The Gorenstein projective modules for the Nakayama algebras. 1.
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Abstract: The aim of this paper is to outline the structure of the
category of the Gorenstein projective A-modules, where A is a Nakayama
algebra. In addition, we are going to introduce the resolution quiver of A.
It provides a fast algorithm in order to obtain the Gorenstein projective
A-modules and to decide whether A is a Gorenstein algebra or not, and
whether it is CM-free or not.

Throughout the paper, A will be a Nakayama algebra without simple projective mod-
ules, and the modules will be left A-modules of finite length. Let mod A be the category
of all such modules. The subcategories of mod A which we will deal with will be assumed
to be full and closed under direct sums and direct summands. If M is a class of modules,
we denote by add M the smallest subcategory containing M and (add M )-approximations
will be just called M-approximations.

We denote by gp A the full subcategory of mod A given by the Gorenstein projective
modules, and gp, A denotes the subcategory of all Gorenstein projective modules without
any indecomposable projective direct summand. Recall that A is said to be CM-free
[C] provided all Gorenstein projective modules are projective, thus provided gp, A is the
zero category. Our aim is to describe the subcategory C = C(A) whose indecomposable
objects are the indecomposable non-projective Gorenstein projective modules as well as
their projective covers. We call C the Gorenstein core, clearly

gppA € C C gpA.

The first assertions concern the structure of C(A). Here, gp A denotes the factor category
of gp A obtained by factoring out the ideal of all maps which factor through a projective
module. Similarly, mod A’ is obtained from mod A’ by factoring out the ideal of all maps
which factor through a projective A’-module.

Proposition 1. Let A be a Nakayama algebra. The Gorenstein core C = C(A) is a
full exact abelian subcategory of mod A which is closed under extensions, projective covers
and minimal left A-approximations; C is equivalent to mod A’, where A’ is a self-injective
Nakayama algebra and the inclusion functor C — gp A induces an equivalence mod A" —
gp A. If C is not zero and A is connected, then also A’ is connected.

Given a class M of modules, we denote by F(M) the class of all modules with a
filtration with factors in M.
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Proposition 2. Let A be a Nakayama algebra. Let £ = E(A) be the class of non-zero
modules in gpy A such that no proper non-zero factor module is Gorenstein projective.

(a) We have C(A) = F(E).

(b) If A is connected and C(A) is not zero, let E1, ..., E, be representatives of the iso-
morphism classes in E. Then any simple A-module occurs with multiplicity 1 in @J_, E;.
In particular, E1, ..., E, are pairwise orthogonal bricks.

(c) Let & be the class of non-zero modules in gpy A such that no proper non-zero
submodule is Gorenstein projective. Then &€ = &'.

Since we deal with a set of orthogonal bricks, the elements of £(A) are just the simple
objects of C(A) (see for example [R1]), we call them the elementary Gorenstein projective
modules. Note that assertion (a) implies that C(A) is the extension closure of gp, (since

€ Cgpy € C(A)).

Given a module M, we denote by P(M) the projective cover, by Q(M) the first syzygy
module and by 7TM = DTr M, 7~ M = Tr DM the Auslander-Reiten translates of M. If
M is a class of modules, we write 7 M for the class of modules 7M with M € M, and
similarly, 7= M is the class of modules 7= M with M € M.

Proposition 3. Let A be a Nakayama algebra. Let X = X (A) be the class of simple
modules S with P(S) belonging to C(A). The following conditions are equivalent for a
module M :

(i) M belongs to C(A).
(ii) top M belongs to add X', and soc M belongs to add 7~ X.
(iii) top M and top QM both belong to add X.

We see that C(A) may be obtained by deleting ray and corays from the Auslander-
Reiten quiver of A. Namely, we have to delete the rays consisting of the indecomposable
modules with top not in X, as well as the corays consisting of the indecomposable modules
with socle not in 77X

The basic observation which we use is the following characterization of the indecom-
posable non-projective Gorenstein projective modules. Here, an indecomposable projective
module P is said to be minimal projective provided no proper non-zero submodule of P is
projective, or, equivalently, provided the projective dimension of top P is at least 2.

Proposition 4. Let A be a Nakayama algebra. Let M be an indecomposable non-
projective module. The following assertions are equivalent:
(i) The module M is Gorenstein projective.
(ii) All the projective modules occurring in a minimal projective resolution of M are min-
imal projective.
(iii) There is an exact sequence

(%) 0O—-M-—-P,1—--—>Ph—->M-—=0
such that all the modules P; are minimal projective.

Of course, since any Nakayama algebra is representation-finite, any Gorenstein projec-
tive module M has a periodic projective resolution, thus there is an exact sequence of the
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form (%) with projective modules Py, ... P,_;. But usually not all modules with a periodic
projective resolution are Gorenstein projective. The interesting feature here is the fact
that the isomorphism classes of the modules P; in a periodic projective resolution of M
determine whether M is Gorenstein projective or not.

Throughout the paper, we will denote the number of simple modules by s = s(A), the
minimal length of an indecomposable projective module by p = p(A). Since we assume
that there are no simple projective modules, we have p > 2.

Note that p > s if and only if no projective module is a brick. Examples which we
will exhibit in section 7 show that algebras with p < s may have some irregularities, thus
some of our results require the condition p > s.

We will work with the resolution quiver R = R(A) of A: The vertices of R are the
simple modules and for every vertex S, there is an arrow from S to 7soc P(S). Since
any vertex in R is the start of a unique arrow, any connected component of R contains
precisely one cycle. A vertex S of R is said to be black provided the projective dimension
of S is at least 2 (thus if and only if P(S) is a minimal projective module), otherwise it
is said to be red. As we will see the modules in X'(A) are precisely the simple modules S
which belong to a cycle of black vertices provided p > s, see Corollary 3 to Lemma 5.

