields by induction that δ(Mi) = 0 for u ≤ i ≤ v and then that δ(Mu+1) > 0. The last
part of Lemma 7.3 asserts that

· · · > t(Mi+1) > t(Mi) > · · · > t(Mv+1) > t(Mv)

(with i ≥ v). This completes the proof. �

9.3. Complexes of type I and of type II

We will say that a complex P• is of type I, provided it is a non-zero minimal exact
complex of projective modules, and all the modules Pi have the same rank.

We will say that a complex P• is of type II, provided it is a non-zero minimal exact
complex of projective modules Pi, and there is some integer v such that

· · · > tv+2 > tv+1 > tv = tv−1 = tv−2 = · · · ,

where ti is the rank of Pi.

Example 9.2. An algebra A of Hilbert type (2, 1) with J2 ⊂ socAA and J2 ⊂ socAA

with a complex of type I.
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In contrast to the commutative case, we cannot assert in Theorem 1.3 that J2 =
socAA or that J2 = socAA, as the following example shows: Let A be the k-algebra with
generators x, y and relations x2, xy, y2.

x2, xy, y2.

x y

yx

..............................................
......
......
......

y
AJ

Note that y belongs to socAA and x belongs to socAA, but neither x nor y belong to J2.
The ideal J2 is 1-dimensional, whereas socAA and socAA are 2-dimensional.

The complex

· · ·
x

−−−−→ AA
x

−−−−→ AA
x

−−−−→ · · ·

is non-zero, minimal and exact (here, x denotes the right multiplication by x, thus all the
images are equal to M = Ax = A/Ax). (Note that x is a left Conca element, as defined in
Section 10.3.)

Example 9.3. An algebra A of Hilbert type (3, 2) with J2 6= socAA, with a complex
of type II.

The algebra A will be similar to the algebra Λ0 considered in Section 11 (and before
in [RZ1]), but with the relation xz = 0 instead of xz = zx. To be precise: A is generated
by x, y, z, subject to the relations:

x2, y2, z2, xy + qyx, xz, yz, zy − zx,

with q ∈ k having infinite multiplicative order. Following [RZ1], we may visualize the
algebra as follows:

Λ :

1

x y

yx

......................................................................... ......
......

...................................................................
......
............

......................................................................... .......
.....

z

zx
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The algebra A has the basis 1, x, y, z, yx, zx. We have | socAA| = 3 with basis yx, zx, z,
whereas, of course, |J2| = 2. We get a complex of type II by taking the projective covers
of the modules A(x− αy) where α = q−i with i ≥ 2, and a minimal projective resolution
of A(x− q−1y). Note that ΩA(x− q−1y) = A(x− y)⊕ S.

Question 9.4. Let P• = (Pi, di) be a complex of type II with Mi = Im di for all i ∈ Z.
Let u(P•) be the minimum of i ∈ Z with Mi+1 not bipartite (thus S is a direct summand
of Mu+1, but not of Mi, for i ≤ u) and v(P•) the minimum of all i ∈ Z such that Mi is
not aligned (thus Mv is not aligned, whereas Mi is aligned for all i < v). According to
Corollary 1 in 5.5, we have u ≤ v, and one may ask whether u < v is possible. As we will
see in Corollary 13.3, we have u = v provided J2 = socAA.

The question may be rephrased as follows: We look at exact sequences of the form

0→M ′ → P → · · · → P −→M → 0

26



with P a projective module which occurs s ≥ 1 times, with M bipartite, t(M ′) > t(P ) =
t(M) and S a direct summand of ΩM (namely, M = Mu, P = Pu = · · · = Pv, and
M ′ = Mv+1). The question is the following: Does there exist an exact sequence of this
kind with s ≥ 2 such that, in addition, M has a projective coresolution?

9.4. Proof of Theorem 1.4

Proof of the first part. We assume that A is a short local algebra which is not self-
injective and that there exists a module which is indecomposable, non-projective and either
semi-Gorenstein-projective or∞-torsionfree. Thus, there is a reflexive module which is not
projective and therefore Theorem 1.1 asserts that a ≥ 2. Also, there exists an ℧-path of
length 4, thus Theorem 1.2 asserts that a = e− 1 and J2 = socAA = socAA. This is the
first part of Theorem 1.4. �

Proof of (1). Let M be indecomposable, non-projective, semi-Gorenstein-projective
and torsionless. Let ti = t(ΩiM) for i ≥ 0. According to the Dictionary 2.3, M is the start
of an infinite ℧-path and the end of an ℧-path of length 1. Thus, there exists the following
℧-path

Ω2M ΩM M ℧M ................................................. ......................................... ......................................... ......................................· · ·

We see that all the modules N = ΩiM with i ≥ 1 are middle modules of ℧-paths of
length 4, but this means that N is indecomposable, reflexive, non-projective, and satisfies
Extj(N,A) = 0 for j = 1, 2. According to Theorem 1.2, we have dimN = dim℧N =
(ti, ati), with ti = t(N). In particular, ti−1 = t(Ωi−1M) = t(℧N) = ti.

Altogether, we see that all ti with i ≥ 0 are equal, thus equal to t0 = t(M), and that
dimΩi(M) = (t, at) for all i ≥ 0. �

Proof of (2). Let M be indecomposable, non-projective and ∞-torsionfree. Let ti =
t(℧iM) for i ≥ 0. According to the Dictionary 2.3, M is the end of an infinite ℧-path:

M ℧M ℧2M ℧3M · · · ................................................. ......................................... ......................................... .........................................

We see that all the modules N = ℧iM with i ≥ 2 are middle modules of ℧-paths of
length 4, but this means that N is indecomposable, reflexive, non-projective, and satisfies
Extj(N,A) = 0 for j = 1, 2. According to Theorem 1.2, we have dimΩ2N = dimΩN =
(ti, ati), where ti = t(N). Now Ω2N = ℧i−2N and ΩN = ℧i−1N , thus t(℧i−2N) = ti =
t(℧i−1N).

Altogether, we see that all ti with i ≥ 0 are equal, thus equal to t0 = t(M), and that
dim℧i(M) = (t, at) for all i ≥ 0. �

Proof of (3). This concerns M∗. First, assume that M is ∞-torsionfree. There is
an ℧-sequence 0 → M → P → ℧M → 0. Since both M and ℧M are reflexive, the A-
dual sequence 0 ← M∗ ← P ∗ ← (℧M)∗ ← 0 is also an ℧-sequence. By (2), we have
t(℧M) = t, thus P has rank t, therefore P ∗ has rank t. This implies that t(M∗) = t.
Since M∗ is bipartite, torsionless and semi-Gorenstein-projective, it follows from the right
version of (1) that dimM∗ = (t, at).

Second, assume that M is semi-Gorenstein-projective and reflexive. We consider an
℧-sequence 0→ ΩM → P →M → 0. Since both M and ΩM are reflexive, also the A-dual
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0← (ΩM)∗ ← P ∗ ←M∗ ← 0 is an ℧-sequence. Now, the rank of P is t, thus the rank of
P ∗ is t and therefore | top(ΩM)∗| = t. Now, (ΩM)∗ = ℧M∗. Since M∗ is ∞-torsionfree,
it follows from the right version of (2) that dimM∗ = dim℧M∗ = (t, at).

Proof of (4). If M is Gorenstein-projective, then M is both semi-Gorenstein projective
and reflexive, as well as ∞-torsionfree. Thus (4) follows from (1), (2) and (3), �

Example 9.5. A short local algebra with an indecomposable module M which is
semi-Gorenstein-projective and torsionless (but not reflexive), with dimM∗ 6= dimM. Let
A = Λ0 as discussed in Section 11 (and before in [RZ1]) and let M be the right module
m1A = (x − y)A (as above in 5.3). The module M is indecomposable, semi-Gorenstein-
projective, and torsionless (but not reflexive). We have (m1A)∗ = M(q)∗∗ = ΩM(1), see
6.7 in [RZ1]. Therefore dim m1A = (1, 2), whereas dim (m1A)∗ = (2, 1).

Since m1A is torsionless, also ℧(m1A) is semi-Gorenstein-projective. On the other
hand, ℧(m1A) has Loewy length 3, see [RZ1] 7.3.

10. Some complexes of type I

10.1. Local modules

First, let us consider local modules. Note that a module M with Loewy length at most
2 is local iff dimM = (1, s) for some natural number s ≥ 0.

Lemma 10.1. Let A be a short local algebra with a = e− 1 and assume that A is not
self-injective. If 0 → X → P → Z → 0 is a bipartite sequence, with X a local module,
then dimX = dimZ = (1, a). In particular, also Z is local.

Proof. First, let e = 2, thus a = 1. Since A is not self-injective, Lemma 3.2 asserts
that J2 ⊂ socAA, thus AJ = I ⊕ S, where I is indecomposable and of length 2. Let B be
the factor algebra of A modulo the annihilator of I, thus of AJ . Then a(B) = 0, e(B) = 1,
thus I and S are the only indecomposable B-modules. Since X is cogenerated by AJ , it is
a B-module. Since X is bipartite, we have X = I, thus dimX = (1, 1). Since the cokernel
of the embedding X → P has Loewy length at most 2, we see that the projective module
P has rank 1, thus dimZ = (1, 1).

Second, let e ≥ 3. Since X is local and not simple, dimX = (1, s) for some s with
1 ≤ s ≤ e. According to the Main Lemma 5.4, dimZ = ( s

a
,−1+ s

a
(a+1)). It follows that

s
a has to be an integer. Since a ≤ s ≤ a+ 1 and a ≥ 2, it follows that s = a and therefore
dimX = (1, a) = dimZ. �

Remark 10.2. Let A be a short local algebra with a = e−1 and assume that A is not
self-injective. Let 0 → X → P → Z → 0 be a bipartite sequence. If Z is a local module,
then X does not have to be local. For an example, take an algebra of the form A = Λ0

as discussed in Section 11 (and before in [RZ1]). Let X be the submodule of P = AA
generated by x and y and Z = P/X. Then both X and Z are indecomposable of Loewy
length 2. We have dimX = (2, 2), and dimZ = (1, 1), thus Z is local whereas X is not
local. Note that δ(X) = 2, and δ(Z) = 1.

Corollary 10.3. Let A be a short local algebra with a = e − 1 and assume that A is
not self-injective. If X is a local reflexive module, then dimX = dim℧X = (1, a).
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Proof. Since X is torsionless, there is an exact sequence ǫ: 0 → X → P → ℧X → 0.
Since X is even reflexive, we know that ℧X has Loewy length at most 2, thus ǫ is a
bipartite sequence. �

10.2. Commutative short local algebras

We consider now the case of a commutative short local algebra with a = e− 1. First,
let A be an arbitrary commutative artinian ring.

Lemma 10.4. Let A be a commutative artinian ring. If M, ΩM and Ω2M are local
modules, then Ω3M ≃ ΩM .

Proof. Let p:A→M, p′:A→ ΩM, p′′:A→ Ω2M be projective covers. Let u: ΩM →
A be the kernel of p and u′: Ω2M → A be the kernel of p′. Then we have (up′)(u′p′′) = 0.
Now up′, u′p′′ are right multiplications by elements of A. Since A is commutative, we
have (u′p′′)(up′) = 0, thus p′′u = 0 (since p′ is epi and u′ is mono). The sequence

0→ ΩM
u
−→ A

p′′

−→ Ω2M → 0 is a short exact sequence, since u is mono, p′′ epi, p′′u = 0,
and |ΩM |+ |Ω2M | = |AA|. Thus Ω

3M = ΩM. �

Corollary 10.5. Let A be a commutative short local algebra. Then any complex of
type I involving a projective module of rank 1 is periodic of period 2, and there is no complex
of type II involving a projective module of rank 1.

If A is a non-commutative short local algebra, then there may exist non-periodic
complexes of type I involving a projective module of rank 1, as well as complexes of type II
involving a projective module of rank 1. A typical example is the algebra A = Λ0 discussed
in Section 11 (and before in [RZ1]).

Proposition 10.6. Let A be a commutative short local algebra with a = e − 1 and
assume that A is not self-injective. If X is a local module and an ℧-path of length 4 ends
in X, then X is Gorenstein-projective with Ω-period 2 and dimΩX = dimX.

