Indecomposable representations of the Kronecker quivers

Claus Michael Ringel

Abstract. Let k be a field and A the n-Kronecker algebra, this is the path algebra of the
quiver with 2 vertices, a source and a sink, and n arrows from the source to the sink. It is well-
known that the dimension vectors of the indecomposable A-modules are the positive roots of the
corresponding Kac-Moody algebra. Thorsten Weist has shown that for every positive root there
are tree modules with this dimension vector and that for every positive imaginary root there are
at least n tree modules. Here, we present a short proof of this result. The considerations used
also provide a calculation-free proof that all exceptional modules over the path algebra of a finite

quiver are tree modules.

Let k be a field and @ a finite quiver without oriented cycle. Let A = kQ be the
path algebra of ). The target of the paper is to look for A-modules which are tree
modules. According to Kac [K], the dimension vectors of the indecomposable A-modules
are the positive roots of the corresponding Lie algebra: for a real root, there is a unique
indecomposable module, for an imaginary root, there are infinitely many provided k is
an infinite field. Unfortunately, no effective procedure is known to construct at least one
indecomposable module for each positive root. On the other hand, it seems that for each
positive root, there exists even a tree module (the definition will be recalled below), and
that for any imaginary root, there are several different tree modules (see [R4], Problem 9).
Thorsten Weist [W] has shown that this is true for all the Kronecker algebras. Here, we
present a short proof of his result by determining the dimension vectors of the “cover-thin”
Kronecker modules (Proposition 1.1).

The Kronecker algebras are the path algebras of the Kronecker quivers. The n-
Kronecker quiver () with n arrows looks as follows:
aq
o /—\ o
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Qn
For n > 2 we obtain in this way representation-infinite algebras, for n > 3 these algebras are
wild. The importance of the Kronecker algebras and their representations is well-known,
often they are considered as the basic data in non-commutative geometry.
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Let M = (Mg, My)q,o be a finite-dimensional representation of a quiver, thus M
attaches to each vertex a of the quiver a vector space M, and to each arrow « a linear map
M,,. The sum of the dimension of these vector spaces is called the total dimension dim M
of M. In case M is an indecomposable representation with total dimension d, then M is
said to be a tree module provided that there is a choice of bases for the vector spaces such
that the corresponding matrix presentations of the linear maps M, involve altogether only
d — 1 non-zero entries (so that the “coefficient quiver” is a tree, see [R3]).

The root system for the n-Kronecker algebra is easy to describe: it consists of the
non-zero vectors (z,y) € Z? with 22 + y? — nxy < 1. The vectors (z,y) with 2% + 3% —
nxy = 1 are called the real roots, the other roots the imaginary ones. The positive real
roots are the dimension vectors of the preprojective and the preinjective modules. Now,
the preprojective and the preinjective modules are exceptional modules (a module over
a hereditary algebra is said to be exceptional if it is indecomposable and has no self-
extension) and exceptional modules over the path algebra of a finite quiver are known to
be tree modules [R3]. Thus, in order to show that every positive root is the dimension
vector of a tree module, we only have to deal with the imaginary roots.

Theorem (Weist [W]). Let Q be the n-Kronecker quiver. For any positive imaginary
root for @ there are at least n tree modules with this dimension vector.

A proof of the theorem will be given in section 2, it will rely on the use of covering
theory. Denote by ) the universal cover of @), this is the n-regular tree with bipartite
orientation (n-regular means that every vertex has precisely n neighbors, the bipartite
orientation is characterized by the property that all vertices are sinks or sources). We
denote by 7: mod k;@ — mod k(@) the push-down functor.

An indecomposable representation M of a quiver is said to be thin, provided the non-
zero vector spaces M, used are 1-dimensional. If M is a thin indecomposable kQ-module,
then w(M) will be said to be cover-thin. Similarly, we say that N is cover-exceptional
provided there is an exceptional k@—module M such that N = w(M). We are going
to show that given a positive imaginary root for the n-Kronecker quiver @) there are at
least n cover-exceptional modules with this dimension vector (Corollary 2.1). Since cover-
exceptional modules are tree modules, the theorem is an immediate consequence.

Here we refer again to the main result of [R3] which asserts that exceptional modules
over the path algebra A of a quiver are tree modules. In the last section we point out in
which way one can invoke the covering theory of the n-Kronecker quiver in order to obtain
a conceptual proof of this theorem, avoiding the matrix calculations used in [R3]. And it
will turn out that in this way we do not have to worry about higher dimensional Ext!-
groups, but see that there is an inductive construction of all the exceptional A-modules
using just one-dimensional Ext!-groups.
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1.1. Proposition. Consider (z,y) € N with x < y. There exists a cover-thin
kQ-module N with dimension vector dim N = (x,y) if and only if 0 <y < (n— 1)z + 1.