Proposition 5. Let A be a Nakayama algebra and assume that p > s.

(a) The algebra A is a Gorenstein algebra if and only if any cycle in R(A) contains
only black vertices.

(b) The algebra A is CM-free if and only if any cycle in R(A) contains at least one red
vertex.

In a second part [R2] we will describe some further properties of the resolution quiver.
In particular, we will show that for a connected Nakayama algebra A there is either no
loop in R(A), or else all cycles in R(A) are loops. This result has also been obtained
(independently and with a different proof) by Dawei Shen [S].

An example. Let () be the quiver of type A4 with cyclic orientation, say with
vertices 1,2,3,4,5 and arrows ¢ — i+1 (modulo 5). Since a Nakayama algebra is defined
by zero relations (monomials), it is sufficient to mention the length of the indecomposable
projectives, instead of writing down the relations. Here we consider the case where |P(i)| =
13 for ¢ = 1,2 and |P(3)| = 12 for i = 3,4, 5, thus we deal with the algebra A with Kupisch
series (13,13,12,12,12). There are two elementary Gorenstein projective modules, namely
E(1) with composition factors 1,2,3 and E(4) with composition factors 4,5. The right
picture below shows the support of these modules F(1) and E(4), thus the Ext-quiver for
& ={E(1), E(4)} will be the quiver of type A; with cyclic orientation.

E()

Q < P
\ / \ é
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Next, let us draw twice the Auslander-Reiten quiver of A (always, the left dashed
boundary has to be identified with the right dashed boundary) and label the simple module
S(i) just by i. On the left, we use bullets to mark the indecomposable objects in C(A); the
encircled ones are the elementary Gorenstein projective modules E(1) and E(4)). Then
in the middle, we shade the rays and the corays which have to be deleted: note that
X(A)={5(1),5(4)}, thus 7~ X(A) = {S(5), S(3)}, this means that we have to delete the
corays ending in S(2),S5(3), S(5), and the rays starting in S(1),S(2),5(4). On the right,
we present the Auslander-Reiten quiver of C(A).

mod A C(A)

P(4) P(1) P(4)

E(4) EQ)  E@4)

The resolution quiver R(A) has the following form:

J o

The black vertices 1, 3,4, 5 have been encircled, the arrow 2 — 5 has been dotted in order
to stress that it starts at a red vertex. We see that there are two cycles, one containing
only black vertices, the other one containing one black and one red vertex. The modules
in X'(A) are precisely the simple modules S which belong to a cycle of black vertices, thus
we see that X(A) = {1,4} (as we have mentioned already).
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1. Notation.

We denote by @ = Q(A) the quiver of A; its vertices are the (isomorphism classes of
the) simple A-modules and there is an arrow S — S’ provided there is a length 2 module
with top S and socle S’. Since we assume that no simple module is projective, the quiver
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Q@ is just a cycle. Let 7 be the Auslander-Reiten translation. Since A is a Nakayama
algebra without simple projective modules, an arrow S — S’ in @ corresponds to the
assertion 7(S) = S’. Often, we will use the vertices = of the quiver @ in order to index
the corresponding modules: thus, we write S(x) for the simple module itself, P(z) for the
projective cover of S(z).

Given a module M, recall that P(M) denotes the projective cover, and we denote
by Q(M) the first syzygy module. Inductively, let Py(M) = P(M), Qo(M) = M, and
for n > 1, let P,(M) = P(Q,(M)) and Q,(M) = Q(Q,—1(M)). Thus, there are exact
sequences

0= Q1 (M) — P,(M)— Q,(M)—=0

for all n > 0. A minimal projective resolution of M has the form
= P,(M)— P, 1(M)— - = P (M) — Py(M)— M — 0,

with ©,,(M) being the image of P,,(M) — P,_1(M).

Recall that a complex Py = (P;,d;) with maps § : P, — P;_; is called a complete
projective resolution provided it is an exact complex of projective modules P; such that also
the complex Homy (P,, A) is exact. The latter condition is equivalent to the requirement
that the inclusion map Im(d;) C P;_; is a left A-approximation, for each i. A module M is
said to be Gorenstein projective provided there is a complete projective resolution (F;, ;)
such that M = Im(dp).

An artin algebra A is said to be a Gorenstein algebra provided the injective dimension
of AA as well as of A, is finite. If this is the case, these dimensions are equal and called
the Gorenstein dimension (or also the virtual dimension) of A; we will denote it by v(A).
Note that A is a Gorenstein algebra with Gorenstein dimension at most v if and only if
Q,(M) is a Gorenstein projective module, for every module M.

2. Projective resolutions of indecomposable A-modules.

The aim of this section is to point out the relevance of the minimal projective modules.
In particular, we will provide the proof of Proposition 4. Recall that an indecomposable
projective module P is said to be minimal projective provided its radical is non-projective
(thus provided P = P(S) for some simple module S of projective dimension at least 2).
Note that a proper non-zero submodule of a minimal projective module is not projective
(this explains the name). Recall that a module M is said to be torsionless provided it is
a submodule of a projective module.

Lemma 1. Let M be an indecomposable non-projective module. If M is torsionless,
then M can be embedded into a minimal projective module and any such embedding is a
minimal left A-approximation.

Proof. If there exists an embedding M — P, with P projective, then there is such
an embedding M — P, with Py indecomposable (since the socle of M is simple). Since
we assume that M is not projective, there is such an embedding M — Py, where P, is
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in addition minimal projective. This shows that any torsionless module can be embedded
into a minimal projective module.

Let us fix an embedding ¢: M — Py with Py minimal projective. In order to see that
¢ is a left A-approximation, we have to show that any non-zero map f: M — P; with P,
indecomposable projective factors through ¢. Here, we can assume that also P; is minimal
projective (namely, since M is not projective, it will map into rad P;, thus, if rad P; is
projective, we may replace P; by rad Py, and so on).