Proof. The ℧-path shows that the modules X, ℧X,℧2X are reflexive. Corollary 10.1
shows successively that the modules ℧X , then ℧2X , finally ℧3X are local. We apply
Lemma 10.2 to M = ℧3X (with ΩM = ℧2X, Ω2M = ℧X, Ω3M = X) and see that
X ≃ ℧2X. This shows that X is Gorenstein-projective with Ω-period 2. Also we see that
dimΩX = dimX . �

10.3. Conca elements

Here is a simple way for obtaining complexes of type I. Following [AIS] (but dealing
also with non-commutative local algebras), a non-zero element x will be called a left Conca
element provided x2 = 0 and J2 = Jx. And x is called a Conca element, provided x2 = 0
and J2 = Jx = xJ . If x is a left Conca element, Ax is bipartite with dimAx = (1, a).
Let r(x):AA → AA be the right multiplication by x, defined by r(x)(a) = ax for a ∈ A.
Obviously, the existence of a left Conca element implies that 1 ≤ a ≤ e−1 (namely, rx maps
J onto J2 and has Ax = J2 + Ax in its kernel, thus we get a surjective map J/Ax→ J2,
and |J/Ax| = e − 1, whereas |J2| = a). In 15.1, we will see that if 1 ≤ a ≤ e − 1,
there are algebras of Hilbert type (e, a) with a Conca element x such that Ax is reflexive.
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If a = e − 1, then for any Conca element x, the module Ax has to be reflexive, even
Gorenstein-projective, as the following proposition shows.

Proposition 10.7. Let A be a short local algebra of Hilbert type (e, e− 1) with e ≥ 2.
Let x be a left Conca element in A, and P• = (Pi, di) with Pi = AA and di = r(x):AA→

AA for all i ∈ Z. Then P• = (Pi, di) is a minimal exact complex of projective complexes
with all images being equal to Ax. In particular, P• is a complex of type I. If x is a Conca
element, then also P ∗

• is exact, thus Ax is Gorenstein projective.

Proof. Since x2 = 0, we have Im rx ⊆ Ker rx, thus P• is a complex. We have Ax =
Im rx ⊆ Ker rx = Ω(Ax), and dimAx = a+1, whereas dimΩ(Ax) = (1+e+a)−(a+1) = e.
Our assumption a = e − 1 implies that Ax = Ω(Ax), thus P• is exact. Of course, P• is
minimal, since x ∈ J. Altogether we see that P• is a complex of type I with all images
being equal to Ax.

The A-dual complex P ∗
• is (P ∗

i , d
∗
i ) with P ∗

i = AA and d∗i : AA → AA the left mul-
tiplication defined by x (defined by l(x)(a) = xa for a ∈ A). If we assume that x is a
Conca element, then x is a left Conca element of Aop, therefore P ∗

• is exact. Altogether
we see: If x is a Conca element, then both P• and P ∗

• are exact complexes, thus Ax is
Gorenstein-projective. �

Remark 10.8. Of course, a left Conca element is not necessarily a Conca element.
A typical example is the element x in A = k〈x, y〉/〈x2, xy, y2〉: Here, Jx = kyx = J2,
whereas xJ = 0.

10.4. Exact complexes P ∗
• with Hi(P

∗
• ) 6= 0 for all i ∈ Z

Next, let us draw the attention to minimal exact complexes P• such thatHi(P
∗
• ) 6= 0 for

all i ∈ Z. Answering questions in [CV], Hughes-Jorgensen-Şega [HJS] provided examples
of such complexes over a commutative ring A, namely over a short local algebra of Hilbert
type (5, 4). In the non-commutative setting, there are such examples already over short
local algebras of Hilbert type (2, 1) and (3, 2).

Examples 10.9. Short local algebras with minimal exact complexes P• such that
Hi(P

∗
• ) 6= 0 for all i ∈ Z.
As first example, take the algebra A of Hilbert type (2, 1) exhibited in 9.3 and the

complex P• mentioned there, where di:AA → AA is the multiplication by y for all i ∈ Z.
All images are equal to Ay, thus 2-dimensional, and therefore P• is exact. In the A-dual
complex P ∗

• , all images are yA, thus 1-dimensional. Thus Hi(P
∗
• ) 6= 0 for all i ∈ Z.

An example A with Hilbert type (3, 2) is the algebra A = Λ0 as discussed in Section
11 (but also in [RZ1]; actually, one may take any algebra of the form Λ(q) as considered in
[RZ1], with arbitrary q). Let M = Ay. Then ΩM ≃M . If P• is the complex with Pi = AA
and with all maps di:Pi → Pi−1 being the right multiplication by y, then P• is exact and
minimal, all images in P• are Ay (thus bipartite), whereas all images in P ∗

• are isomorphic
to the 2-dimensional right module yA and therefore dimHi(P

∗
• ) = 2 for all i ∈ Z.

10.5. Complexes of type I and of type II

Any∞-torsionfree module M has a projective coresolution which is the concatenation
of ℧-sequences, we may call it its ℧-coresolution. We may concatenate the ℧-coresolution
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of M with a minimal projective resolution of M and obtain in this way a minimal exact
complex P•(M) of projective modules. Given an ∞-torsionfree module M , one may ask
whether P•(M) is a complex of type I or of type II.

Let us stress that both cases are possible, as the algebra A = Λ0 considered in Sec-
tion 11 (and before in [RZ1]) shows. The Λ0-module M(1) is ∞-torsionfree, and ΩM(1)
has a simple direct summand, thus the minimal projective resolution of M(1) consists of
projective modules whose rank is not bounded (see Proposition 8.2), thus P•(M(1)) is a
complex of type II.

On the other hand, if M is Gorenstein-projective, then both P•(M) and P•(M)∗ are
exact complexes of projective modules, thus P•(M) has to be a complex of type I.

But there are also ∞-torsionfree modules which are not Gorenstein-projective, such
that P•(M) is a complex of type I. For example, the Λop

0 -module mq2Λ0 is ∞-torsionfree.
Here, for α ∈ k, we define mα = x − αy ∈ Λ0. The syzygies of mq2Λ0 are the modules
mqiΛ0 with q ≤ 1, thus of rank 1. We see that P•(mq2Λ0) is a complex of type I.

In addition, let us remark that there are complexes P• = (Pi, di) of type I such that
the image M of some di is semi-Gorenstein-projective, but not Gorenstein-projective. An
example is the Λop

0 -module M = m1Λ0 in [RZ1].

11. Some short local algebras of Hilbert type (e, e− 1)

In this section, we are going to construct a short local algebra of Hilbert type (e, e−1),
where e ≥ 3, with semi-Gorenstein-projective modules which are not Gorenstein-projective.
The algebra which we construct will be denoted by Λc, with c = e − 3. The algebras Λ0

have been exhibited already in [RZ1] and [RZ2] (and the general case is a straightforward
generalization).

We need to assume that the base field k contains an element q ∈ k with infinite
multiplicative order. Thus, let c ≥ 0. We define Λ = Λc by generator and relations. The
algebra Λ = Λc is generated by x, y, z, u1, . . . , uc, subject to the relations:

x2, y2, z2, yz, xy + qyx, xz − zx, zy − zx,

xui − uix, yui, uiy, zui, uiz, uiuj ,

for all 1 ≤ i, j ≤ c. We obtain a short local algebra of Hilbert type (3 + c, 2 + c) say with
radical J , such that yx, zx, u1x, . . . , ucx is a basis of J2 = socΛJ = soc JΛ.

We may visualize (the coefficient quiver of) ΛJ as follows:

y z u1 · · · uc

yx zx u1x · · · ucx

x
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using the usual convention that a solid arrow v → v′ labeled say by x means that xv = v′,
a dashed arrow v 99K v′ labeled by x means that xv is a non-zero multiple of v′ (in our
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case, xy = −qyx). Here, the middle layer with the vertices yx, zx, u1x, . . . , ucx is the basis
of J2, as mentioned already.

We are interested in the modules M(α) with α ∈ k with basis v, v′, v′′, v1, . . . , vc, such
that xv = αv′, yv = v′, zv = v′′, uiv = vi, for all 1 ≤ i ≤ c and such that v′, v′′, v1, . . . , vc
are annihilated by all generators.

v

v′ v′′ v1 · · · vc

.................................................
......
......
......

......................................................................................................................... .......
.....

.................................................................................................................................................................................................................... .........
...

................................................................................................................................................................................................................................................................................................................................................................................................................................. ...........
.

........

........

........

.......
..
......
..

x y
z u1 uc.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The modules M(α) with α ∈ k are pairwise non-isomorphic indecomposable Λ-modules of
length 3 + c. As in [RZ1] one shows:

(1) The module M(0) is Gorenstein-projective and Ω-periodic with period 1. In par-
ticular, there are non-zero minimal exact complexes of projective modules of type I.

(2) The module M(q) is semi-Gorenstein-projective and not torsionless.

(3) The module M(1) is ∞-torsionfree and ΩM(1) has a simple direct summand.
Therefore P•(M(1)) is a non-zero minimal exact complex of projective modules of type II.

Of course, also further properties of Λ0 shown in [RZ1] carry over to the algebras Λc

with arbitrary c ≥ 0. Here, we only want to stress that for any a ≥ 2, there does exist
a short local algebra A, namely A = Λa−2, of Hilbert type (a + 1, a) which has modules
M,M ′,M ′′ of length a + 1 such that M is Gorenstein-projective, M ′ is semi-Gorenstein-
projective and not torsionless, and M ′′ is ∞-torsionfree, with ΩM ′′ having a simple direct
summand.

12. The Auslander-Reiten conjecture (proof of Theorem 1.5)

12.1. Preliminary considerations

We need some preliminary considerations (they are well-known, see for example Iyama
[I], Section 2.1, and also [M2]). IfM,N are modules, Hom(ΩM,N) = Hom(M,N)/P(M,N),
where P(M,N) denotes the set of homomorphisms M → N which factor through a pro-
jective module.

Lemma 12.1. Let Ext1(Z,A) = 0. Then, for any module N , we have

Ext1(Z,N) ≃ Hom(ΩZ,N),(a)

Hom(Z,N) ≃ Hom(ΩZ,ΩN).(b)

Proof. Let 0 → X
u
−→ PZ → Z → 0 be exact, where PZ is a projective cover of Z.

Thus X = ΩZ.
(a) We get the exact sequence

Hom(PZ,N)
Hom(u,N)
−−−−−−→ Hom(X,N)

δ
−→ Ext1(Z,N) −→ 0
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Of course, the image of Hom(u,N) always lies in Hom(X,N)addA (the set of homomor-
phisms X → N which factor through addA). Since Ext1(Z,A) = 0, the map u is
a left add(A)-approximation, thus any homomorphism X → N which factors through
add(A) factors through u:X → PZ. This shows that the image of Hom(u,N) is equal
to Hom(X,N)addA. By definition, Hom(X,N) = Hom(X,N)/Hom(X,N)addA, thus δ
yields an isomorphism Hom(X,N) ≃ Ext1(Z,N).

(b) Let 0 → ΩN → PN → N → 0 be exact. Any map f :Z → N lifts to a map
f ′:PZ → PN and thus yields by restriction a map f ′′:X → ΩN. If f factors though
addA, then f ′′ factors also through addA. In this way, we obtain an additive map
η: Hom(Z,N) → Hom(X,ΩN). Since u is a left add(A)-approximation, the map η is
bijective. �

Lemma 12.2. If Exti(Z,A) = 0 for i = 1, 2, then, for any module N

Ext1(Z,N) ≃ Ext1(ΩZ,ΩN).

Proof. Since Ext1(Z,A) = 0, we have Ext1(Z,N) ≃ Hom(ΩZ,N). Since Ext1(ΩZ,A) =
0, we have Hom(ΩZ,N) ≃ Hom(Ω2Z,ΩN) and Hom(Ω2Z,ΩN) ≃ Ext1(ΩZ,ΩN). �

Corollary 12.3. If M is semi-Gorenstein-projective, and N is an arbitrary module,
we have Exti(M,N) ≃ Exti(ΩM,ΩN), for all i ≥ 1.

Proof. We apply Lemma 12.2 to Ωi−1M and see:

Exti(M,N) ≃ Ext1(Ωi−1M,N) ≃ Ext1(ΩiM,ΩN) ≃ Exti(ΩM,ΩN).
�

12.2. The non-vanishing of Exti(M,M) for all i ≥ 1

Proposition 12.4. Let A be a short local algebra which is not self-injective, and let
M be a non-projective semi-Gorenstein-projective module. Then Exti(M,M) 6= 0 for all
i ≥ 1.