Forn>3 and 0 <y < (n—1)x+1, there are at least n isomorphism classes of cover-
thin modules N with dim N = (z,y), unless (z,y) = (0,1) or (1,n). Forn =2 and 0 < z,
there are precisely 2 isomorphism classes of cover-thin modules N with dim N = (z, ).

Proof: Since @ is a tree, the thin indecomposable k@—modlﬂes are uniquely determined
by the corresponding support, this is just a finite subtree of Q. If T is a finite subtree of
Q, let M(T) be the kQ-module with support T" and N(T') = n(M(T')). The modules of
the form N(T') are the cover-thin kQ-modules.

First, consider the case n = 2, thus @ is the graph A with bipartite orientation. Up
to shift, there is a unique subtree of @ with x sources and y = = + 1 sinks, where z > 0,
and there are two subtrees with x sources and y = x sinks, where x > 0, and, finally, all
subtrees with z sources and y sinks such that z < y are obtained in this way. In particular,
we see that for 0 < x, there are precisely two isomorphism classes of cover-thin modules
N with dim N = (z, z).

Thus, let n > 3. If z = 0, then there exists an indecomposable kQ-module N with
dim N = (z,y) only for y = 1. If x = 1, then there is a subtree T of Q with dim N (T") =
(x,y) if and only if 0 <y < n. If 1 <y < n — 1, then we obtain in this way at least n
isomorphism classes of kQ-modules N(7') with dim N(T') = (z, y).

It follows that we can assume that x > 2. First, let us assume that T is a finite
subtree of @ such that dim N(T') = (x,y). Since x > 2, we obviously must have y > 0.
Let us show that y < (n — 1)z + 1. Recall that an element a of a tree is said to be a
leaf provided a has at most one neighbor. We choose a source b such that all neighbors
of b but one are leaves. Such a vertex exists: namely, let 7" be obtained from T by
removing all leaves which are sinks, then 7" is again a tree, thus has leaves, and all the
leaves of T"" are sources of Q; any such vertex can be taken as b. Removing from T the
vertex b we obtain the disjoint union of a tree 7" with at least two vertices and ¢t <n — 1
isolated vertices. Let dim7(M(T")) = («/,y’), then (x,y) = («/,y') + (1,¢). If 2’ < ¢/,
then by induction we know that ¢’ < (n — 1)z’ + 1. But this inequality 3’ < (n — 1)’ + 1
obviously also holds if ' < /. Tt follows from ¢/ < (n — 1)z’ + 1 and t < n — 1 that
y=y +t<(n—-1a2'+14+n—-1)=Mn-1)z+1.

Conversely, consider (z,y) with 2 <z <y and y < (n—1)x+ 1. We try to construct a
subtree T of Q such that dim N (T') = (z,y). Write y = S y(i) with1 < y(i) <n—1for
1<i<z-—1land 1l <y(x) <n (such a decomposition exists, since z <y < (n— 1)z + 1).

Fix some sink s; of @ and take the unique path of the form

[e %1 (e 7% [e %1 (e 7% [e %] Qp aq
S1— 1] —> Sg ¢— t9g — —tp 1 —> Sz — 1,

starting at s;. For 1 < i < x, we add the arrows «; (and their endpoints) starting at ¢;,
with 2 < 7 < y(i). We see that we obtain in this way a subtree T" of @, with x sources and
> y(i) = y sinks, thus dim N(7T') = (z,y).

Finally, observe that the module M(T') constructed here for z > 2 has the property
that Im(aq) NIm(ev,,) # 0, whereas Im(o;) NIm(a;) = 0 for ¢ < j and (4, j) # (1,n). Thus,
using a permutation of the labels of the arrows, the same construction yields (g) different
isomorphism classes and (g) > n, since n > 3. This completes the proof.
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Duality provides in a similar way cover-thin kQ-modules with dimension vectors (z,y)
where 0 <y<zand0<z<(n—1)y+1.

It is well-known (see for example [R1]) that for n > 3 the region

F={wy)eN| o<y < (n-1)a}

n —_
is a fundamental domain for the action of the Coxeter transformation C' on the set of
positive imaginary roots. Note that this region is contained in the set of dimension vectors
of cover-thin kQ-modules and that the vectors (0,1), (1,0), (1,n), (n,1) are real roots.
In the case n = 2, let F = {(z,z)|z > 0}. We see:

1.2. Corollary. For every (z,y) € F, there are at least n isomorphism classes of
cover-thin kQ-modules N with dim N = (z,y).