We want to show that f factors through ¢. One possibility is to look at the Auslander-
Reiten quiver of A and consider various right almost split maps. Here is a proof which
uses the fact that any automorphism of a submodule of an indecomposable module X can
be extended to an automorphism of X.

First, consider the case where f is a monomorphism. Thus Py is a submodule of P;
and the image of f coincides with the image of ¢. It follows that f factors through ¢.

Thus, we can assume that f is not a monomorphism, thus Ker(f) # 0. Let S be the
socle of the image of f and take the composition series

KeI‘(f>:K03K13"'DKt:0

of Ker(f). Note that t > 1 and K;_1/K; = 7S for 1 <i <t.

Now f maps into N = rad P;, and by assumption N is not projective. Let q: P =
P(N) — N be the projective cover of N. Note that P(N) is both projective and injective.
Let U be the kernel of ¢ and

v=U,oU;>---2U0,=0

the composition series of U. Then also U;_1/U; = 78S for 1 <i<w Forl<i<u-—1,
the module P/Uj; is injective and not projective, thus the modules 7°S = U;_1/U; for
1 <4 <wu—1 are not torsionless.

Now assume that ¢ < u. Then 1 < ¢t < uw — 1 and therefore K; 1/K; = 75 is
not torsionless. But this is the socle of the module M and by assumption there is the
embedding ¢: M — P,. This contradiction shows that we must have u <t.

Let M’ be the image of f and write f = f3f2f1, where f1: M — M’, whereas fo: M’ —
N and f3: N — P; are the inclusion maps. Let M” = ¢~'(M’) with inclusion map
fo: M" — P(N) and let ¢: M — M’ be the restriction of ¢, thus ¢f5 = f2q’. The length
of M" is

M| = |M'| + | Kex(q)| = | M| +u < [M'| + ¢ = |M],

and therefore we can lift the map f1: M — M’ to M", thus there is f{: M — M" with

¢ f{ = f1 and therefore fof1 = foq' f1 = qf5f1.
Since P(N) is injective, there is a map g: Py — P(N) such that g« = f4f;. Thus

f = fafof1 = fsaf5fi = f3qge shows that f factors through ¢.

Since minimal left approximations are uniquely determined up to isomorphisms, it
follows that an embedding M — P with M indecomposable and P projective is a minimal
left A-approximation if and only if P is a minimal projective module.

Proof of Proposition 4. (i) = (ii). This follows from Lemma 1.
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(i) == (iii). We assume that we deal with the projective resolution
=Py =P, == P =P —=M-=0.

Now all the images Q,,(M) are indecomposable, thus there are natural numbers 0 < n’ < n
such that Q, (M) = Q,/(M). Choose n minimal and assume that n’ > 1. Now ,,(M)
is a submodule of P, _1, and Q,/(M) is a submodule of P,/_;. Since Q, (M) = Q,/ (M),
the minimality of P,_; and P, _; implies that P,_; = P,/_1 and therefore Q,, (M) =
Q,,y—1(M). But this contradicts the minimality of n. Thus n’ = 0 and ,,(M) = Qo(M) =
M.

(ili) = (i). We assume that there is given an exact sequence

O—-M—=P,1— - —=F—->M-=0

such that all the modules P; are minimal projective modules. Concatenation of countably
many such sequences yields a complete resolution with M as one of the images. This shows
that M is Gorenstein projective.

3. The resolution quiver of A.

Let 7S = 7soc P(S). The importance of the map ~ stems from two observations,
see Lemmas 2 and 3. As Xiao-Wu Chen has pointed out, the map v has been considered
already by W. H. Gustafson [G].

Lemma 2. Let M be an indecomposable module. Then either the projective dimension
of M is at most 1 and Q3(M) =0, or else top Qa(M) = ~ top M.

Proof: Write M = P(M)/U for some submodule U of P(M). We can assume that U
is a proper submodule of P(M). There are exact sequences of the following form

0—= (M) — P (M)— Q9 (M)—0
0—N(M)—PM)— M — 0.

Clearly, soc Q1 (M) = soc P(M) and the first exact sequence shows that either Qq(M) =0
(thus the projective dimension of M is at most 1) or else top Q2(M) = 7soc Q2 (M). In
the latter case, top Qa2 (M) = ytop M.

Inductively, we see:

Corollary. Let M be an indecomposable module and m € N. Then either Qo,,(M) =0
or else top Qo (M) = ™ top M.

If |P(S)| > s, we define H(S) to be the factor module of P(S) of length s, where S is
any simple module. We call this module H(S) a primitive module. In case p > s, these
modules H(S) do exist for all simple modules S and are non-projective.
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Lemma 3. Let S be a simple module with |P(S)| > s. Then |P(yS)| > s and

QWH(S) = H(YS).

Proof. Since H(S) has length s, and |P(S)| > s, the minimal projective presentation
of H(S) is
P(S) = P(S) = H(S) — 0,

and therefore Qo H(.S) has length s. On the other hand, according to Lemma 2, we know
that Qo H (.5) is a factor module of P(v.S). This yields both assertions.

Corollary. Let p > s. Let S be a simple module and m a natural number. Then

Qo H(S) = H(y™S).

Note that this corollary implies that the projective dimension of H(.S) is infinite. Thus,
any Nakayama algebra with p > s has infinite global dimension. This implies the following
result of Gustafsen [G]: if the Loewy length of A is greater than or equal to 2s, then A has
infinite global dimension (since in this case p > s).

The map + is used in order to obtain the resolution quiver R = R(A) (as introduced
in the introduction): its vertices are the (isomorphism classes of the) simple A-modules,
and for any simple module S, there is an arrow S — 5.