Proof. We can assume that M is indecomposable, then also all the modules ΩiM are
indecomposable with i ≥ 0. Let (e, a) be the Hilbert-type of A. Let t = t(ΩM). According
to Theorem 1.4, we have a = e− 1 ≥ 2 and dimΩiM = (t, at) for all i ≥ 1. We have for
i ≥ 1

Exti(M,M) = Exti(ΩM,ΩM) = Ext1(ΩiM,ΩM)

where we use Corollary 12.3. Now dimΩiM = (t, at) = dimΩM , thus both modules
ΩiM and ΩM are regular modules, see Section A.2 in Appendix A. Since e ≥ 3, it follows
that Ext1L(e)(Ω

iM,ΩM) 6= 0. But then also Ext1A(Ω
iM,ΩM) 6= 0, since L(e) is a factor

algebra of A. (In general, of B is a factor algebra of A, and M ′,M ′′ are B-modules, then
Ext1B(M

′,M ′′) can be considered as a subset of Ext1A(M
′,M ′′).) �

12.3. Proof of Theorem 1.5

Let A be a short local algebra and letM be a non-projective semi-Gorenstein-projective
module. First, we consider the case that A is not injective. According to Proposition 12.4
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we have Extt(M,M) 6= 0 for all t ≥ 1. In particular, Ext1(M,M) 6= 0. Second, let A be
self-injective. Then we also have Ext1(M,M) 6= 0, now according to Hoshino, see the first
part of Proposition A.5 in Appendix A. �

13. The Main Lemma, revisited

13.1. Main Lemma in the case J2 = socAA

Lemma 13.1. Let A be a short local algebra with J2 = socAA. Let M be a module of
Loewy length at most 2. Let ΩM = X ⊕ Sw with X bipartite and w ∈ N. Then

dimΩM = ωe
a dimM + (w,−w).

Proof. Let M ′ = ΩM and take an exact sequence 0 → M ′ → P → M → 0 with P
projective and with an inclusion map M ′ → P . Let U = J2P. As in the proof of 5.4, we
see that JM ′ ⊆ U ⊆ socM ′ and that

dimM ′ = ωe
a dimM + (w,−w).

where w = |U/JM ′|.
Now J2 = socAA = socAJ means that AJ

2 is bipartite, thus also JP is bipartite.
Therefore M ′ ⊆ JP implies that socM ′ ⊆ soc JP = J2P = U, and therefore U = socM ′.

Write M ′ = X⊕W with X bipartite and W semisimple. Then U = socM ′ = JX⊕W ,
and JM ′ = JX ⊕ JW = JX. Altogether, we get U = JM ′ ⊕W . It follows that w =
|U/JM ′| = |W |. Thus, W is isomorphic to Sw and therefore M ′ = X ⊕W = X ⊕Sw with
X bipartite. �

13.2. Consequences

Recall that a module M of Loewy length at most 2 is said to be aligned (see Section
5.5), provided dimΩM = ωe

a dimM .

Corollary 13.2. Let A be a short local algebra with J2 = socAA. Then a module M
of Loewy length at most 2 is aligned if and only if ΩM is bipartite.

Proof. Let M be a module of Loewy length at most 2. We have seen in Corollary
5.6 that if ΩM is bipartite, then M is aligned. For the converse, we need the assumption
that J2 = socAA. By Lemma 13.1, we know that ΩM = X ⊕ Sw with X bipartite and
dimΩM = ωe

a dimM +(w,−w). If M is aligned, then dimΩM = ωe
a dimM , thus w = 0,

and therefore ΩM is bipartite. �

Using Lemma 13.1, we are able to improve Theorem 1.3 in the case J2 = socAA.

Corollary 13.3. Let A be a short local algebra of Hilbert type (e, e− 1) which is not
self-injective and assume that J2 = socAA.

Let P• = (Pi, di)i be a non-zero minimal exact complex of projective modules of type
II, let Mi be the image of di and ti = t(Pi) = t(Mi). As we know, there is v ∈ Z with
tv+1 > tv = tv−1. Let t = tv. Then all the modules Mi with i ≤ v are bipartite, whereas
Mv+1 is not bipartite.
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Proof. By Theorem 1.3, we know that Mv+1 is not bipartite and that dimMi = (t, at)
for all i ≤ v. Suppose thatMi is not bipartite, sayMi = U⊕Sw with U bipartite and w ≥ 1.
Let M = Mi−1. According to 13.1, we have dimMi = dimΩM = ωe

a dimM + (w,−w).
Thus t(Mi) = t+ w > t and therefore i > v. �

Remark 13.4. Let us return to the Main Lemma 5.4 itself. Let M be a module of
Loewy length at most 2. If we use covering theory, the number w provided by the Main
Lemma 5.4 can be understood well. Thus, let Ã be a Z-cover of A (we assume that the set

of vertices of the quiver of Ã is Z, and that the arrows go from i to i+1, for all i). Let π be

the push-down functor. Let M̃ be a module with π(M̃) = M , such that top M̃ is a direct

sum of copies of S(0) (we recall the definition of M̃ in Section A.2 in Appendix A). Then

ΩM̃ = U ⊕ S(2)w ⊕ S(1)w
′

, with U being bipartite (and having support equal to {1, 2}

provided U 6= 0). It follows that ΩM = π(ΩM̃) = π(U)⊕Sw+w′

. Here we see the number

w which is mentioned in the Main Lemma 5.4. If we consider ΩM̃ as a representation of
the e-Kronecker quiver with vertices 1, 2, then S(2)w is a maximal direct summand of ΩM̃

which is semisimple and projective, whereas S(1)w
′

is a maximal direct summand of ΩM̃
which is semisimple and injective.

14. Algebras without non-projective reflexive modules and without non-
zero minimal exact complexes of projective modules

Proposition 14.1. Let e ≥ 2. For any 0 ≤ a ≤ e2, there exists a short local algebra
of Hilbert type (e, a) such that any reflexive module is projective and such that the only
minimal exact complex of projective modules is the zero complex.

Proof. Let E be a vector space of dimension e say with basis x1, . . . , xe and let T be
the truncated tensor algebra T = k ⊕ E ⊕ (E ⊗ E). Of course, T is a short local algebra
with J(T ) = E ⊕ (E ⊗ E) and J(T )2 = E ⊗ E, thus e(T ) = e, a(T ) = e2.

Let 0 ≤ a ≤ e2. We will choose a suitable subspace U ⊆ E⊗E with dimU = e2−a and
define A = T/U. Then J(A) = J(T )/U . Always, J(A) = J(T )/U will be decomposable,
thus Theorem 1.1 asserts that A has no non-projective reflexive modules.

If a = 0, then we have to take U = E⊗E and obtain A = L(e). Since e ≥ 2, J(A) = E
is a semisimple A-module of length e, thus decomposable.

Let E′ be the subspace of E with basis x = x1, and E′′ the subspace generated by
x2, . . . , xe. Thus E = E′ ⊕E′′.

If e ≤ a, then E ⊗ E′ has dimension e(e − 1) ≥ e2 − a, thus there is a subspace
U ⊆ E ⊗ E′′ of dimension e2 − a. Then, for A = T/U , we have J(A) = J ′ ⊕ J ′′, where
J ′ = E′ ⊕ (E ⊗ E′) and J ′′ = E′′ ⊕ (E ⊗ E′′)/U) are non-zero submodules of AJ(A),
thus AJ(A) is decomposable. Note that dim J(A)2 = dim(E ⊗ E′) + dim(E ⊗ E′′)/U =
e+ (e(e− 1)− (e2 − a)) = a.

Finally, let 1 ≤ a < e. Let U ′ be the subspace of E⊗E with basis xa+1⊗x, . . . , xe⊗x,
and let U ′′ = E ⊗E′′. Let U = U ′ ⊕ U ′′. By abuse of notation, we will denote the residue
class of z ∈ T modulo U just by z again. We note that AJ(A) is the direct sum of the local
module N generated by x = x1 (with basis x, x1⊗x, . . . , xa⊗x, thus dimN = (1, a)) and
a semisimple module with basis x2, . . . , xe, thus J(A) ≃ N ⊕ Se−1. In particular, AJ(A)
is again decomposable.
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We claim that the only minimal exact complex of projective A-modules is the zero
complex. According to Theorem 1.3, we only have to look at the case a = e− 1. Note that
J(A) has the basis x1, . . . , xe; x1 ⊗ x, . . . , xa ⊗ x.

The only indecomposable modules cogenerated by AJ(A) are N and S (namely, the
annihilator C of AJ(A) is the ideal generated by J2 and the element xe, thus A′′ = A/C
is of the form L(a), and A′′N is the indecomposable projective L(a)-module).

We have ΩS = AJ(A) = N ⊕ Se−1. And we have ΩN = Se (namely, the map
f :AA → N with f(1) = x maps xi to xi ⊗ x, thus its kernel has basis x1 ⊗ x, . . . , xa ⊗ x
and xe, thus ΩN is of the form Se.)

Assume now that P• is a minimal exact complex of projective modules and that M
is one of the images. Then M is torsionless of Loewy length at most 2, thus of the form
M = Nu ⊕ Sv for some natural numbers u, v ≥ 0. We have t(M) = u+ v. Since

ΩM = Ω(Nu ⊕ Sv) = Seu ⊕Nv ⊕ S(e−1)v,

we have t(ΩM) = eu+v+(e−1)v = e(u+v). It follows that t(Pi+1) = et(Pi) for all i ∈ Z.
Since e ≥ 2, this is only possible if t(Pi) = 0 for all i ∈ Z, thus P• is the zero complex. �

Remark. The assumption e ≥ 2 is necessary, since all short local algebras with
e = 1 are self-injective and not semisimple (thus, the simple module is non-projective and
reflexive and occurs as an image in a minimal exact complex of projective modules).

15. Algebras with ℧-paths of length 2 and 3

The existence of an ℧-path of length 2 means the existence of a non-projective reflexive
module; the existence of an ℧-path of length 3 means the existence of a non-projective
3-torsionfree module, thus of a non-projective module M such that both M and ℧M are
reflexive modules.

15.1. Algebras with ℧-paths of length 2

Proposition 15.1. Let 1 ≤ a ≤ e− 1. There exists an (even commutative) short local
algebra A of Hilbert type (e, a) with a reflexive module of Loewy length 2 with dimension
vector (1, a).

Proof. Let c = e− a− 1. Let A be the commutative algebra with generators

x, y1, . . . , ya, z1, . . . , zc,

and relations
x2, xzj , yiyi′ , yizj , z2j − xya, zjzj′ ,

for all i, i′ ∈ {1, . . . , a} and all j, j′ ∈ {1, . . . , c} with j′ 6= j. The elements xy1, . . . , xya
form a basis of the vector space J2 = socAA = socAA. For a = c = 2, the module AJ
looks as follows

x y1 y2 z1 z2

xy1 xy2

.......................................................................
......
......
......

.......................................................................
......
......
......

...............................................................................................
.
......
......

............................................................................................................................................... ........
....

xx
y1

y2 ...................................................................................
......
.........
...

..............................................................................................................................
.....
............

z1 z2
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Let M = Ax. Then M is a module with Loewy length 2 and dimM = (1, a). Let us
show that the embedding ι:Ax→ AA is a left add(AA)-approximation.

First, consider an element m = αx +
∑

βiyi +
∑

γjzj with coefficients α, βi, γj ∈ k
and assume that there is a surjective map Ax → Am. We have xm =

∑
βixyi. Since

the element x annihilates Ax, we must have xm = 0, thus βi = 0 for all i. We have
zjm = γjxya. Since the element zj annihilates x, we must have γj = 0. It follows that
m = αx. This shows that for any homomorphism f :Ax→ AJ , there is a scalar α ∈ k such
that f − αι maps into J2.

Second, we show that all the maps g:Ax→ AJ
2 factor through ι. Let g(m) =

∑
δixyi

with δi ∈ k. Let g′ be the right multiplication on AA with
∑

δiyi Since

g′ι(m) = g′(x) = x
∑

δiyi =
∑

δixyi = g(m),

it follows that g′ι = g. Altogether, we see that ι is a left add(AA)-approximation.
It remains to show that the factor module ℧M = AA/Ax is cogenerated by AJ. Now

AA/Ax maps onto Ax as well as onto all the modules Azj with 1 ≤ j ≤ c and the
intersection of the kernels of these maps is zero. This shows that AA/Ax can be embedded
into Ax⊕

⊕
j Azj . �

Note that the element x constructed in the proof is a Conca element of A, as defined
in [AIS] (see Section 10.3, and also [RZ3]).

15.2. An algebra with an ℧-path of length 3

Proposition 15.2. There exists an (even commutative) short local algebra A of Hilbert
type (6, 2) with a non-projective 3-torsionfree module M having dimension vector (2, 2).

Proof. Let A be the commutative local algebra with generators x1, y1, z1, x2, y2, z2,
and with the following relations: all squares of the generators (these are 6 relations), all
products of pairs of generators with different indices (these are 9 relations), as well as the
four additional relations

y1z1, y2z2, x1y1 − x2y2, x1z1 − x2z2.

Altogether, we have 19 relations. The ideal J2 has the basis x1y1, x1z1, thus the Hilbert
type of A is (6, 2).

We visualize J as follows:

x1 y1 z1

x1y1 x1z2

x2 y2 z2

............................................................................................................ ........
....

............................................................................................................................................................................................ ..........
..

x1 x1

y1
z1

.................................................
......
......
......

