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Abstract. An (additive) functor F : A −→ B between additive categories is said

to be objective, provided any morphism f in A with F (f) = 0 factors through

an object K with F (K) = 0. In this paper we concentrate on triangle functors

between triangulated categories. The first aim of this paper is to characterize

objective triangle functors F in several ways. Second, we are interested in the

corresponding Verdier quotient functors VF , in particular we want do know under

what conditions VF is full. The third question to be considered concerns the

possibility to factorize a given triangle functor F = F2F1 with F1 a full and dense

triangle functor and F2 a faithful triangle functor. It turns our that the behaviour

of splitting monomorphisms (and splitting epimorphisms) plays a decisive role.

Key words and phrases: triangulated category, triangle functor, objective func-

tor, Verdier functor.

1. Introduction

Let F : A −→ B be a functor between additive categories (all functors considered

in this paper are supposed to be covariant and additive). Following [RZ], we say

that F is objective, provided any morphism f : X −→ Y in A with F (f) = 0 factors

through an object K with F (K) = 0. We say that F is sincere, provided that F

sends non-zero objects to non-zero objects. Clearly, a functor is faithful if and only

if it is objective and sincere.

In this paper we concentrate on triangle functors between triangulated categories.

We will see that triangle functors behave quite different from general (additive)

functors between additive categories, and also from exact functors between abelian

categories. For examples, a full functor between additive categories may be not

objective, but a full triangle functor between triangulated categories is objective

(see 4.4); on the other hand, an exact functor between abelian categories is clearly

objective (see 8.1), whereas there are sincere triangle functors between triangulated

categories which are not objective (see section 8).
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If I is an ideal of an additive category A, then we denote by A/I the cor-

responding factor category: it has the same objects as A and HomA/I(X, Y ) =

HomA(X, Y )/I(X, Y ) for any pair X, Y of objects in A. We denote by πI : A →

A/I the canonical projection functor, it sends an object X to itself, and a morphism

f to its residue class modulo I. Given a full subcategory U of A, we denote by 〈U〉

the ideal generated by U .

Assume now that A is a triangulated category and that K is a triangulated sub-

category of A (triangulated subcategories are always assumed to be full subcat-

egories). Then there is a triangulated category A/K and a dense triangle func-

tor VK : A −→ A/K with the following universal property: VK(K) = 0, and if

G : A −→ B is a triangle functor with G(K) = 0, then there is a unique triangle

functor G′ : A/K −→ B such that G = G′VK (see Verdier [V], or also Neeman [N]).

We call VK the Verdier quotient functor for K. (There is no need to worry about a

possible confusion using the same notation A/I and A/K, for ideals I and triangu-

lated subcategories K, since a subcategory U of A is an ideal only in case U = A,

see 2.1).

If F : A → B is a functor between additive categories, then we denote by ker(F )

the class of morphisms f in A such that F (f) = 0, and we denote by Ker(F ) the full

subcategory of A given by all objects X in A such that F (X) = 0. Note that ker(F )

is an ideal of A, whereas Ker(F ) is a subcategory. Thus, given a functor F , we have

two ideals 〈Ker(F )〉 ⊆ ker(F ). It is easy to see (2.2) that a functor F is objective

if and only if the ideals ker(F ) and 〈Ker(F )〉 coincide. We will consider the factor

category A/ ker(F ) and we write πF instead of πker(F ). If F : A −→ B is a triangle

functor between triangulated categories, then the subcategory KerF is a triangulated

subcategory of A, thus we may consider the Verdier quotient functor VKerF , we will

denote it by VF . Since F (KerF ) = 0, the universal property of the Verdier quotient

functor asserts that there exists a unique triangle functor F̃ : A/KerF −→ B, such

that F = F̃ VF , the functor F̃ is always sincere.

The first aim of this paper is to characterize objective triangle functors F in several

ways. Second, we are interested in the corresponding Verdier quotient functors VF , in

particular we want do know under what conditions VF is full. The third question to

be considered concerns the possibility to factorize a given triangle functor F = F2F1

with F1 a full and dense triangle functor and F2 a faithful triangle functor.

Two conditions for a triangle functor F will play a decisive role, namely the weak

splitting monomorphism condition (WSM) and the isomorphism condition (I). If F

is faithful or full, then both conditions are satisfied (see 3.2, 3.3 and 3.1).
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(WSM) For each morphism u : X −→ Y in A such that F (u) is a splitting

monomorphism in B, there exists a morphism u′ : Y −→ X ′ such that F (u′u) is an

isomorphism in B.