Note that any connected component of the resolution quiver has a unique cycle. This
follows from the fact that at any vertex x precisely one arrow starts; thus given any
connected component, the number of arrows in the component is equal to the number of
vertices in the component.

We say that a vertex z or the corresponding simple or projective modules S(z) and
P(x) are black provided P(z) is minimal projective, otherwise x (and S(x) and P(x)) will
be said to be red. Note that x is red if and only if the projective dimension of S(z) is equal
to 1, and black if and only if the projective dimension of S(x) is greater than or equal to
2. A cycle in R will be said to be black provided all the vertices occurring in the cycle are
black. A vertex z is said to be cyclically black provided x belongs to a black cycle.

The resolution quiver has the following property: any vertex y is end point of at most
one arrow x — y with x black. Namely, if S, S’ are black simple modules with vS = .5,
then 7soc P(S) = 7soc P(S), thus soc P(S) = soc P(S’) and therefore P(S) C P(S’) or
P(S") C P(S). However, since both P(S) and P(S’) are minimal projective modules, it
follows that P(S) = P(S’) and thus S = 5.

As a consequence we obtain:

Lemma 4 (Red Entrance Lemma). If xg — 21 — -+ = x, — y 15 a path such
that y s cyclically black, whereas x, is not cyclically black, then x, s red.

Proof. Since y is cyclically black, there is an arrow 2’ — y such that also 2’ is cyclically
black. Since z, is not cyclically black, we have z, # z’, and it follows that z, cannot be
black, thus it is red.



There is the following consequence: Let x be a verter which is not cyclically black.
Then there exists m > 0 such that v"x is red.

Lemma 5. Let M be indecomposable and not projective. Then the following conditions
are equivalent:
(i) M is Gorenstein projective.
(ii) Both top M and top Q(M) are cyclically black.
(iii) Both top M and Tsoc M are cyclically black.

Proof: The assertions (ii) and (iii) are equivalent, since 7soc M = top Q(M).

(ii) = (i). If top M is cyclically black, then M has infinite projective dimension
and all the modules Py, (M) are black, for m > 0. If top Q(M) is cyclically black, then all
the modules P, 11(M) are black, for m > 0. Thus, if both conditions are satisfied, then
all the projective modules occurring in the minimal resolution of M are minimal, thus M
is Gorenstein projective, according to Lemma 2.

(i) = (ii). Assume that top M is not cyclically black. Then there is some m > 0
such that v™top M is red, but Py, (M) = P(y™top M). Similarly, if top QM is not
cyclically black, then there is some m > 0 such that v top QM is red, and Po,,y1(M) =
P(y™top QM ). Thus, M cannot be Gorenstein projective, according to Lemma 2.

Several consequences are of interest. First, we look at part (b) of Proposition 5. We
see that one direction works without the assumption p > s.

Corollary 1. Let A be a Nakayama algebra and assume that no cycle of R(A) is black.
Then A is CM-free.

Corollary 2. If S is a cyclically black simple module and |P(S)| > s, then H(S) is
Gorenstein projective and not projective.

Proof: Let S by cyclically black and |P(S)| > s. Then H(S) exists and is non-
projective. Both top H(.S) and top QH(S) are equal to S, thus cyclically black. According
to Lemma 5, we see that H(S) is Gorenstein projective.

Corollary 3. The simple modules in X (A) are cyclically black. Conversely, if S is a
cyclically black simple module and |P(S)| > s, then S belongs to X (A).

Proof. Let S be in X(A). Then P(S) has a factor module M which is Gorenstein
projective, but not projective. Lemma 5 asserts that S = top M is cyclically black.

On the other hand, let S by cyclically black and |P(S)| > s. Then H(S) exists and is
non-projective. According to Corollary 2, H(S) is Gorenstein projective. Since P(S) has

a non-projective factor module which is Gorenstein projective, we see that S belongs to
X(A).

Proof of Proposition 5 (b). One direction is covered by Corollary 1. For the
converse, let us assume that p > s and that there is a black cycle, say containing the
vertex x. According to Corollary 2, the module H(x) is Gorenstein projective and not
projective, thus A is not CM-free.



Proof of Proposition 3. By definition, X = X(A) is the class of simple modules
S such that P(S) has a factor module which is non-projective and Gorenstein projective,
thus S belongs to X if and only if there is a non-projective Gorenstein projective module
N with § = top N.

To show the equivalence of (i), (ii), (iii), it is sufficient to consider the case of M being
indecomposable.

First, assume that M is projective, say M = P(S) for some simple module S. If
P(S) € C, then P(S) is the projective cover of a non-projective Gorenstein projective
module M’, thus S € X, this shows that (i) implies (iii). In order to show that (i) implies
(ii), we have to show in addition that 7soc M belongs to X. Since M’ is non-projective
and Gorenstein projective, also Q2M’ is non-projective and Gorenstein projective, thus
Tsoc M = 7soc QM' = top Q2M’ belongs to X. Conversely, if (ii) or (iii) is satisfied, then
top M belongs to X', thus M = P(top M) belongs to C.

Next, assume that M is non-projective. The assertions (ii) and (iii) are equivalent
since for M indecomposable and non-projective, 7soc M = top QM. If M is Gorenstein
projective, then also QM is Gorenstein projective (and non-projective), thus top M and
top QM both belong to X'. This shows that (i) implies (iii). Conversely, assume that top M
and top QM are in X. Then, according to the Corollary 3, top M and top QM are cyclically
black and therefore Lemma 5 asserts that M is Gorenstein projective. This shows that
(iii) implies (i) and completes the proof of Proposition 3.