.................................................
......
......
......

............
............
............
............
............
............
............
........................
............

.....................
......................

......................
.....................

......................
.....................

......................
......................

...............
............

x2 x2

y2 z2
......
......
......
......
.....
......
......
..............
............

......

......

......

......

.....

......

......

..............

............

and we may mention that x1 and x2 are Conca elements.

Let M = Ax1 +Ax2 ⊂ A. Thus dimM = (2, 2).
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Claim: The module M is reflexive with ℧M = M∗.

Proof. Let f :M → A be a homomorphism.
An easy calculation shows that there is λ ∈ k such that f(c) − λc ∈ socA for all

c ∈ M. [Namely, let f(x1) ≡ α1x1 + β1y1 + γ1z1 + α2x2 + β2y2 + γ2z2 modulo socA,
for some scalars αi, βi, γi (i = 1, 2). Then 0 = f(x1x1) = x1f(x1) = β1x1y1 + γ1x1z1
shows that β1 = 0 = γ1. Second, 0 = f(x2x1) = x2f(x1) = β2x1y1 + γ2x1z1 shows that
β2 = 0 = γ2. Third, 0 = f(y2x1) = y2f(x1) shows that α2 = 0. Altogether, we see that
f(x1) ≡ λx1 with λ = α1. Similarly, there is λ′ ∈ k with f(x2) ≡ λ′x2 But we also have
0 = f(x1y1−x2y2) = y1f(x1)−y2f(x2) = (λ−λ′)x1y1 thus λ = λ′ and therefore f(c) ≡ λc
for all c ∈M.]

If we use in addition that socA ⊂ M , we see that f is the restriction to M of an
endomorphism of A.

In this way, we see that the inclusion map M → A is a (minimal) left (addA)-
approximation. As a consequence, we have ℧M = A/M. Now A/M is the algebra C =
L(4) with radical generators y1, z1, y2, z2. The monomorphism u:A/M → A2 defined by
u(1) = (x1, x2) shows that ℧M = A/M is torsionless, therefore M is reflexive.

SinceM is reflexive, and dimM = (2, 2), Proposition 6.1 asserts that dimM∗ = (1, 4),
thus M∗ is a local module. Since M is annihilated by x1, x2, also M∗ is annihilated by
x1, x2, thus M

∗ is the free module of rank 1 over the algebra C (actually, the calculations
presented above yield a direct way to see that M∗ = C). It follows that M∗ = ℧M.

If M is reflexive, also M∗ is reflexive. Thus we see that in our case ℧M = M∗ is
reflexive. Since both modules M and ℧M are reflexive, M is 3-torsionfree. �

Here is the ℧-path with the dimension vectors dimM, dim℧M, dim℧2M mentioned
below (note that the module ℧3M has Loewy length 3).

M ℧M ℧2M ℧3M,.................................................... ........................................ ........................................

dim (2, 2) (1, 4) (2, 11)

Since M ∈ Z( 12 ), we have ℧M ∈ Z(2), and ℧2M ∈ Z( 114 ), as asserted in Proposition 6.1.

16. Final remarks

16.1. The torsionless modules for a short local algebras

The modules we have been interested in are mainly torsionless modules, namely syzygy
modules; therefore we often have restricted the attention to the A-modules of Loewy length
at most 2, thus to L(e)-modules, or, better, to the factor category modL(e)/ addAA (here,
we factor out the ideal of modL(e) given by all maps which factor through a projective
A-module). Of course, the syzygy functor ΩA has also to be taken into account; it is an
endo-functor of the category modL(e)/ addAA.

Note that the syzygy modules in modA are the modules cogenerated by W = AJ. This
means: We start with an L(e)-module W (namely the radical W = AJ of A) and look at
the category subW of all L(e)-modules cogenerated by W , as well as at the endo-functor
ΩA of subW/ addAA.
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In dealing with L(e)-modules M , the main invariant is the dimension vector dimM ;
it is a pair of natural numbers, thus an element of Z2. Here, Z2 is the Grothendieck group
of the L(e)-modules with respect to the exact sequences of the form 0 → JM → M →
M/JM → 0, where M is any L(e)-module (equivalently, given an L(e)-module, we may

consider the corresponding K(e)-module M̃ , see Section A.2 in Appendix A, and take as

dimM the usual dimension vector of M̃). As we have mentioned, the main tool in this
paper has been the transformation ωe

a on Z2, since it describes for the modules M in subW
the dimension vector dimΩAM in terms of dimM , at least roughly. The transformation
ωe
a plays a role quite similar to the usual use of ωe

1 (or better of (ωe
1)

2) in the representation
theory of the e-Kronecker quiver (where (ωe

1)
2 describes the change of the dimension vectors

of indecomposable non-projective modules when we apply the Auslander-Reiten translate
τ). A decisive difference if of course the fact that ωe

1 is invertible, whereas, for a ≥ 2, ωe
a

is not invertible over Z.

16.2. Auslander-Reiten theory and homological behavior

We want to stress that the Auslander-Reiten-quiver of an algebra A does not determine
the homological behavior of modA, see for example the short local self-injective algebras
with e = 2 as discussed in Sections A.8 – A.11 in Appendix A: For all self-injective short
local k-algebras with e = 2, the isomorphism classes of the indecomposable modules are
indexed by the same set: namely, there are the indecomposable L(e)-modules and there is
one additional module, the projective-injective indecomposable module P . The Auslander-
Reiten quivers coincide: always P is inserted at the same place. But the homological
behavior may be completely different, as the structure of the ℧-components shows. The
operator ΩA yields an arbitrary Möbius transformation on the projective line P1(k) and
this transformation is not displayed by the Auslander-Reiten quiver of A.

16.3. Projective coresolutions

Part of the paper has been devoted to the study of acyclic minimal complexes of
projective modules, thus to the study of minimal projective coresolutions (of a module
without non-zero projective direct summands): Note that a minimal projective coresolution
determines uniquely an acyclic minimal complex of projective modules and any acyclic
minimal complex of projective modules is obtained in this way. As we have seen, a minimal
projective coresolution of a module seldom does exist. Also, if it exists, then it may not
be unique (see for example the module M(0, 0, 1) mentioned in [RZ2], 1.7). However,
if it exists, then its structure may be very restricted: If A is a short local algebra, and
P0 → P−1 → P−2 → · · · is a non-zero minimal projective coresolution of some module,
let ti = t(Pi). Then either ti = ti−1 for i ≪ 0 (and a = e − 1) or else ti+1 + ti−1 = eti
for all i≪ 0 (and A is self-injective with a = 1), see Theorem 1.3 and Proposition A.7 in
Appendix A.

Appendix A. Radical-square-zero algebras and self-injective algebras

This Appendix aims to describe the categories modA where A is a short local algebra
which is self-injective (equivalently, Gorenstein, see Remark 3.3) or has radical-square
zero. We start in A.2 with the radical-square zero k-algebra A = L(e) (with radical J of
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dimension e and A/J = k). In order to do so, we look in A.1 at a related algebra, the path
algebra K(e) of the e-Kronecker quiver.

A.1. The structure of modK(e)

We denote by K(e) the e-Kronecker quiver with e arrows (or its path algebra):

◦ ◦
0 1

.................................................................................................. ............
〈e〉

(here and also later, we will depict a set of e arrows with same source and same sink by a
single arrow endowed with the symbol 〈e〉). A representation (or module) V of K(e) will
be written in the form V = (V0, V1; φ: k

e⊗V0 → V1). There are two simple representations,
namely S(0) = (k, 0; 0) and S(1) = (0, k; 0).

The Grothendieck group of modK(e) (with respect to exact sequences) is Z2. Given
a representation V of K(e), the corresponding element in the Grothendieck group is the
dimension vector dimV = (dimV0, dimV1) of V . On Z2, we consider the quadratic form
q(x, y) = x2+y2− exy. This form q is positive definite, if e = 1, it is positive semidefinite,
if e = 2 and indefinite, if e ≥ 3. If e 6= 2, there is no non-zero pair (x, y) with q(x, y) = 0.

We have q(dimV ) = dimEnd(V )−dimExt1(V, V ) for every module V (see [R1]); more
generally, given modules V, V ′ with dimV = dimV ′, we have q(dimV ) = dimHom(V, V ′)−
dimExt1(V, V ′). We can use q in order to distinguish between the regular indecomposable
and the non-regular indecomposable modules: An indecomposable module V is regular,
provided Ext1(V, V ) 6= 0, and this happens if and only if q(dimV ) ≤ 0. The remaining
indecomposable modules are the indecomposable modules with q(dimV ) = 1 and then
dimEnd(V ) = 1. An element (x, y) ∈ Z2 is said to be a real root of q provided q(x, y) = 1
and an imaginary root provided q(x, y) ≤ 0. If V is a regular indecomposable module,
then there exists an indecomposable module V ′ with dimV ′ = dimV such that V and
V ′ are not isomorphic. If V is indecomposable with q(dimV ) = 1, then any indecompos-
able module V ′ with dimV ′ = dimV is isomorphic to V . A non-regular indecomposable
module V with dimV = (x, y) is said to be preprojective provided x < y, otherwise it is
said to be preinjective (and then x > y).

For e = 1, there are just 3 indecomposable representations, namely S(1), P (0), S(0),
with dimS(1) = (0, 1),dimP (1) = (1, 1) and dimS(0) = (1, 0).

We assume now that e ≥ 2. The indecomposable preprojective modules can be labeled
P0, P1, P2, . . . , with P0 = S(1), P1 the indecomposable projective representation corre-
sponding to the vertex 0 (thus dimP1 = (1, e)) and dimPi+1 = edimPi − dimPi−1

for i ≥ 1. Similarly, the indecomposable preinjective modules can be labeled Q0 =
S(0), Q1, Q2, . . . ; with Q0 = S(0), Q1 the indecomposable injective representation cor-
responding to the vertex 1 (thus dimQ1 = (e, 1)) and dimQi+1 = edimQi − dimQi−1

for i ≥ 1. If we define bn for n ≥ −1 recursively by b−1 = 0, b0 = 1 and bn+1 = ebn− bn−1

for n ≥ 0, then dimPn = (bn−1, bn) and dimQn = (bn, bn−1) (for example, for e = 3,
the sequence b−1, b0, b1 . . . is just the sequence of the even-index Fibonacci numbers
0, 1, 3, 8, 21, 55, 144, . . . ). An explicit formula for the numbers bn due to Avramov, Iyen-
gar and Şega will be exhibited in Appendix B.
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The global structure of modK(e) can be seen by looking at the Auslander-Reiten
quiver of K(e). It has the following shape:

modK(e)

.................................................................................

.............................................................

.................................................................................

.............................................................

preprojective modules preinjective modules
...................................................................................................................................................................................................................................................................................................

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......
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There are two Auslander-Reiten components of non-regular modules: the preprojective
component (seen on the left) and the preinjective component (seen on the right). The
Auslander-Reiten components of regular modules are homogeneous tubes for e = 2, and
are of the form ZA∞ for e ≥ 3.

Non-zero maps between preprojective modules (and between preinjective modules, re-
spectively) go from left to right. Also, there are no non-zero maps from a regular module
to a preprojective module, and no non-zero maps from a preinjective module to a prepro-
jective or a regular module.

History. Here are at least some hints. The representations of K(2) are called Kro-
necker modules, since they have been classified by Kronecker in 1890. We will give a brief
survey on related investigations at the end of Section A.9.

The fact that there are just 3 indecomposable representations of K(1) is a basic state-
ment of elementary linear algebra.

The representation theory of K(e) with e ≥ 3 has attracted a lot of interest in the last
40 years, but is still very mysterious.

The algebras K(e) with e = 1, e = 2, and e ≥ 3 are typical representation-finite,
tame, and wild algebras, respectively. One expects that any one-parameter family of
indecomposable modules of a tame algebra is related to the regular modules of K(2), and
that any wild algebra has a full subcategory which is related to the regular representations
of K(3).

A.2. The push-down functor π: modK(e)→ modL(e)

We recall that L(e) is the local k-algebra with radical J such that J2 = 0, dim J = e
and L(e)/J = k. We assume here that |J | = e ≥ 2 and identify J = ke.

We denote by π: modK(e)→ modL(e) the push-down functor: It sends V = (V0, V1; φ: k
e⊗

V0 → V1) to the representation

πV = π(V0, V1; φ: ke ⊗ V0 → V1) =
(
V0 ⊕ V1;

[
0 0
φ 0

])
.