For the benefit of the reader, we provide an illustration for the case n = 3:

Y

The union of the shaded areas is the imaginary cone, the dark part being a fundamental
domain F for the action of the Coxeter transformation on the imaginary cone. The bullets
indicate the dimension vectors (0,1), (1,0), (1,3), (3, 1), they are outside of the imaginary
cone. There are two lines with slope 2 as well as two lines with slope %: those going
through the origin bound the fundamental region F, the parallel ones bound the region of

the dimension vectors of cover-thin k@Q-modules.

2. Cover-exceptional k(Q-modules.
Thin indecomposable modules are exceptional. This implies:

2.1. Corollary. For every positive imaginary root (z,y) there are at least n isomor-
phism classes of cover-exceptional kQ-modules with dim N = (z,y).

4



Proof. For n = 2, this has been shown in Proposition 1.1. Thus let n > 3. Let
7 and 7 be the Auslander-Reiten translation for kQ and kQ, respectively. Note that
7(TM) = 7(w(M)) for any indecomposable k@Q-module M and dim7N = Cdim N for
any indecomposable kQ-module N provided N is not projective, or, equivalently, provided
C'dim N has non-negative coordinates. Also note that if M is an exceptional k@Q-module,
and not projective, then 7M is again exceptional.

Let (z,y) = C*(«',y') with (2/,y') € F and a € Z. According to Corollary 1.2,

there are pairwise non-isomorphic thin indecomposable k@—modules My, ..., M, with
dim 7 (M;) = (2/,y). Consider the kQ-modules N; = 7(7%M;). Since

dim N; = dim 7 (7*M;) = dim7%(w(M;)) = C* dim (M) = C*(2',y) = (x, ),

the modules Ny, ..., N,, have the required dimension vector (z,y) and they are pairwise
non-isomorphic and cover-exceptional.

2.2. Lemma. Any cover-exceptional kQ-module is a tree module.

Proof: According to [R3], any exceptional module over a hereditary k-algebra A is a
tree module. We apply this to the path algebra of (a finite convex subquiver of) Q. Let N

be a cover-exceptional k@) module, thus N = w(M) for some exceptional k@—module M.
Since M is a tree module, obviously also 7(M) is a tree module.

The main theorem is a direct consequence of 2.1 and 2.2.

It is known that the only exceptional kQ-modules M are the preprojective and the
preinjective modules. Let us consider in more detail a kQ-module N with M = (V)
being preprojective.

2.3. Lemma. Assume that M = 7w(N) is an indecomposable preprojective kQ-module
which is not simple. Then there is an exact sequence

0N -N—->N"—=0
of kQ-modules, with N’ simple projective, N exceptional, and

Hom(N’,N") = Hom(N"”,N') = Ext'(N’,N") =0, dimExt'(N",N’) = 1.

Proof: The preprojective kQ-modules are constructed inductively starting with the
simple projective kQ-module and using the Bernstein-Gelfand-Ponomarev reflection func-
tors [BGP] for sources. In the same way, the modules N considered here are constructed
inductively starting with a simple projective k@—module and using the Bernstein-Gelfand-
Ponomarev reflection functors for all the sources, simultaneously (see for example [FR)).

To be precise, given a quiver A, let 0 A be obtained from A by changing the orientation
of all the arrows, thus 0?A = A. Let us choose some sink z of Q. Besides @ also cQ
is a universal cover of @) (since x considered as a vertex of o@) is a source, it has to be
sent to the vertex 1 of @)), we denote both push-down functors mod k@ — mod @) and
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mod kaé — mod ) by 7. Both for k@ as well as ka@, we denote by &~ the composition
of the Bernstein-Gelfand-Ponomarev reflection functors for all the sources, these are well-
defined functors

& : modkQ — modkoQ  and @ : modkoQ — mod kQ.

Since x is a sink of @, the simple k@—modulejvith support x is projective and we denote
it by P(0). Let P(t) = (®)'P(0), this is a kQ-module for ¢ even and a ko@Q-module for ¢
odd. The preprojective kQ-modules are just the modules 7w (P(t)) with ¢ € Nj.