Remark 1. It seems to be of interest to identify the sources of the resolution quiver
R: The simple module S is a source of R if and only if T—S cannot be embedded into A
(thus if and only if I(77.S) is not projective). Namely, if S is in the image of -, then
there is a simple module S" with S = S’ = 7soc P(S’), thus 775 = soc P(S’) C socA.
And conversely, if 775 can be embedded into A, then it can be embedded into some
indecomposable projective module P(S’), and then vS" = 7soc P(S’) = 77— S = S, thus
S is in the image of ~.

As a consequence, the number of sources of R is equal to s — t, where t is the number
of indecomposable modules which are both projective and injective (and this is also the
number of minimal projective modules).

The same argument shows that in general the number of arrows ending in S is equal
to the number of projective modules with socle T~ S.

Remark 2. The referee has pointed out that a simple module S is cyclically black if
and only if it is perfect in the sense of [CY].

4. The elementary Gorenstein projective modules.

We are going to use Lemma 5 (or else Proposition 3) in order to show some important
closure properties of gp,. We need them in order to prove Proposition 1. After Proposition
1 is established, they are direct consequences.

Lemma 6. Let X,Y be indecomposable modules which are Gorenstein projective and
not projective. If f: X — Y is a homomorphism, then kernel, image and cokernel of f are
Gorenstein projective modules.
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Proof: We can assume that f is non-zero. Then the image Z of f is indecomposable
and not projective. According to Lemma 5, top X, top Y, 7soc X, 7socY all are cyclically
black. But top Z = top X and soc Z = socY, thus top Z and 7soc Z are cyclically black.
Using again Lemma 5, we see that Z is Gorenstein projective. If the kernel K of f is non-
zero, then K is indecomposable and non-projective. Also, soc K = soc X, and top K =
Tsoc Z = TsocY, thus Lemma 5 implies again that K is Gorenstein projective. Finally, if
the cokernel @) of f is non-zero, it is indecomposable and non-projective, and top ) = top Y,
and 7soc @ = top Z = top X are cyclically black, so that also () is Gorenstein projective.

Lemma 7. Let X be an indecomposable module which is Gorenstein projective and
not projective. If X' C X" are submodules of X such that X" /X' is Gorenstein projective
and non-zero, then also X' and X/ X" are Gorenstein projective.

Proof: Again, we use Lemma 5. Of course, also X” /X’ is non-projective, thus
top X, 7soc X, top(X”/X"), 7soc(X"/X") are cyclically black. If X’ # 0, then this is
a non-projective indecomposable module with top X’ = 7soc(X”/X’) and 7soc X’ =
Tsoc X cyclically black. If X/X” # 0, then this is a non-projective indecomposable mod-
ule with top(X/X"”) = top X and 7soc(X/X") = top(X”/X') cyclically black.

Let S be a simple module. If P(S) has a non-projective factor module which is
Gorenstein projective, then we denote the smallest module of this kind by E(S). If M is
any module, then M is of the form F(S) provided M is non-projective, but Gorenstein
projective, and the only proper factor module of M which is Gorenstein projective, is the
zero module (and S = top M). Thus, the modules E(S) are the elementary Gorenstein
projective modules as defined in the introduction.

Let g be the number of isomorphism classes of elementary Gorenstein projective mod-
ules. Note that g equals the number of simple modules in X'(A).

Proof of Proposition 2. Let E, E’ be elementary modules and f: E — E’ a non-
zero homomorphism. The image of f is a non-projective Gorenstein projective factor
module of E, thus f has to be injective, according to Lemma 6. If f is not surjective,
then the cokernel of f is a non-projective Gorenstein projective proper factor module of
E’, impossible (again we use Lemma 6). This shows that f is an isomorphism. Thus, if
Eq, ..., E, are representatives of the isomorphism classes of £, then this is a set of pairwise
orthogonal bricks.

If U is a proper submodule of E which is Gorenstein projective, then E/U is a non-
zero factor module of ¥ which is Gorenstein projective, according to Lemma 7. But this
implies that U = 0. This shows that £ C &’.

Conversely, assume that X belongs to £’, thus X is an indecomposable module which
is Gorenstein projective and non-projective, such that no proper non-zero submodule is
Gorenstein projective. Assume that there is a proper factor module X/U of X which is
Gorenstein projective. Then Lemma 6 asserts that U is Gorenstein projective and therefore
U = X. This shows that & C £. Thus we have established (c).

Next, let us show that C = F(€). Since we deal with a set of orthogonal bricks, F (&) is
an abelian subcategory. Since all the modules in £ are Gorenstein projective, the modules
in F(&) are Gorenstein projective. Assume that P is indecomposable projective and in
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F(E). Then P has a non-zero submodule U such that P/U belongs to £. But this shows
that P is the projective cover of a Gorenstein projective module which is not projective.
This shows that F(£) C C.

Conversely, consider an indecomposable module X in C. For the non-projective mod-
ules we use induction on the length. Thus, let X be non-projective, let P(X) = P(S) be
its projective cover, with S simple. Since X is Gorenstein projective, the module E(S)
exists and is a factor module of X, say X/U = E(S). Now U itself is Gorenstein projec-
tive, according to Lemma 6, thus by induction it belongs to F(£). Then also X belongs to
F(E).

If X = P(S) is projective, then X is the projective cover of a Gorenstein projective
module which is not projective, thus the factor module E(S) exists, say F(S) = X/X'.
But X’ is Gorenstein projective and not projective, thus we know already that X’ belongs
to F(&). This completes the proof of (a).

It remains to establish (b). We assume now that A is connected and C is non-zero, and
we denote by E, ..., F, representatives of the isomorphism classes in £. On the one hand,
these modules are pairwise orthogonal bricks. On the other hand, according to Lemma 7,
no module F; is a proper subquotient of some Ej;, thus the modules E; must have pairwise
different support. Thus, any simple module occurs with multiplicity at most 1 in @le E;.