Under the functor π, the two simple representations of K(e) are sent to the unique simple
L(e)-module S. The indecomposable K(e)-modules of length at least 2 correspond under
π bijectively to the indecomposable L(e)-modules of length at least 2, thus to the inde-
composable bipartite L(e)-modules. We have dimπV = dimV for any K(e)-module V
without a simple projective direct summand.
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Conversely, given an L(e)-module M , we denote by M̃ the K(e)-module

M̃ = (topM, radM ; µ: J ⊗ topM → radM),

where µ is induced by the multiplication map µ: J ⊗M → M (note that J ⊗ radM is

contained in the kernel of µ and that the image of µ is radM.). We have dim M̃ = dimM
for any L(e)-module M .

We have πM̃ ≃ M for any L(e)-module M , and conversely, we have π̃V ≃ V for any
K(e)-module V without a simple projective direct summand. Altogether we see: π and ˜
provide inverse bijections between isomorphism classes as follows:





indecomposable
K(e)-modules V

different from S(1)





{
indecomposable
L(e)-modules

}
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˜

π

An indecomposable L(e)-module M will be said to be regular provided M̃ is a regular
K(e)-module. The Auslander-Reiten quiver for L(e) is obtained from the Auslander-Reiten
quiver of K(e) by identifying the vertices S(1) and S(0) in order to obtain the vertex S.
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Proposition A.1 (Homomorphisms). If M,M ′ are L(e)-modules, then π yields
an injective map

HomK(e)(M̃, M̃ ′)
π
−→ HomL(e)(M,M ′)

and
HomL(e)(M,M ′) = πHomK(e)(M̃, M̃ ′)⊕Homk(topM, radM ′).

Proof. It is easy to show this directly. But one also may invoke the general covering
theory as developed by Gabriel and his students. We use the Z-cover Q of L(e) with vertex
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set Z, with e arrows z → z+1 for all z ∈ Z and with all paths of length 2 as relations. We
identify the full subquiver of Q with vertices 0, 1 with K(e).

If V is a representation of Q and j ∈ Z, let V [j] be the shifted representation with
V [j]i = Vi+j . The push-down functor π can be extended to a functor π: modQ→ modL(e)
and covering theory asserts that π yields a bijection between

⊕
j∈Z

HomQ(V, V [j]) and
HomL(e)(πV, πV

′).
It remains to consider the indecomposable representations V, V ′ of Q which are either

bipartite with support {0, 1}, or equal to S(0). For example, if both V, V ′ are bipartite
with support in {0, 1}, then HomQ(V, V

′[1]) = Homk(V0, V
′
1) = Homk(topV, radV

′). �

Proposition A.2 (Extensions). Let M be an indecomposable regular L(e)-module.
Then

Ext1L(e)(M,M) 6= 0.

If e ≥ 3 and M,M ′ are indecomposable regular L(e) modules with dimM = dimM ′, then

Ext1L(e)(M,M ′) 6= 0.

Proof. We have

dimEnd(M̃)− dimExt1K(e)(M̃, M̃) = q(dimM) ≤ 0.

Thus End(M̃) 6= 0 implies that Ext1K(e)(M̃, M̃) 6= 0. Of course, a non-split self-extension

of M̃ yields under π a non-split self-extension of the L(e)-module M .
The second assertion is shown in the same way, now using that for e ≥ 3 we have

q(dimM) < 0. �

Proposition A.3 (Solid modules). Let M be an L(e)-module. The following con-
ditions are equivalent:
(i) M is solid.
(ii) M 6= 0 and EndM = k · 1M + {φ ∈ EndM | Imφ ⊆ radM ⊆ Kerφ}.
(iii) dimEndM = 1 + | topM | · | radM |.

(iv) End(M̃) = k.

If these conditions are satisfied, then M is indecomposable.

Proof. (i) =⇒ (ii). Assume that M is solid. An endomorphism of M which does not
vanish on socM has to be invertible. In particular, M has to be indecomposable: Namely,
if M = M ′⊕M ′′ is a direct sum decomposition, then the projection onto M ′ maps socM ′

onto itself and vanishes on socM ′′. Thus, either M = S or else M is bipartite. If φ is an
endomorphism of M and its restriction to socM is the scalar multiplication by λ ∈ k, then
φ − λ1M maps M into radM . This shows that End(M) = k · 1M ⊕ Hom(topM, radM),
thus (ii) is satisfied.

(ii) =⇒ (iii) is trivial. The implication (iii) =⇒ (iv) is a direct consequence of the
Proposition A.1.

(iv) =⇒ (i). Since M̃ is indecomposable, also M is indecomposable. If M = S, then
clearly M is solid. Thus, we can assume that M is bipartite. Proposition A.1 shows that
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any endomorphism φ is of the from φ = λ ·1M +φ′, where socM = radM ⊆ Ker(φ′). This
shows that the restriction of φ to socM is the scalar multiplication by λ. �

Proposition A.4 (Modules without self-extensions). Let e ≥ 2. Let M be an
indecomposable L(e)-module. The following conditions are equivalent.
(i) M is isomorphic to πPi or πQi for some i ≥ 1,
(ii) M is not simple and q(dimM) = 1.
(iii) Ext1L(e)(M,M) = 0.

Proof. An indecomposable K(e)-module V satisfies q(dimV ) = 1 if and only if V is
preprojective or preinjective. This yields the equivalence of (i) and (ii).

(iii) =⇒ (i): If M is regular, then Proposition A.1 asserts that Ext1L(e)(M,M) 6= 0. If

M = S, then, of course, dimExt1L(e)(M,M) = e > 0. This shows that an indecomposable

module M with Ext1L(e)(M,M) = 0 is isomorphic to πPi or πQi for some i ≥ 1,
(i) =⇒ (iii). Let M be a bipartite module with dimM = (x, y). We define g(M) =

dimEnd(M) − 1 − xy. Since xy = | topM | · | radM |, we see that g(M) ≥ 0 and that
g(M) = 0 if and only if M is solid.

The projective cover of M is isomorphic to L(e)x, and ΩM is semi-simple, namely
isomorphic to Sz with z = ex− y. We apply Hom(−,M) to the exact sequence 0→ Sz →
L(e)x →M → 0 and obtain the exact sequence

0→ Hom(M,M)→ Hom(L(e)x,M)→ Hom(Sz,M)→ Ext1L(e)(M,M)→ 0.

We have dimHom(M,M) = xy + 1 + g(M), dimHom(L(e)x,M) = x(x + y) and finally
dimHom(Sz,M) = zy = (ex− y)y. Thus

dimExt1L(e)(M,M) = xy + 1 + g(M)− x(x+ y) + (ex− y)y

= 1 + g(M)− x2 + exy − y2 = 1− q(x, y) + g(M).

If M is isomorphic to πPi or πQi for some i ≥ 1, then q(x, y) = 1 and M is solid, thus
g(M) = 0, and therefore Ext1L(e)(M,M) = 0. �

Historical remark. The algebra K(e) is obtained from L(e) by a process which
has been called “separation of a node” by Martinez [MV1] (a node is a simple module
S which never occurs as a composition factor of radM/(radM ∩ socM), for any module
M ; if the algebra is given by a quiver with relations, then a vertex v is a node iff the
composition of any arrow ending in v with any arrow starting in v is a relation). It
seems that the first systematic separation of nodes was used in Gabriel’s paper [Gb]: He
showed that using separation of the nodes, the representations of a radical-square-zero
algebra over an algebraically closed field can be obtained from the representations of a
corresponding hereditary algebra (note that for a radical-square-zero algebra, all simple
modules are nodes). The separation of nodes yields algebras which are stably equivalent,
as later described in Auslander-Reiten-Smalø [ARS, Chapter X].
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A.3. The self-injective short local algebras A with e ≥ 2

Let A be a self-injective short algebra with e ≥ 2. We obtain the Auslander-Reiten
quiver for A from the Auslander-Reiten quiver of A/J2 by inserting the vertex A.

.......................................................................................................................
.........

.......
...

..

..

..
..
..
..
..
..
..
..
...
...
...
...
...
....

....
....

.....
.....

..

..

..
..
..
..
..
..
..
..
...

...
...

...
...

....
....

....
.....

.....

.........................................................

.......................................................................................................................
.........

.......
...

..

..

..
..
..
..
..
..
..
..
...
...
...
...
...
...
....

....
.....

.....
.

..

..

..
..
..
..
..
..
..
..
...

...
...

...
...

...
....

....
.....

.....
.

.........................................................

•

•

•

•

•

•

•
•

..........................................................................................
......
............

.........
.........

.........
.........

.........
.........

.........
.................................

........................................................................................................
......
........
....

........
........
........
..........................

........
........
........
.......
........
........
........
.......
........
........
..............................

...............................................................................
.....
..................

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......
.......
..............
............

..........................
........
.........

........
........

........
.........

........
........

.................................
..................................................................................

.....
............

...................................................................................................................................................................................................................................................................................................
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

regular

modules

S

πP1

πP2

πP3

πQ1

πQ2

πQ3

〈e〉
〈e〉

〈e〉

〈e〉
〈e〉

〈e〉

A

modA

...

...

...

...

...

...

...

...

...

...

...

.

...

...

...

...

...

...

...

...

...

...

...

.

The modules πPi with i ≥ 1 are the indecomposable A-modules which are different from

AA and preprojective in the sense of Auslander-Smalø [AS]. The modules πQi with i ≥ 1
are the indecomposable A-modules which are different from AA and preinjective in the
sense of Auslander-Smalø.

Finally, let us present the Auslander-Reiten quiver of the triangulated category mod A.
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A.4. The cases e = 1

If A is a self-injective short algebra with e = 1, then either a = 0 or a = 1. In both
cases, A is uniserial, thus its module category is well understood.

It may be of interest to draw the four relevant pictures in the case e = a = 1, so that
one may compare them with the pictures for e ≥ 2 exhibited above. Note that the last
three categories shown below (the categories modL(1), modA, and modA) live (again)
on a cylinder. For a unified presentation, we also show modK(1) as embedded into a
cylinder — a rather unusual display of a single triangle. Always, the dashed vertical lines
are lines which have to be identified. The indecomposable representation of K(1) of length
2 is denoted by I. Of course, if A is a short local algebra of Hilbert type (1, 1), then
J = radA = πI.
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A.5. Extensions of modules over self-injective algebras

In the following proposition, the first assertion is due to Hoshino [Ho1, Theorem 3.4].

Proposition A.5. Let A be a self-injective short local algebra.

(a) (Hoshino [Ho1]) If M is a non-projective module, then Ext1(M,M) 6= 0.

(b) If e 6= 2 and M,M ′ are non-projective indecomposable modules with dimM =
dimM ′. Then Ext1(M,M ′) 6= 0.

Proof. Since M,M ′ are non-projective indecomposable modules, they have Loewy
length at most 2. Since there are non-projective modules, we must have e ≥ 1 and thus
Ext1(S, S) 6= 0, where S is the simple A-module.

If e = 1, see Section A.4: Either M is simple, thus M ′ ≃ M and Ext1(M,M ′) 6= 0,
or else a = 1 and M is of length 2. Then again M ′ ≃ M and there is an exact sequence
0→M → AA⊕ S →M → 0, which shows that Ext1(M,M) 6= 0, thus Ext1(M,M ′) 6= 0.

Thus, we can assume that e ≥ 2. If M and M ′ are regular, then Ext1L(e)(M,M ′) 6=
0, see Proposition A.2. Since there is a non-split exact sequence 0 → M ′ → M ′′ →
M → 0 in modL(e), this sequence is also a non-split exact sequence in modA, therefore
Ext1A(M,M ′) 6= 0. IfM is not regular, then dimM = dimM ′ implies thatM ≃M ′ andM
belongs to the orbit of S under Ω and Ω−1. The Corollary 12.3 asserts that Ext1(M,M) ≃
Ext1(S, S) 6= 0 (since A is self-injective, all modules are semi-Gorenstein-projective). �
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A.6. The BGP-functors

We want to show that for a self-injective short local algebra A of Hilbert-type (e, 1),
the syzygy functor Ω = ΩA corresponds to a BGP-reflection functor for the K(e)-modules,
as considered in [DR].

A BGP-functor σµ for the representations of K(e) starts with two k-k-bimodules

0W1, 1W0 of dimension e and a non-degenerate bilinear form µ:0 W1 ⊗ 1W0 → k. By
definition,

σµ(V0, V1; φ: 1W0 ⊗ V0 → V1 ) = (Kerφ, φ′: 0W1 ⊗Ker φ→ V0),

where φ′ is the composition

0W1 ⊗Kerφ
1⊗u
−−→ 0W1 ⊗1 W0 ⊗ V0

µ⊗1
−−→ k ⊗ V0 = V0,

with u: Kerφ → 1W0 ⊗ V0 the canonical inclusion map. We have σµ(S(1)) = 0. Let
mod0 K(e) (and mod1 K(e)) be the full subcategory of all K(e)-modules without sim-
ple projective (and injective, respectively) direct summands. The restriction of σµ to
mod0 K(e) is an equivalence mod0 K(e) → mod1 K(e). If we denote the matrix ωe

1 just
by σ, then dimσµM = σ dimM , for any indecomposable K(e)-module M which is not
simple projective.