Let us denote by d the distance function for the vertices of @ and of U@. We claim:
for any t > 1 the support of P(t) is the set B(t) = {y | d(x,y) < t} and dim P(t), =1
for all y with d(x,y) € {t — 1,t}. This is clear for t = 1, since P(1) is indecomposable
projective and not simple. Now we use induction. Thus, assume that ¢ > 1, that P(¢) has
support B(t) and that dim P(t), = 1 for y with d(x,y) = t. Obviously, the support of
P(t+1) has to be a subset of the set B(t+1). If d(x,y) = t, then y is a sink for ¢*Q, thus
P(t+1); = P(t); is one-dimensional. If d(z,z) =t + 1, then z has a unique neighbor y
with d(z,y) =t and it follows from dim P(t), = 1 that dim P(¢+ 1), = 1. In this way, we
also see that all the vertices z with d(x,y) = t 4 1 belong to the support of P(t+1). Now
the support of an indecomposable module has to be connected. But the only connected
subquiver with vertices in B(t+ 1) and which contains all vertices z with d(z,z) =t+1, is
the full subquiver with vertex set B(t+1). Thus we see that P(t+ 1) has support B(t+1).
This concludes the proof of the claim.

Now, let N = P(t) for some t > 1. Let z be a vertex with d(z, z) = ¢, and y the unique
neighbor of z with d(xz,y) = t — 1. Clearly, z is a sink and we denote by N’ the simple
module with support z. Since P(t), is one-dimensional, we see that N’ is a submodule
of N, and Hom(N', N") = 0 = Hom(N", N’), where N” = N/N’. Since dim N,/ = 1, we
conclude on the one hand that N is indecomposable and even exceptional, on the other
hand that dim Ext'(N”, N’) = 1. Since N’ is projective, we have Ext'(N’, N”) = 0.

3. Exceptional modules are tree modules.

The proof of Lemma 2.2 is based on the fact that for A a finite-dimensional hereditary
k-algebra, any exceptional module is a tree module. On the other hand, one can use the
considerations of section 2 in order to provide a proof of this result which avoids any
calculations. Indeed, the proof given in [R3] required explicit matrix presentation of the
preprojective and preinjective Kronecker modules, and, in this way, was quite technical.
Here we show that using induction and the covering theory for the Kronecker algebras,
one can avoid the matrix calculations.

Using induction on m, we want to present a concise proof of the following result:

3.1. Theorem ([R3]). Let A be the path algebra of a finite quiver. Any exceptional
A-module is a tree module.

Proof. Let M be of dimension m. We proceed by induction on m. In the case m =1
nothing has to be shown. Thus let us deal with the induction step, thus let m > 1.
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First, consider the case where A = kQ is the n-Kronecker algebra for some n > 1.
In the case n = 1, only one module M has to be considered: it has dimension 2 and
obviously is a tree module. Thus, assume that n > 2. The exceptional kQ-modules are the
preprojective and the preinjective k@Q-modules.

First, consider the case of a preprojective k@Q-module M. Let M = 7w(N) where N is a
k@—module. Since m > 1, we see that M is not simple, thus Lemma 2.3 provides an exact
sequence 0 —+ N’ — N — N” — 0 of k@Q-modules, with N’ simple and N exceptional.
Now dim N” = m — 1 < m, thus by induction we know that N’ is a tree module and then
also N is a tree module. But with N also M is a tree module. Thus any preprojective
k@-module is a tree module. By duality, we see that also any preinjective kQ)-module is a
tree module.

Now assume that we are dealing with an exceptional module M of dimension m such
that the support of M has at least three vertices. Schofield induction (see [CB] or also
[R2]) asserts that there is an exact sequence

0 X* sM-—-YP 0

where X, Y are orthogonal exceptional modules and the pair (a, b) is the dimension vector
of a sincere preprojective or preinjective representation Z of an e-Kronecker module, with
e = dim Extl(Y,X). Since a > 0,b > 0, it follows that dim X < m, and dimY < m. Since
the support of M has at least three vertices, we see that not both modules X,Y can be
simple, thus it follows from a dim X +bdim Y = m that dim Z = a+ b < m. By induction,
all three modules XY, Z are tree modules (here, X,Y are A-modules, whereas Z is an
e-Kronecker module), but then also M is a tree module, see [R3], section 6. This completes
the proof.

Remark. The proof presented here seems to explain quite well why exceptional
modules are tree modules. The use of Schofield induction shows that inductively one
has to look at pairs X,Y of orthogonal exceptional modules with Extl(Y,X ) # 0. If
dim Ext' (Y, X) = 1, then it is easy to see that the middle term M of a non-split exact
sequence 0 = X — M — Y — 0is a tree module, provided both X, Y are known to be tree
modules. Thus the interesting cases should be those where dim Extl(Y, X) > 1. However,
as we have seen the covering theory allows to reduce the considerations to deal only with
orthogonal exceptional modules X’ Y’ with dimExt'(Y’, X’) = 1. Altogether we want
to stress that in the Schofield construction of exceptional modules the use of the higher
dimensional Ext!-groups can be replaced by looking only at one-dimensional Ext'-groups.
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