It remains to be seen that any simple module occurs in the support of some E;. Since
C is not zero, we have g > 1, thus there is a simple module S which belongs to the support
of @J_, E;. We show: if S is a composition factor of an elementary module E, then 7.5 is
a composition factor of an elementary module E’. Thus assume that S is a composition
factor of E. If S is not the socle of E, then 75 is also composition factor of E. Thus,
we have to consider the case that S = soc E. The following lemma shows that there is an
elementary module E’ such that 7.5 is a composition factor of E’. Since we assume that A
is connected, the set of simple A-modules is a single T-orbit, therefore any simple module
occurs as a composition factor of some elementary module. This completes the proof of

(b).

Lemma 8. If E is an elementary module, then there is an elementary module E' with
top B/ = 7soc E and Ext'(E, E') # 0.

Proof. Let P(E) be the projective cover of E. This is a module in C = F(&), thus
P(F) has a filtration using elementary Gorenstein projective modules, say

P(E):MoDMlD"'DMt:O,

such that M;_q/M; is elementary, for all 1 <14 < t. Note that My/M; = E. Since E is not
projective, we have t > 2, thus let £’ = M;/M,. Then

top B’ = top(M;/Ms) = 7soc(My/M;) = Tsoc E.
Since the module My /Ms is indecomposable, the exact sequence
0 — My /My — My/My — My/M; — 0
does not split, therefore Ext'(E, E') # 0.

12



Proof of Proposition 1. Since C = F(&), and £ is a set of pairwise orthogonal bricks,
C is a full exact subcategory of mod A which is closed under extensions. By definition, the
category C is closed under projective covers. In order to see that C is closed under minimal
left A-approximations, consider an indecomposable object M in C. We may assume that
M is not projective. According to Proposition 4, there is an exact sequence

O—-M—-P,1—--—=FP—->M-—=0

such that all the modules P; are minimal projective modules. With M also €,,_1(M)
is Gorenstein projective and not projective, and P,_; is its projective cover. By the
construction of C, the module P,,_; belongs to C. Lemma 1 asserts that the embedding
M — P,,_1 is a minimal left A-approximation.

As an abelian length category with only finitely many indecomposable objects, the
category C is equivalent to the module category of an algebra A’, and A’ has precisely g
simple modules. The indecomposable objects in C are indecomposable A-modules: since
they have a unique composition series as A-modules, they also have a unique composition
series inside the category C. This shows that A’ is again a Nakayama algebra. The
indecomposable projective objects in C are the projective A-modules which belong to C:
these are some of the minimal projective A-modules. But a minimal projective A-module
cannot be properly embedded into any other minimal projective A-module. This shows
that the indecomposable projective objects in C are injective in C, thus A’ is self-injective.

If A is connected and C # 0, then we want to see that A’ is connected. But this follows
immediately from Proposition 2 and Lemma 8.

It remains to show that the embedding mod A’ — modA induces an embedding
modA’ — modA with image just gp. Let X,Y be indecomposable in gp,, and f: X =Y
a morphism which factors through a projective A-module, say P. Then the morphism
X — P factors through P’, where X — P’ is the minimal left A-approximation of X. But
P’ belongs to C and is projective in C, thus f is zero in gp.

More information about A’. We know that the number of simple A’-modules is g.
Let us insert a formula for the length p’ of the indecomposable projective A’-modules. We
assume that A is a connected Nakayama algebra and that C is non-zero. Let E,..., E,
be a complete set of elementary Gorenstein projective modules and let p; = |P(F;)|. Then
the length p’ of the indecomposable projective N’ -modules is given by the formula

17
:giz_;pi

Proof: Let E; = E; provided ¢ = j mod g. We can assume that Ext!'(E;, Eiy1) # 0
for all 4, thus P(E;) has in C a composition series with factors E;, E;t1,..., Fi1,y_1 going
down. Then

g g g p'—1 p’—1 g
> pi=) |P( ZZ Eigjl =) ) |Bil
i=1 i=1 i=1 j=0 =0 i=1
p'—1
/
1=0
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Here, we have used that for any j the sequence Ej41,...,F;;, is obtained from the se-
quence Ey, ..., E, just by permutation and that > 7_, |E;| = s, see Proposition 2.

5. Gorenstein algebras.

We want to present a proof of part (a) of Proposition 5. We assume in this section
that p > s.

Proposition 6. Let p > s. The Nakayama algebra A is a Gorenstein algebra if and
only if all cycles in the resolution quiver of A are black. In this case, the Gorenstein
dimension of A is equal to 2d, where d is the maximal distance between vertices and the
black cycles.

We need the following lemmas.

Lemma 9. Let x = xg — -+ — x4 be a path in the resolution quiver such that xq4 s
cyclically black, whereas x4—1 is not. Then G-dim H (z) = 2d.

Proof. We show that 2341 H (z) is not Gorenstein projective, whereas Qoq4H (z) is
Gorenstein projective. According to Lemma 4 we know that QeyH () = H(v%z) = H(z4)
and this is a Gorenstein projective module. On the other hand, there is the following exact
sequence

0 — H(zq) — P(za_1) L P(za1) — H(za_1) — 0

and €41 H(z) is the image of f. In particular, we see that the top of Qy4_1H(z) is
S(z4—1) and this is a red vertex, according to the red entrance lemma. Since the top of
Qo411 H(x) is not even black, Q941 H(x) cannot be Gorenstein projective.

Lemma 10. Assume that for any path o — --- — x4 in the resolution quiver, the
vertex xq 1s cyclically black. Then the G-dimension of any A-module is at most 2d.