(I) For each morphism u : X −→ Y in A such that F (u) is an isomorphism in

B, there exists a morphism u′ : Y −→ X such that F (u)−1 = F (u′).

It is easy to see (see 3.1) that a functor F satisfies both conditions (WSM) and

(I) if and only if it satisfies the splitting monomorphism condition (SM):

(SM) For each morphism u : X −→ Y in A such that F (u) is a splitting

monomorphism in B, there exists a morphism u′ : Y −→ X such that F (u′u) =

1F (X).

Here are the main results of the paper:

Theorem 1.1. Let F : A −→ B be a triangle functor between triangulated cate-

gories. Then the following are equivalent:

(i) F satisfies the condition (WSM);

(ii) F is objective;

(iii) the induced functor F̃ : A/KerF −→ B is faithful.

We say that an additive category A is a Fitting category provided for any endo-

morphism a : X → X in A there exists a direct decomposition X = X ′ ⊕X ′′ with

a(X ′) ⊆ X ′, a(X ′′) ⊆ X ′′ such that the restriction of a to X ′ is an automorphism and

the restriction of a to X ′′ is nilpotent. For example, if A is a Hom-finite k-category,

where k is a field, and any object of A is a finite direct sum of objects with local

endomorphism rings, then A is a Fitting category (see 5.5).

Theorem 1.2. Let F : A → B be a triangle functor between triangulated categories.

(1) If VF is full, then F satisfies the condition (I).

(2) Assume that F is objective or that A is a Fitting category. Then VF is full

if and only if F satisfies (I).

Theorem 1.3. Let F : A −→ B be a triangle functor between triangulated cate-

gories. Then the following are equivalent:

(i) F satisfies the condition (SM);

(ii) F is objective and VF is full.

(iii) There is an equivalence of additive categories Φ : A/ ker(F ) → A/Ker(F )

such that VF = ΦπF .

(iv) There is factorization F = F2F1 where F1 is a full and dense triangle functor

and F2 is a faithful triangle functor.
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(v) There is factorization F = F2F1 where F1 is a full triangle functor and F2

is a faithful triangle functor.

2. Preliminaries

Ideals and subcategories of additive categories.

Lemma 2.1. A subcategory U of an additive category A is an ideal if and only if

U = A.

Proof. Let U be an ideal of A. If X is an object in A, then the zero map 0X belongs

to any ideal, thus to U . But since U is a subcategory, with 0X also 1X belongs to

U . The ideal generated by all the identity maps 1X is clearly A. �

Objective functors. Let F : A → B be a functor between additive categories.

Recall that we denote by ker(F ) the class of morphisms f in A such that F (f) = 0

(this is an ideal of the category A) and by Ker(F ) the full subcategory of A given

by all objects X in A such that F (X) = 0. Clearly, 〈Ker(F )〉 ⊆ ker(F ).

Lemma 2.2. A functor F is objective if and only if the ideals ker(F ) and 〈Ker(F )〉

coincide.

Proof. First, assume that F is objective. Let f : X → Y belong to ker(F ), thus

F (f) = 0. Since F is objective, f = hg, with g : X → K, h : K → Y and F (K) = 0.

Thus K belongs to Ker(F ) and therefore f = hg = h · 1K · g belongs to 〈Ker(F )〉.

Conversely, assume that ker(F ) = 〈Ker(F )〉. Let f : X → Y be a morphism with

F (f) = 0, thus f belongs to ker(F ) and therefore to 〈Ker(F )〉. This means that f

is of the form
∑m

i=1 hifigi with maps gi : X → Ki, fi : Ki → K ′
i, hi : K

′
i → Y , where

Ki, K
′
i are objects in Ker(F ). Let K =

⊕m
i=1Ki and define maps g = [g1, . . . , gm]

t :

X → K and h = [h1f1, . . . , hmfm] : K → Y . Then f = hg shows that f factors

though the object K. Of course, F (K) = 0. �

Triangulated categories and triangle functors. A triangulated category is of

the form T = (T , [1], E) where T is an additive category, [1] an automorphism

of T and E a class of sixtuples of the form X
u

−→ Y
v

−→ Z
w

−→ X [1] with ob-

jects X, Y, Z and morphisms u, v, w (usually, we will denote such a sixtuple just by