If M is indecomposable and not isomorphic to S(1), then dimσµM = σ dimM . It
follows that for e ≥ 2, we have

σµPi =

{
Pi−1 if i ≥ 1,
0 if i = 0,

σµQi = Qi+1 for all i ≥ 0.

Now we fix a self-injective algebra A of Hilbert-type (e, 1) and an embedding of ke as
a complement of J2 in J , thus we identify J/J2 with W = ke. Let 1W2 = 2W1 = W and
take as bilinear form µ:W ⊗W → k the multiplication map J/J2⊗J/J2 → J2 = k. Since
A is self-injective, µ is non-degenerate and we write σA = σµ. For any A-module M , let
ΩAM be its first syzygy module.

Proposition A.6. Let A be a self-injective short local algebra with e(A) = e. Let M
be in mod0 K(e). Then the A-module π(σAM) is isomorphic to ΩAπ(M).

We have to exclude S(1), since π(σAS(1))) = 0, whereas ΩAπS(1) = ΩAS = AJ .

Proof. Let us start with the A-module M = π(T, φ:W ⊗ T → JM), where T =
topM = M/JM (thus, we identify M with T ⊕ JM , this is the right column in the
following diagram). Its projective cover is PM = A ⊗ T = (k ⊕W ⊕ J2) ⊗ T (this is the

middle column) with canonical map p =
[
1 0 0

0 φ 0

]
:PM → M . This yields ΩAM (namely

the left column) as the kernel of p. Altogether, we deal with five exact sequences of vector

47



spaces (displayed in the upper five rows), organized in two commutative diagrams. In this
way, we obtain the exact sequence of representations of K(e) exhibited as the lowest row:

0 −−−−→ 0 −−−−→ k ⊗ T
1

−−−−→ T −−−−→ 0

0 −−−−→ W ⊗ 0 −−−−→ W ⊗ T
1

−−−−→ W ⊗ T −−−−→ 0
y

y1

yφ

0 −−−−→ Ker(φ)
u

−−−−→ W ⊗ T
φ

−−−−→ JM −−−−→ 0

0 −−−−→ W ⊗Ker(φ)
1⊗u
−−−−→ W ⊗W ⊗ T

1⊗φ
−−−−→ W ⊗ JM −−−−→ 0

(µ⊗1)(1⊗u)

y
yµ⊗1

y

0 −−−−→ J2 ⊗ T
1

−−−−→ J2 ⊗ T −−−−→ 0 −−−−→ 0

0 −−−−→ ΩAM −−−−→ PM
p

−−−−→ M −−−−→ 0

There is the following commutative diagram of functors:

mod0 K(e)
σA−−−−→ modK(e)

yιπ

yιπ

modA/ add(A)
ΩA−−−−→ modA/ add(A)

where ι: modL(e)→ modA is the canonical embedding.

A detailed study of the operation of ΩA on the set of indecomposable modules of length
2 in case e(A) = 2 will be given at the end of Section A.8.

Historical remark. Reflection functors for quivers were introduced by Bernstein-
Gelfand-Ponomarev [BGP] and play an important role in the representation theory of
quivers. (The printer has asked us to define BGP as used in the head line of A.6: these are
the initionals of the authors of the paper [BGP].) They have been generalized to species
in [DR]. As we have seen above, this generalization is actually also of interest for quivers,
for example for the e-Kronecker quiver K(e), since one avoids in this way the use of a
fixed basis of the arrow space. But we should stress that the account given here deviates
from the usual convention (say used in [BGP] and [DR]) which is based on changing the
orientation of arrows. Indeed, the BGP-reflection functors considered in [BGP] and [DR]

send a representation of the e-Kronecker quiver ◦
〈e〉
−−→ ◦ to a representation of the quiver

◦
〈e〉
←−− ◦ (with opposite orientation). In contrast, we relabel the vertices in order to obtain

σµ as an endo-functor of modK(e). As a consequence, the change of the dimension vector

under σµ is described by the product σ of the usual BGP-reflection matrix
[
1 0

e −1

]
and the
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matrix
[
0 1

1 0

]
(corresponding to the exchange of the coordinate axes):

σ =

[
0 1
1 0

]
·

[
1 0
e −1

]
=

[
e −1
1 0

]
= ωe

1.

A.7. The ℧-quiver

We are going to analyze the ℧-quivers of the short local algebras A which have radical
square zero or which are self-injective.

A.7.1. The radical-square-zero algebras L(e) with e ≥ 2. First, let us look at
those algebras which are not self-injective. These are the algebras A = L(e) with e ≥ 2.
Here, the simple module S is the only non-projective indecomposable module which is
torsionless, and ΩS is not isomorphic to S. Thus, all but one ℧-components are of type
A1, the remaining one is the ℧-component containing S and this component is of the form
A2:

[S] [℧S].........................................................

The corresponding ℧-sequence is 0→ S → AA
e → ℧S → 0, and dim℧S = (e, e2 − 1).

Now, we look at the self-injective algebras.

A.7.2. The ℧-quiver of a self-injective algebra. If A is any finite-dimensional
algebra, then A is self-injective algebra, iff all modules are torsionless, iff any module M
satisfies Ext1(M,A) = 0; thus iff any vertex of the ℧-quiver of A is the end of an arrow, iff
any vertex of the ℧-quiver of A is the start of an arrow; thus iff any ℧-component of A is
either of the form Ãn with n ≥ 0 or of the form Z. For a self-injective algebra, the operator
℧ coincides with Σ, where ΣM is the cokernel of the canonical map M → IM , where IM
is the injective envelope of M . It is usual also to write in this case Ω−1M = ΣM = ℧M ,
since for M indecomposable and not projective, we have ΣΩM = M = ΩΣM.

A.7.3. The radical-square-zero algebra A = L(1). In this case, S is the only non-
projective indecomposable module, thus the ℧-quiver has just one component, namely the
loop

[S]
........
........ ........ ........ ...

.....
.......
.
......
..
......
..
.......
..
.......

........................
................
......
........
....

The remaining self-injective short local algebras A have a(A) 6= 0, thus a(A) = 1.

A.7.4. The case e = 1 and a = 1. Let S[2] be the indecomposable module of length
2, thus S, S[2] are the only non-projective indecomposable modules and ΩS = ΣS = S[2].

[S] [S[2]]
........ .......

. ........ ........ ........ ........ ..

........ ........ ........ ........ ........ ........
..

.............
...

............

................
............

For the cases e ≥ 2, we will use A.6, in order to describe the ℧-quiver of A.
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A.7.5. The regular modules. By definition, these are the indecomposable A-
modules of the form M = πX , where X is a regular K(e)-module. An ℧-component which
contains a regular module M contains only regular modules and looks as follows:

MΩAMΩ2
AM Ω−1

A M Ω−2
A M· · · · · ·..................................................................................................................................................................... ........................................................ ............................................ ................................................

dimMσ dimMσ2 dimM σ−1 dimM σ−2 dimM

(below any module, we show the corresponding dimension vector). In general, such an
℧-component is of type Z. Only for e = 2, M may be ΩA-periodic, and then, of course, we
deal with an ℧-component of type Ãn for some n ≥ 0. See Sections A.8 – A.11 for further
discussion of the case e = 2. To repeat: If e ≥ 3, then all ℧-components containing regular
modules are of type Z (and, as we will see next, also the only additional component is of
type Z).

A.7.6. The non-regular modules. For all self-injective short local algabras A with
e ≥ 2, there is in addition the ℧-component containing the simple module S. It is always
of type Z and consists of S and the modules πPi and πQi with i ≥ 1. We have πQi = Ω i

AS
and πPi = Ω−i

A S; in particular, we have πQ1 = AJ, and πP1 = AA/J2.

SπQ1πQ2 πP1 πP2· · · · · ·.................................................................................................................................................... .................................................. ....................................... ............................................

[
b2
b1

] [
b1
b0

] [
1
0

] [
b0
b1

] [
b1
b2

]
· · · · · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

(again, we show below any module the corresponding dimension vector). Since for i ≥ 0,
we have ΩiS = πQi and dimπQi = dimQi = (bi, bi−1), we see that

βi(S) = bi

for all i ≥ 0. This means that the numbers bi for i ≥ 0 are just the Betti numbers of S.
In the display of the ℧-component of S we have inserted a dotted vertical line between

the dimension vectors of S and of πP1. This separation line should stress that Ω(πP1) = S,

whereas σ(dimπP1) = σ
[
b0
b1

]
=

[
0

1

]
6=

[
1

0

]
= dimS. There is just one ℧-sequence which

is not bipartite, namely the sequence starting in S (as mentioned already in 2.4(a)):

0→ S → AA→ πP1 → 0.

It is this sequence which is marked by the dotted separation line.

A.7.7. The ℧-paths of length 2. All but two ℧-paths of length 2 are controlled by
a single formula which relates the tops of the modules involved:

Proposition A.7. Let A be a self-injective short local algebra. Let M1 ←M0 ←M−1

be an ℧-path. If M0 is not isomorphic to S nor to πP1 = AA/J2, then

t(M1) + t(M−1) = et(M0).
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Proof. The only ℧-sequence which is not bipartite is the sequence 0 → S → A →
A/S → 0. Thus, if If M0 is not isomorphic to S nor to A/J2, then both sequences
0 → M1 → P (M0) → M0 → 0 and 0 → M0 → P (M−1) → M−1 → 0 are bipartite. Let
dimM−1 = (t, s). Then dimM0 = (et− s, t) and dimM1 = (e(et− s)− t, et− s). Since
t(M1) = e(et− s)− t, t(M0) = et− s, t(M−1) = t, we see that t(M1) + t(M−1) = eM0. �

There are the two remaining ℧-paths M1 ← M0 ← M−1 with M0 = S and M0 =

AA/J2. Both are part of the ℧-component which contains S. This ℧-component has been
displayed above. Let us show again the relevant part:

SπQ1 πP1 πP2
............................................ ................................................. .....................................

= AJ = AA/J2 = ℧(AA/J2).
.
.
.
.

.

.

.

.

.

and recall that t(AJ) = b1 = e, t(S) = b0 = 1, t(AA/J2) = b0 = 1, t(℧(AA/J2)) = b1 = e.

Corollary A.8. Let e ≥ 2. Let P• be a minimal exact complex of projective modules
and let ti = t(Pi). If all images of P• are bipartite, then

(∗) ti−1 + ti+1 = eti

for all i ∈ Z. If S is the image of P0 → P−1, then (∗) holds for all i /∈ {0,−1} and
t−1 = t0 = 1, t−2 = t1 = e. �

Historical Remark. For a self-injective algebra A, the ℧-quiver just depicts the
graph of the operation Ω on the set of isomorphism classes of indecomposable non-projective
modules, thus it visualizes a basic concept which has been used since the early days of ho-
mological algebra.

A.8. Self-injective algebras with e = 2 : The modules of length 2

Let A be a self-injective short local algebra with e = e(A) = 2. In Sections A.8 and
A.9, we are going to survey some properties of the regular modules. We start with the
indecomposable modules of length 2; they always are regular.

Lemma A.9. Let A be a self-injective short local algebra with e = 2. If M is an
indecomposable module of length 2, also ΩM and ΣM(= ℧M) are indecomposable modules
of length 2.

Proof. An indecomposable module M of length 2 is local, thus its projective cover is a
free module of rank 1 and therefore ΩM has length 2, again. Since ΩM is a submodule of
PM = AA and AA has simple socle, also ΩM has simple socle, thus ΩM is indecomposable.
This shows that ΩM is an indecomposable module of length 2. Similarly, one shows that
ΣM is an indecomposable module of length 2. �

Corollary A.10. Let A be a self-injective short local algebra with e = 2. If M is an
indecomposable module of length 2, then all modules in the ℧-component containing M are
indecomposable modules of length 2.
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If M is indecomposable and of length 2, then Ext1L(2)(M,M) 6= 0, according to Propo-

sition A.1 in Appendix A. Therefore also Ext1A(M,M) 6= 0. The (uniquely defined) exact
sequence 0 → M → M ′ → M → 0 with J2(M ′) = 0 will be called the Kronecker exten-
sion of M (and we write M ′ = M [2]). Also Ext1(M,ΩM) 6= 0, since there is the exact
sequence 0 → ΩM → PM → M → 0, and this is an ℧-sequence. These two kinds of
extensions, the Kronecker extension and the ℧-extension, are the basic data for dealing
with indecomposable modules of length 2.

Proposition A.11. Let A be a self-injective short local algebra with e = 2. Let M,M ′

be indecomposable modules of length 2. Then Ext1(M,M ′) = 0 iff M ′ 6≃M and M ′ 6≃ ΩM.