Proof. We show that 54(M) is Gorenstein projective, for any indecomposable mod-
ule M. According to Lemma 5, we have to show that the modules top Q94(M) and
top Qaq41(M) are zero or cyclically black. But top Qa4(M) is zero or equal to v¢top M,
and top Qagy1(M) is zero or equal to v¢top QM. The assumption of the lemma can be
rephrased by saying that v¢S is cyclically black for all simple modules S. This completes
the proof.

Proof of Proposition 6. First, assume that there is a cycle in the resolution quiver
which involves a red vertex, say the red vertex . Then a minimal projective resolution
of H(z) involves infinitely many copies of P(z) and P(x) is not minimal projective, thus
H(z) has infinite G-dimension. This shows that A is not a Gorenstein algebra.

On the other hand, if all the cycles in the resolution quiver are black, then all indecom-
posable modules have finite G-dimension, according to Lemma 8. Thus A is a Gorenstein
algebra.

Proposition 7. If A is a Gorenstein algebra with p > s, then v(A) < 2s — 2.
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Proof. Any path x = ¢ — -+ — x4 in R such that x;_; does not belong to a
cycle involves pairwise different vertices, thus d < s — 1. Thus, Lemma 8 asserts that the
G-dimension of any A-module is at most 2s — 2.

As Xiao-Wu Chen has pointed out, this result (and its proof)) corresponds to Gustafson’s
bound for the finitistic dimension of a Nakayama algebra.

6. Calculation of resolution quivers.

Recall that (p1,...,ps) is said to be a Kupisch series for A, provided we have labeled
the indecomposable projective modules Py, ..., P; such that rad P; is a factor module of
P, 11 (thus provided there is an arrow S; — S;+1) and p; = |P;|. The Kupisch series for A
are obtained from any one by cyclic permutation.

It is an easy exercise to draw the resolution quiver of A if a Kupisch series is known.
Namely, if (p1,...,ps) is a Kupisch series for A, then

v(@) =i +p; mod s.

The roof of the Nakayama algebra A is the factor algebra r(A) = A/soc,_o A. (Here,
for any left module M, the socle sequence 0 = soco M C socy M C soco M C --- C M is
defined inductively by soc; M/ soc;—1 M = soc(M/soc;—1 M), for all i > 1; note that for
M = AA, all the submodules soc; M are two-sided ideals.) It is easy to check that two
Nakayama algebras A, A’ have the same roof provided they have Kupisch series (p1, ..., Ds)
and (p},...,p.) such that p; — p; = ¢, for 1 <i < s, where ¢ = ¢(A, A’) is a constant. Let
us also stress: If c(A, A’) is a multiple of s, then A and A’ have the same resolution quiver.

In order to visualize a roof r(A), we will draw its Auslander-Reiten quiver. Actually,
instead of drawing the Auslander-Reiten quiver of r(A), we draw the Auslander-Reiten
quiver I' of a Nakayama algebra with linearly directed quiver of type A, y; such that the
Auslander-Reiten quiver of r(A) is obtained from I' by identifying the simple projective
with the simple injective module.

For example, here is the way we present the roof of the Nakayama algebra A with
Kupisch series (m+ 3, m+ 3, m+2), note that the roof r(A) is the Nakayama algebra with
Kupisch series (3,3, 2):

This is the Auslander-Reiten quiver of a Nakayama algebra with linearly directed quiver
of type Ay, in order to obtain the Auslander-Reiten quiver of r(A), the vertex far right has
to be identified with the vertex far left (so that the Auslander-Reiten of r(A) quiver lives
on a cylinder).

Let us stress the conventions which we use: When we draw an Auslander-Reiten quiver,
always the direction of the arrows will be deleted: all arrows are supposed to be directed
from left to right. The projective vertices of r(A) (and thus of A)) should be labeled going
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from right to left as P(1), P(2), P(3), see

P2) P(1)
P3

In the previous picture, two of the projective vertices, namely P(1) and P(3), have been
encircled, since they correspond to the minimal projective modules of 7(A) and of A.

In order to draw the resolution quiver, we use as vertices the numbers 1,2,...,s and
we draw an arrow ¢ — j provided j = i+ p; mod s. For the convenience of the reader, the
black vertices will be encircled and the arrows which start at a red vertex will be dotted
(this is quite redundant, but maybe helpful). Thus, the resolution quiver for the algebra
with Kupisch series (5, 5,4) (or, more generally, with Kupisch series (3m+2,3m+2,3m+1)
for some m > 0) looks as follows:

2 DO

The bound 2s — 2 in Proposition 7 is optimal as the algebras with Kupisch series
(ms+1,ms+1,...,ms+1,ms)

and m € N; show. Namely, the resolution quiver looks as follows

D—> @ — - 5] @Q

(since vs = s+ ps = s+ ms = s mod s, whereas vi =i+ p; =i+ms+1=i+1 for
1 <i<s—1). The vertex s — 1 is red, all others are black. In particular, the loop at the
vertex s is black. Thus, according to Lemma 9, the path 1 -2 — ... — s—1 — s shows
that the G-dimension of H(s) is equal to 2s — 2.

Examples. We present the different types of the connected Nakayama algebras with
s =3,4,5 (and p > s). Note that for s = 3, this classification can be found already in the
paper [CY] by Chen and Ye.