(X, Y, Z, u, v, w)) satisfying some well-known axioms. The sixtuples in E are said

to be the distinguished triangles. If A and B are triangulated categories, a triangle

functor from A to B is a pair F = (F, ξ), where F : A −→ B is an additive functor,

and ξ : F ◦ [1] −→ [1] ◦ F is a natural isomorphism, such that if (X, Y, Z, u, v, w)

is a distinguished triangle in A, then (F (X), F (Y ), F (Z), F (u), F (v), ξXF (w)) is a
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distinguished triangle in B. We should stress that given a triangle functor (F, ξ),

there may not exist a triangle functor (F ′, ξ′) with ξ′ the identity transformation

such that F and F ′ are equivalent (as pointed out by Keller, see the appendix of

Bocklandt [B]). Note that triangle functors are also called exact functors or trian-

gulated functors (see e.g. [GM], [H]),[KS], [N]), but we follow the terminology used

for example by Keller [Ke].

The Verdier quotient functor. Let us recall some property of the Verdier quo-

tient functor VK : A → A/K, namely that any morphism x in A/K can be written in

the form x = a/s = VK(a)VK(s)
−1 where a : X ′ → Y and s : X ′ → X are morphisms

in A such that there exists a distinguished triangle (X ′, X,K, s, v, w) in A such that

K belongs to K (and also in the form x = VK(s
′)−1VK(a

′) for some morphisms

a′ : X → Y ′ and s′ : Y → Y ′ in A with a distinguished triangle (Y, Y ′, K ′, s′, v′, w′)

in A such that K ′ belongs to K). This follows directly from the construction of A/K

using the calculus of fractions.

Isomorphisms and splitting monomorphisms in triangulated categories.

Recall that in a distinguished triangle (X, Y, Z, u, v, w) the morphism u is a splitting

monomorphism if and only if v is a splitting epimorphism, and if and only if w = 0.

Also, u is an isomorphism if and only if Z = 0. See Happel [H], I.1.4 and I.1.7.

3. Some conditions for triangle functors

Let F : A −→ B be a functor between additive categories.

Proposition 3.1. Let F : A −→ B be a functor between additive categories. Then F

satisfies the conditions (WSM) and (I) if and only if it satisfies the condition (SM).

Proof. First, assume that F satisfies the condition (SM). Let u : X → Y be

a morphism in A. If F (u) is a splitting monomorphism, then (SM) asserts the

existence of u′ in A such that F (u′u) = 1F (X), thus F (u′u) is an isomorphism. This

shows (WSM). If F (u) is an isomorphism, then F (u) is a splitting monomorphism,

thus there is u in A such that F (u′u) = 1F (X). Thus F (u′)F (u) = 1F (X) and

therefore F (u)−1 = F (u′). This shows (I).

Conversely, assume that the conditions (WSM) and (I) are satisfied. Let F (u) be

a splitting monomorphism with u : X −→ Y . By (WSM) there exists a morphism

a : Y −→ X ′ such that F (au) = F (a)F (u) is an isomorphism in B. By (I) there

exists a morphism b : X ′ −→ X such that F (b)F (au) = 1F (X). Put u
′ := ba : Y −→

X. Then F (u′)F (u) = F (b)F (au) = 1F (X). This proves that F satisfies (SM). �
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We need two further conditions for a functor F : A → B.

(RSM) F reflects splitting monomorphisms (this means: if u is a morphism in

A such that F (u) is a splitting monomorphism in B, then u is a splitting monomor-

phism in A).

(RI) F reflects isomorphisms (this means: if u is a morphism in A such that

F (u) is an isomorphism in B, then u is an isomorphism in A).

Proposition 3.2. Let F : A −→ B be a triangle functor between triangulated

categories. Then F is faithful if and only if F satisfies the conditions (RSM).

Proof. First, assume that F = (F, ξ) is faithful. Let u : X → Y be a mor-

phism in A such that F (u) is a splitting monomorphism. Let (X, Y, Z, u, v, w) be

a distinguished triangle in A. Then (F (X), F (Y ), F (Z), F (u), F (v), ξXF (w)) is a

distinguished triangle in B. Since F (u) is a splitting monomorphism, ξXF (w) = 0,

thus also F (w) = 0. Since F is faithful, w = 0, thus u is a splitting monomorphism.

Thus, the condition (RSM) is satisfied.

Conversely, assume that (RSM) holds. Let w : Z → X [1] be a morphism such

that F (w) = 0. Then there is a distinguished triangle (X, Y, Z, u, v, w) in A and

(F (X), F (Y ), F (Z), F (u), F (v), ξXF (w)) is a distinguished triangle in B. Since

F (w) = 0, also ξXF (w) = 0, thus F (u) is a splitting monomorphism. Since F

satisfies the condition (RSM), u is a splitting monomorphism, thus w = 0. This

shows that F is faithful. �

Proposition 3.3. Let F : A −→ B be a functor between additive categories. If F

is full or faithful, then it satisfies the condition (SM).