Proof. We assume that M ′ is not isomorphic to M or ΩM , and have to show that
Ext1(M,M ′) = 0. Let ǫ: 0 → M ′ → Y → M → 0 be a non-split exact sequence. If
J2Y = 0, then this is an exact sequence of L(e)-modules, thus the Kronecker extension of
M . Assume now that J2Y 6= 0. Then Y has an indecomposable direct summand isomorphic
to AA. Since both AA and Y have length 4, we see that Y = AA. Thus Y → M is a
projective cover of M and and ǫ is the ℧-extension of M . In particular, M ′ = ΩM. �

Corollary A.12. Let A be a self-injective short local algebra with e = 2. Let M be
an indecomposable module of length 2 and t ≥ 0. Then Extt+1(M,M) = 0 iff ΣtM is not
isomorphic to M or ΩM .

Proof. We have Extt+1(M,M) = Ext1(M,ΣtM). �

Corollary A.13. Let A be a self-injective short local algebra with e = 2. Let M be an
indecomposable module of length 2 and t ≥ 0. Then Extt(M,M) = 0 for all t ≥ 2 iff the
℧-component containing M is of type Z. �

Corollary A.14. Let A be a self-injective short local algebra with e = 2. Let M be an
indecomposable module of length 2. The following conditions are equivalent.
(i) Ext2(M,M) = 0.
(ii) There is i ≥ 1 with Exti(M,M) = 0.
(iii) The ℧-component containing M has cardinality at least 3.
(iv) Ω2M 6≃M.

Proof. (i) implies (ii) is trivial.
(ii) implies (iii): Assume that the ℧-component containing M has cardinality at most

2. Then the modules belonging to the component are M and ΩM . Thus, for any i ≥
1, the module Σi−1M is isomorphic to M or to ΩM . Thus, for any i ≥ 1, the group
Exti(M,M) = Ext1(M,Σi−1M) is equal to Ext1(M,M) or to Ext1(M,ΩM) and both
groups are non-zero. This contradicts (ii).

(iii) implies (iv) is trivial.
(iy) implies (i). We assume that Ω2M 6≃ M. Then clearly also ΩM 6≃ M . Now

Ω2M 6≃ M implies that ΩM 6≃ ΣM and ΩM 6≃ M implies that M 6≃ ΣM . According to
Corollary 1 (with t = 1), we have Ext2(M,M) = 0. �

If M is an indecomposable non-projective module with Ω2M ≃ M , then the ℧-
component containing M has cardinality at most 2: it consists of the two modules M, ΩM
which may or may not be isomorphic. Here are the two cases: on left the case that
ΩM ≃M ; on the right, the case that ΩM 6≃M ≃ Ω2M.
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[M ]
........
................ ...........

.....
.......
.
......
..
......
..
.......
..
.......

........................
................
......
........
....

[M ] [ΩM ]
........

........ ........ ........ ........

........ ........ ........ ........ ..
......

..........
.....
............

...............
............

In the left case ΩM ≃ M , the vector space Ext1(M,M) is 2-dimensional, a basis of
Ext1(M,M) is given by the Kronecker extension and the ℧-extension. In the right case
ΩM 6≃M ≃ Ω2M , the vector space Ext1(M,M) is 1-dimensional with basis the Kronecker
extension. Also the vector space Ext1(M,ΩM) is 1-dimensional, it has the ℧-extension as
basis.

Of special interest are the self-injective short local algebras with e = 2 which have
℧-components of simple regular modules of cardinality at least 3. Such ℧-components
don’t exist for commutative algebras, as Huneke-Şega-Vraciu [HSV] have shown: If A is
a commutative self-injective short local algebra, then any indecomposable non-projective
module M satisfies Exti(M,M) 6= 0 for all i ≥ 1. (Note that we have seen in Lemma 10.4
that for any commutative, self-injective, short local algebra A, any ℧-component consisting
of local modules has cardinality at most 2.)

Let us look at the operation of ΩA on the set of indecomposable modules of length 2.
Let V be a vector space. Non-zero elements x, y of V are called equivalent provided there
is λ ∈ k (necessarily non-zero) with y = λx. We denote by P(V ) the set of equivalence
classes of non-zero elements of V. If dimV = n+ 1, then P(V ) is called the n-dimensional
projective space. We write P1(k) instead of P(k2) and call this the projective line over k.

If A is a self-injective short local algebra with e(A) = 2, we may identify P(J/J2) =
P1(k) with the set of indecomposable modules of length 2. Namely, let us fix a generating
set x0, x1 of AJ , as well as a non-zero element z ∈ J2. If (α0, α1) ∈ k2 is a non-zero
pair, then M(α0, α1) = A(α0x0 + α1x1) is an indecomposable module of length 2, all are
obtained in this way, and M(α0, α1) ≃M(α′

0, α
′
1) iff (α0, α1) and (α′

0, α
′
1) are equivalent.

Note that Ω = ΩA provides a permutation of the set of (isomorphism classes of)
indecomposable modules of length 2, thus of P(J/J2) = P1(k). We are going to describe
this permutation. The multiplication in A yields a (non-degenerate) bilinear form µ: J/J2⊗
J/J2 → J2, say given by the (2× 2)-matrix B:

(α′
0x0 + α′

1x1) · (α0x0 + α1x1) = µ((α′
0, α

′
1), (α0, α1)) · z = (α′

0, α
′
1)B(α0, α1)

t · z

We define a linear map ηB : k
2 → k2 by

ηB(α0, α1) = (α0, α1)
(

0 1

−1 0

)
B−1,

of course, ηB is invertible.

Lemma A.15. For any pair non-zero (α0, α1) in k2, we have

ΩAM(α0, α1) = M(ηB(α0, α1)).

Proof. Let x = α0x0 + α1x1 and y = α′
0x0 + α′

1x1, where (α′
0, α

′
1) = ηB(α0, α1). We

have

yx = µ((α′
0, α

′
1), (α0, α1)) = µ(ηB(α0, α1), (α0, α1))

= (α0, α1)
(

0 1

−1 0

)
B−1B (α0, α1)

t = 0.
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But if x, y are elements in J \ J2 with yx = 0, then there is the following exact sequence

AA
ρ(y)
−−→ AA

ρ(x)
−−→ AA,

where ρ(y) and ρ(x) denote the right multiplication by y, and by x, respectively. The
image of ρ(y) is Ay, the image of ρ(x) is Ax, thus ΩAx = Ay. �

It is clear that any invertible linear transformation η: k2 → k2 induces a permutation
of P1(k), sending the equivalence class of (α0, α1) to the equivalence class of η(α0, α1).
Such a permutation is called a Möbius transformation. Thus, we have shown the first part
of the following assertion:

Proposition A.16. The operation of ΩA on the set P1(k) of indecomposable modules
of length 2 is given by a Möbius transformation, and any Möbius transformation of P1(k)
occurs in this way.

Proof. It remains to show that any Möbius transformation is of the form ηB for some
invertible matrix B. Let µ be the non-degenerate bilinear form on k2 given by the matrix
B. We just need a self-injective short local algebra such that the multiplication map
J/J2 ⊗ J/J2 → J2 is given by µ. Then ΩA will operate on the set of indecomposable
modules of length 2 by ηB .

But for any non-degenerate bilinear form µ on an e-dimensional vector space W , we
can define the algebra Aµ with underlying vector space k⊕W ⊕ k and with multiplication

(c, w, d)(c′, w′, d′) = (cc′, cw′ + c′w, cd′ + c′d+ µ(w,w′)),

where c, c′, d, d′ ∈ k and w,w′ ∈ W . Of course, Aµ is a self-injective short local algebra
with e(Aµ) = e. And by definition, the multiplication map J/J2 ⊗ J/J2 → J2 is just
µ:W ⊗W → k. �

A.9. Self-injective algebras with e = 2: The regular modules

As we have mentioned, the aim of Sections A.8 and A.9 is to survey properties of the
regular modules for a self-injective short local algebra A with e = e(A) = 2. Until now, we
were dealing just with the indecomposable modules of length 2 (they always are regular).

In our case e(A) = 2, an indecomposable A-module M is regular provided provided
it has Loewy length at most 2 and dimM = (m,m) for some m. A regular module M
is said to be simple regular provided the only proper submodule of M which is regular, is
the zero module. Of course, the indecomposable modules of length 2 are simple regular.
We should stress that in case the base field k is algebraically closed, the indecomposable
modules of length 2 are the only simple regular modules! However, if k is not algebraically
closed, then there are additional simple regular modules.

We denote by R the full subcategory of all modules which are direct sums of regular
indecomposable modules. Also, we denote by R̃ the the full subcategory of modK(2)
consisting of all K(2)-modules which are direct sums of indecomposable regular K(2)-
modules. The push-down functor π: modK(2) → modL(2) provides a bijection between

the indecomposable objects in R̃ and the indecomposable objects in R. Actually, there is
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an ideal I of the category modL(2), namely the class of all maps with semisimple image,

such that R̃/(I∩R̃) = R. To phrase this differently: ifX, Y are regular L(2)-modules, then

HomL(2)(X, Y ) is just the direct sum HomK(2)(X̃, Ỹ )⊕I(X, Y ), and I(X, Y ) corresponds
to the set of linear maps topX → socY.

It is important to know that the subcategory R̃ of modK(2) is an abelian subcategory

and the embedding functor is exact. In particular, R̃ is a hereditary length category. The
simple objects of the abelian category R̃ are called the simple regular K(e)-modules. It

is clear that an L(2)-module R is simple regular iff R = πR̃ for some simple regular
K(2)-module.

Any indecomposable regular K(2)-module M has a unique Jordan-Hölder sequence in

R̃, and all the factors are isomorphic. We write R̃[t] for the indecomposable regular K(2)-

module with a filtration with t factors of the form R̃. In this way, we obtain a bijection
between the isomorphism classes of the indecomposable objects of R̃ and the pairs R̃, t,
where R̃ is simple regular and t ∈ N1. Using the pushdown functor π, we obtain a bijection
between the isomorphism classes of the indecomposable objects of R and the pairs R, t,
where R is simple regular and t ∈ N1 (the number t is called the regular length of R[t]).

Proposition A.17. Let A be a self-injective short local algebra with e = 2. Let R be
a simple regular A-module and t ≥ 1.
(a) ΩR is simple regular.
(b) Ω(R[t]) = (ΩR)[t].
(c) The type of the ℧-component of R[t] is the same as the type of the ℧-component of R.

Proof of (a). Since R is regular, its dimension vector is of the form (m,m), thus also
dimΩR = (m,m) and therefore ΩR is regular. Let U be a proper regular submodule of
ΩR. Let V = R/U , this is also a regular module. If dimU = (u, u) and dimV = (v, v),
then we have u+v = m. Starting with injective envelopes of U and V , the horseshoe lemma
asserts that there is an injective module I such that ΣΩR⊕ I has a submodule of the form
ΣU with factor module ΣV. Since dimU + dimV = dimR, we see that I = 0, thus ΣU
is a submodule of R with factor module ΣV . By assumption, V 6= 0, thus ΣV 6= 0. It
follows that ΣU is a proper regular submodule of R. Since R is simple regular, we have
ΣU = 0, thus U = 0. This shows that R is simple regular.

Proof of (b). We use induction on t. Let t ≥ 2. There is an exact sequence 0 →
R[t− 1]→ R[t]→ R→ 0. The horseshoe lemma asserts that there is a projective module
P such that Ω(R[t])⊕ P is an extension of Ω(R[t− 1]) by ΩR, and by induction we have
Ω(R[t−1]) = (ΩR)[t−1]. Now Ω(R[t]) is indecomposable, thus Ω(R[t]) = (ΩR)[s] for some
1 ≤ s ≤ t. Assume that s < t. We apply Σ. On the one hand, we have ΣΩ(R[t]) = R[t],
on the other hand, we have Σ((ΩR)[s]) = ΣΩ(R[s]) = R[s], where we use again induction.
But for s < t, the module R[t] is not isomorphic to R[s]. It follows that s = t, thus
Ω(R[t]) = (ΩR)[t].

Proof of (c). The type of the ℧-component of an indecomposable module M is Ãn iff
n ≥ 0 is minimal with ΩnM ≃ M (and Z, if there is no n of this kind). According to (b)
we have Ωn(R[t]) ≃ R[t] iff ΩnR ≃ R. �

Historical Remark for A.8 and A.9. The representations of K(2) have been classi-
fied by Kronecker in 1890, completing earlier partial results by Jordan and Weierstrass, as
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mentioned for example in [ARS]. This classification plays an important role in many parts
of mathematics. A standard reference for the matrix approach (in the language of matrix
pencils) is Gantmacher’s book on matrix theory [Gm]. There is the equivalent theory of
coherent sheaves over the projective line, where the usual reference is the splitting theorem
of Grothendieck (but one should be aware that this result can be traced back to Hilbert
(1905), Plemelj (1908), and G. D. Birkhoff (1913), see [OSS]).