In the tables, we show on the left the different roofs (or at least the upper boundary
of the roofs). The remaining columns are indexed by the numbers a with 1 < a < s and
show for s = 3,4 the resolution quiver R(A) of the Nakayama algebras A with given roof
and p = a mod s, for s =5 only the cycles of R(A) are exhibited.
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The cases s = 3.

p=1 mod 3 p=2 mod 3 p=0 mod 3

1 2. e T 1

ﬁi%\ o o . 20
t=1 : F F g=1,v=2 @G

2 R

/@O&‘ 2 e DS @— 2 @O D—> 2 e @3
t=2 g=2, v=2 (G g=1 g=1, v=4 G

3

/@\/@O\ @__>®/“—\ 1 @01 1 i @O @O
t=2 F F g=2, v=2 G

; 0 0

AR A /N CN QO
t=3 g=3, v=0 G g=3, v=0 G g=3, v=0 G

In addition of exhibiting the resolution quiver, we mention the type in question: type G
means that we deal with a Gorenstein algebra (all cycles are black); the type F algebras are
the algebras with no black cycle in R, thus the algebras of type F are CM-free. There also
exist algebras which have cycles which are black as well as cycles which are not black (thus,
for p > s, they are not Gorenstein algebras, but have non-projective Gorenstein projective
modules: see the second row with p = 2 mod 3). In the left column, we mention the
number ¢ of minimal projective modules, or, equivalently, the number of indecomposable
projective-injective modules. For the algebras which are not of type F, we add the number
g, this is the number of elementary Gorenstein projective modules, provided p > s. For the
algebras of type G, the number v is the Gorenstein dimension (if d is the maximal distance
between a vertex and a cyclically black vertex, then v = 2d). The dotted line separates
the algebras A with loops in R(A) from those without loops (as we have mentioned in the
introduction, we will show in part II [R2] that for a connected Nakayama algebra A there
is either no loop in R(A), or else all cycles in R(A) are loops).

In order to arrange the possible roofs for fixed s, we may proceed as follows: We
consider the path algebra ¥ = ¥(s) of the linearly ordered quiver of type Agi1, and the
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lattice of admissible ideals I of X, or, equivalently, the corresponding module categories
mod X /I (using as partial ordering the inclusion functors). For any ideal I we denote by
m(I) the number of isomorphism classes of indecomposable ¥/I-modules of length at least
3. Clearly, we have

Here is the roof diagram in the case s = 4 (as we will remark below, the number of
admissible ideals [ in 3(s) is the Catalan number Cy and Cy = 14).

m(1) mod X /1

61
° /58@\
|
51
° m«.

N

44 49

4 AR, e,

/\/\

’ AJ&K.«'OO’O\
o v @ e o

’ «vO'O\/OvO\
o v @ @ ©

X >

1, 15 15

1 o8 o}
L e B o o B O 0O
e v e e o v o v o

~N S

01

0 AR

It is sufficient to look at the roofs drawn with black bullets, the remaining ones lead
to algebras which are isomorphic to algebras already considered: the algebras with roof 33
or 23 are isomorphic to algebras with roof 3; or 21, respectively; the algebras with roof 15
or 13 are isomorphic to algebras with roof 11, always using rotations. We may add that
the opposite algebra of a Nakayama algebra often is isomorphic to the given algebra —
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the only exception for s = 4 are the cases 4; and 45 (the roof 45 is obtained from 4; by
a reflection). Of course, the opposite algebra of a Gorenstein algebra is Gorenstein, the
opposite of a CM-free algebra is CM-free. However, the examples 4; and 45 show that the
resolution quiver of the opposite of an algebra A may be quite different from R(A).

Remark. For any s, the number of admissible ideals I of ¥.(s) is the Catalan number
1 2s
CS ~ s+1 ( s ) .

Proof: Let us rotate the Auslander-Reiten quiver of ¥/I by 135°. Then the arrows
on the boundary of the Auslander-Reiten quiver yield a monotonic path along the edges
of a grid with (s X s) square cells, starting from the lower left corner and ending in the
upper right corner (here, monotonic means that we use only edges pointing rightwards or
upwards). Here is an example with s = 3:

It is well-known that the number of such paths is just Cs.

Here are the Catalan numbers C, with 1 < s < 10.

s 1 2 3 4 5 6 7 8 9 10
Cs 1 2 5 14 42 132 429 1430 4862 16796

In the following table of the Nakayama algebras with s = 4, the roofs are ordered
slightly different: namely, we use as first criterion the number ¢ of minimal projective
modules (or, equivalently, the number of indecomposable projective-injective modules).
But then, the algebras with fixed ¢ are presented in the order in which they are obtained
in the roof diagram, reading row by row from left to right.
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The cases s = 4.

61

t=3

11

t=3

g4v0F

g2v4G

01

ﬁ@&ﬁ

g=4, v=0 G

20

g=4, v=0 G



The cases s = 5: the cycles of the resolution quivers.
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7. Nakayama algebras with p < s.

Some of our results need the condition p > s. Here are examples concerning the
possible behavior of algebras with p < s (see also [CY]).

Example 1. A Nakayama algebra with a black cycle (and no other cycles) in the
resolution quiver which is CM-free: Let s = p = 2 with the following Auslander-Reiten
quiver:

thus there is a black loop (thus a black cycle). However, A is CM-free, since it has finite
global dimension (the global dimension is 2).

Example 2. A Nakayama algebra with a red loop and no other cycles in the resolution
quiver which has finite global dimension: Consider the Kupisch series (4, 3, 2):

now we deal with a red loop (thus with a cycle which is not black). As it should be, A is
CM-free, but it is even of finite global dimension (the global dimension is again 2), thus
all the modules have finite projective dimension.

Example 3. An algebra with black and red loops in the resolution quiver which is
CM-free: take the Kupisch series (3,3, 2):

again, p = 2 and s = 3. The resolution quiver looks as follows:

We have both a red loop and a black loop. The algebra A has infinite global dimension
but is CM-free.
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These examples show that in Proposition 5 the assumption p > s is necessary: Namely,

Example 2 exhibits an algebra A of finite global dimension, thus a Gorenstein algebra,
such that R(A) has a red loop. Examples 1 and 3 are CM-free algebras with black cycles.
Whereas Examples 1 and 2 are algebras of finite global dimension, we do not know any
example A of finite global dimension such that R(A) has both black cycles and cycles which
are not black.
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