The category modL(2) plays also a prominent role in modular representation theory,
since the group algebra kG of the Klein four group G in characteristic 2 is a self-injective
short local algebra with e = 2 (namely kG = A1). The usual reference are papers by
Bashev (1961) and Heller-Reiner (1961), see Benson [B].

A.10. Self-injective algebras with e = 2: Normal forms

Let us now assume that k is algebraically closed. In this case, it is easy to determine
normal forms for the self-injective short local algebras A with e(A) = 2.

• There are the algebras Aq = k〈x, y〉/〈x2, y2, xy + qyx〉 with q ∈ k∗; note that Aq is
isomorphic to Aq−1.
• In addition, there is the algebra A0 = k〈x, y〉/〈x2, y2 + xy, y2 − yx〉.

Sketch of proof. Let A be a self-injective short local k-algebra with e(A) = 2. First one
shows that there is always an element x ∈ J \ J2 with x2 = 0. Then one takes z ∈ J such
that x, z is a generating set for AJ. Since A is self-injective, the elements xz and zx have
to be non-zero, thus there is q ∈ k∗ with xz + qzx = 0. If we have z2 = 0, then A ≃ Aq.
Thus, let z2 6= 0. Then there is α ∈ k∗ with z2 = αzx. If q 6= 1, then y = z + (q − 1)−1αx
satisfies y2 = 0 and we deal again with the previous case (with z replaced by y). Thus,
the case z2 6= 0 and q = 1 remains: here, the elements x and y = α−1z satisfy the defining
relations for A0. �

If A = Aq, with q ∈ k∗, then the modules Ax and Ay are Ω-periodic of period 1. The
Ω-orbit of a module A(x+ αy) with α 6= 0 is the set {A(x+ qtαy) | t ∈ Z}; its cardinality
is equal to the multiplicative order o(q) of q. The algebra A1 is the exterior algebra in
2 generators; in this case all regular indecomposable modules are Ω-periodic of period 1,
thus the corresponding Möbius transformation is the identity. The remaining algebras Aq

(with q ∈ k∗ and q 6= 1) have precisely two Ω-orbits of cardinality 1 which consist of
indecomposable modules of length 2, namely the orbits of Ax and Ay. This means that
the corresponding Möbius transformation has precisely two fixed points. All other orbits
of indecomposable modules of length 2 have cardinality o(q). (If o(q) =∞, then Aq is just
a quantum exterior algebra in 2 generators as discussed in A.11.)

For A = A0, the module Ax is Ω-periodic of period 1. The Ω-orbit of the module
A(y + αx) with α ∈ k is the set {A(y + (α + t)x) | t ∈ Z}; thus its cardinality is equal to
the characteristic char k of k. The corresponding Möbius transformation has precisely one
fixed points (these Möbius transformations are often called parabolic).

If A is commutative, then A = A−1 or else the characteristic of k is 2 and A = A0. In
both cases, the corresponding Möbius transformation has order 2.

Of course, all the algebras Aq with q ∈ k∗ are special biserial. If the characteristic
of k is 2, also A0 is special biserial, namely isomorphic to A〈x, y〉/〈xy, yx, x2− y2〉. If the
characteristic of k is different from 2, then A0 is (biserial, but) not special biserial. +
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A.11. Example: The quantum exterior algebra in 2 generators

The quantum exterior algebra A in two variables x, y is the k-algebra generated by
x, y with the relations x2, y2, xy+qyx, where q ∈ k∗ = k\{0} has infinite (multiplicative)
order. Note that the elements 1, x, y, and yx form a basis for A.

We consider the left ideals Mα = A(x + αy) with α ∈ k; these are indecomposable
modules of length 2.

Lemma A.18. Let A be the quantum exterior algebra A in two variables. If α ∈ k,,
then

ΩMα = Mqα.

Proof. If a ∈ A, let ρa:AA → AA be the right multiplication by a. Of course, the
image of ρa is the left ideal Aa. The relations show that (x + qαy)(x + αy) = 0. This
implies that the composition

AA
ρx+qαy

−−−−→ AA
ρx+αy

−−−−→ AA

is zero. The image of the left map is Mqα, the image of the right map is Mα. It follows
that ΩMα = Mqα. �

Let A be the quantum exterior algebra in two variables x, y. The ℧-component con-
taining M1 looks as follows:

M1MqMq2 Mq−1 Mq−2· · · · · ·....................................................................................................... ....................................... .................................. .......................................................................................................................... .............................. .............................. ..............................

Since the modules Mqi with i ∈ Z are pairwise non-isomorphic, we see that this ℧-
component is of type Z. Thus we see:

Proposition A.19. If A is the quantum exterior algebra in 2 generators, then there
exists a two-dimensional indecomposable module M (namely M = M1) with ℧-component
of type Z. Thus

Exti(M,M) = 0 for all i ≥ 2, whereas Ext1(M,M) 6= 0.

�

Corollary A.20 (Smalø [Sm]). If A is the quantum exterior algebra in 2 generators,
there are indecomposable modules M and Ni with i ∈ N1 such that Exti(M,Ni) 6= 0 and
Extj(M,Ni) = 0 for all j > i.

Proof. Let M be a 2-dimensional indecomposable module with ℧-component of type
Z. Let Ni = Ωi−1M. Then

Exti(M,Ni) = Exti(M,Ωi−1M) = Ext1(M,Σi−1Ωi−1M) = Ext1(M,M) 6= 0.

Also, for j > i, we have

Extj(M,Ni) = Extj−i+1(M,Σi−1Ωi−1M) = Extj−i+1(M,M) = 0,
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since j − i+ 1 ≥ 2. �

Recall that Auslander had conjectured that for every module M there exists a bound
b(M) with the following property: if N is a module with Extj(M,N) = 0 for j ≫ 0, then
Extj(M,N) = 0 for j > b(M). Corollary A.20 shows:

Corollary A.21 (Smalø [Sm]). The quantum exterior algebra in two variables is a
counter-example to the Auslander conjecture. �

The first counter-example for the Auslander conjecture was given by Jorgensen-Şega
[JS1].

A.12. Koszul modules

The paper [RZ3] will draw the attention to Koszul modules as defined by Herzog and
Iyengar [HI], see also [AIS]. If A is a short local algebra, then an A-module M of Loewy
length at most 2 is a Koszul module if and only if all the modules ΩnM with n ≥ 0 are
aligned, see [RZ3].

Since for a self-injective algebra A, any A-module is Gorenstein-projective, the minimal
projective resolutions of all indecomposable non-projective modules are displayed by the
℧-quiver. It follows:

Proposition A.22 ([Sj, MV2, AIS]). Let A be a self-injective short local algebra
with e ≥ 2. If M is indecomposable, then M is Koszul if and only if M is not preprojective
in the sense of Auslander-Smalø (thus not of the form πP1, πP2, . . . ). �

Let us add:

Proposition A.23. Let A be a self-injective short local algebra. If e ≥ 2, then the
simple module S is a Koszul module, and for any module M , there exists m ≥ 0 such that
ΩmM is Koszul. If e = 1, and a = 1, then the only Koszul modules are the projective
modules.

Proof. We can assume that M is an indecomposable module. First, let e ≥ 2 and
assume that M is not Koszul, then M = πPm for some m ≥ 1 and therefore Ωm(πPm) = S
is Koszul. If e = 1, and a = 1, then A is uniserial, thus M is isomorphic to k, AJ or AA,
and, of course, the modules k and AJ are not Koszul. �

Historical Remark. The Koszul modules over a self-injective short local algebra
have been determined by Sjödin [Sj], Mart́ınez-Villa [MV2] and Avramov-Iyengar-Şega
[AIS]. We hope that our outline of the general setting explains what is considered as a
surprising behavior in [AIS].

Already in 1979, Sjödin [Sj] has looked for indecomposable non-projective modules M
at the power series PA

M =
∑

n≥0 βn(M)Tn (called the Poincaré series of M). He showed

that for a self-injective short local algebra A, the series PA
M is rational (this follows from

the fact that ΩmM is Koszul for some m ≥ 0).
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Appendix B. A formula of Avramov-Iyengar-Şega

B.1. The sequences b(e, a)n

Let e, a be real numbers. We define recursively the sequence bn = b(e, a)n with n ≥ −1
as follows: b−1 = 0, b0 = 1 and

(∗) bn+1 = ebn − abn−1,

for n ≥ 0. In this paper, we are interested it is the case that e, a are natural numbers
and a ≤ e2. Namely, if A is a short local algebra with Hilbert type (e, a), then e, a are
natural numbers with a ≤ e2, and the recursion rule (∗) has popped up in Section 5.6,
when dealing with a module M such that both M and ΩM are aligned.

As a consequence, we see the relevance of the numbers bn = b(e, a)n: We have βn(S) =
bn for all 0 ≤ n ≤ N if and only if the modules ΩnS with 0 ≤ n < N are aligned. As we
have mentioned in A.12 (with reference to [RZ3]), the module S is a Koszul module in the
sense of [HI] iff all the modules ΩnM with n ≥ 0 are aligned. Thus S is a Koszul module
iff βn(S) = bn for all n ≥ 0 (and then dimΩnS = (bn, bn−1)).

The paper [AIS] aimed to provide a concise formula for the numbers b(e, 1)n with
e ≥ 3, but the formula presented there was slightly distorted and usually did not even
give integers. We are indebted to Avramov, Iyengar and Şega for communicating to us a
proper revision and to allow us to include it here.

B.2. The formula of Avramov, Iyengar, Şega

Theorem B.1 (Avramov, Iyengar, Şega). If a < 1
4
e2, then for all n ≥ 0

b(e, a)n =
1

2n

⌊n
2
⌋∑

j=0

(
n+ 1

2j + 1

)
(e2 − 4a)jen−2j .

Proof (Avramov, Iyengar, Şega): Since we assume that a < 1
4e

2, the roots of the
polynomial 1− eT + aT 2 are real numbers, and do not coincide. The roots are

λ =
e− q

2
, and ρ =

e+ q

2
, where q =

√
e2 − 4a > 0.

Starting with the factorization

1− eT + aT 2 = (1− ρT )(1− λT ),

we may look at the power series expansion of the rational function (1− eT + aT 2)−1:

1

1− eT + aT 2
=

1

(ρ− λ)

(
ρ

1− ρT
−

λ

1− λT

)
=

1

q

∑

n≥0

(ρn+1 − λn+1)Tn

Of course, we have
1

1− eT + aT 2
=

∑

n≥0

b(e, a)nT
n,
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therefore

b(e, a)n = 1
q
(ρn+1 − λn+1).

The binomial expansions of ρn+1 and λn+1 yield

ρn+1 − λn+1 =

n+1∑

i=0

(
n+ 1

i

)
1

2n+1

(
en+1−iqi − (−1)ien+1−iqi

)

=
1

2n

⌊n
2
⌋∑

j=0

(
n+ 1

2j + 1

)
q2j+1en−2j

Altogether, one gets that

b(e, a)n = 1
q (ρ

n+1 − λn+1) =
1

2n

⌊n
2
⌋∑

j=0

(
n+ 1

2j + 1

)
q2jen−2j ,

=
1

2n

⌊n
2
⌋∑

j=0

(
n+ 1

2j + 1

)
(e2 − 4a)jen−2j .

�

Note that the formula exhibited above is already of interest in the case e = 3 and
a = 1. In this case the numbers bn = b(3, 1)n are just the even-index Fibonacci numbers
(see Section A.1 in Appendix A).
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[JS2] D. A. Jorgensen, L. M. Şega. Independence of the total reflexivity conditions for
modules. Algebras and Representation Theory 9(2) (2006), 217–226.

[L] J. Lescot. Asymptotic properties of Betti numbers of modules over certain rings. J.
Pure Appl. Algebra 38 (1985), 287–298.

[M1] R. Marczinzik. Simple reflexive modules over Artin algebras. J. Algebra Appl. 18
(2019), no. 10, 1950193

[M2] R. Marczinzik. On weakly Gorenstein algebras. arXiv:1908.04738

[MV1] R. Mart́ınez-Villa. Algebras stably equivalent to l-hereditary. In: Representation
theory II, Springer LNM 832 (1980), 396–431.

[MV2] R. Mart́ınez-Villa. Applications of Koszul algebras: The preprojective algebras. In:
Canadian Math. Soc. Conference Proceedings. 18 (1996), 487–504

[OSS] C. Okonek, M. Schneider, H. Spindler. Vector bundles on complex projective spaces.
Progress in Mathematics. Birkhäuser (1980).
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