Proof. Let u : X → Y be a morphism in A such that F (u) is a splitting monomor-

phism, thus there is b : F (Y ) → F (X) such that bF (u) = 1X . First, assume that

F is full. Then b = F (u′) for some u′ : Y → X , and F (u′)F (u) = 1F (X) shows that

(SM) is satisfied.

Second, assume that F is faithful, thus according to 3.2, F satisfies the condi-

tion (RSM). Let u : X → Y be a morphism in A such that F (u) is a splitting

monomorphism. Since F satisfies (RSM), there is u′ in A such that u′u = 1X . Thus

F (u′u) = 1F (X). �

Proposition 3.4. Let F : A −→ B be a triangle functor between triangulated

categories. Then F is sincere if and only if F satisfies the condition (RI).
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Proof. First, assume that F is sincere. Let u : X → Y be a morphism in A such

that F (u) is an isomorphism. Let (X, Y, Z, u, v, w) be a distinguished triangle in

A. Then (F (X), F (Y ), F (Z), F (u), F (v), ξXF (w) is a distinguished triangle in B.

Since F (u) is an isomorphism, we have F (Z) = 0. Since F is sincere, this implies

that Z = 0, thus u is an isomorphism. This shows that F reflects isomorphisms.

Conversely, let us assume that F reflects isomorphisms. In order to show that F

is sincere, let Z be an object in A such that F (Z) = 0. Consider the map u : Z → 0

in A. If we apply F , we obtain a map F (u) : F (Z) → 0. Since F (Z) = 0, the map

F (u) is an isomorphism. Since F reflects isomorphisms, we see that u itself is an

isomorphism, but this means that Z = 0. �

4. Objectivity of triangle functors.

The aim of this section is to prove Theorem 1.1 and to draw the attention to some

consequences.

4.1. The proof of Theorem 1.1. (i) =⇒ (ii). We assume now that F sat-

isfies the condition (WSM). We want to show that F is objective, thus let w

be a morphism in A with F (w) = 0, say w : Z → X [1]. We take a distin-

guished triangle (X, Y, Z, u, v, w) in A. Under F we obtain the distinguished tri-

angle (F (X), F (Y ), F (Z), F (u), F (v), ξXF (w)). Since F (w) = 0, also ξXF (w) = 0,

thus F (u) is a split monomorphism. The condition (WSM) provides a morphism

u′ : Y → X ′ such that F (u′u) is an isomorphism. We need a distinguished trian-

gle involving u′u, say (X,X ′, K, u′u, f, h). The given factorization of u′u yields the

following commutative square on the left:

X
u

// Y

u′

��

v
// Z

g

���
�

�

w
// X [1]

X
u′u

// X ′
f

// K
h

// X [1].

thus we obtain a morphism g : Z → K such that w = hg. If we apply F to

the distinguished triangle (X,X ′, K, u′u, f, h), we obtain the distinguished trian-

gle (F (X), F (X ′), F (K), F (u′u), F (f), ξXF (h)). Since F (u′u) is an isomorphism,

F (K) = 0. Thus w = hg is the required factorization.

(ii) =⇒ (iii). Assume that F is objective. We want to show that F̃ is faithful,

thus consider a morphism a/s in A/KerF with F̃ (a/s) = 0. Here we deal with

morphisms s : X ′ → X and a : X ′ → Y in A such that VF (s) is invertible. As a
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consequence, also F (s) is invertible. We have

F (a)F (s)−1 = F̃ VF (a)F̃ VF (s)
−1 = F̃ (VF (a)VF (s)

−1) = F̃ (a/s) = 0,

thus F (a) = 0. Since F is objective, there is a factorization a = hg, say with

g : X ′ → K and h : K → Y such that F (K) = 0. But F (K) = 0 implies that

VF (K) = 0. Since VF (a) = VF (h)VF (g) factors through VF (K) = 0, it follows that

VF (a) = 0, therefore also a/s = VF (a)VF (s)
−1 = 0.

(iii) =⇒ (i). We assume that F̃ is faithful, thus objective. Let u : X → Y be a

morphism in A such that F (u) is a splitting monomorphism. Let (X, Y, Z, u, v, w)

be a distinguished triangle in A, thus (F (X), F (Y ), F (Z), F (u), F (v), ξXF (w)) is

a distinguished triangle in B. Since F (u) is a splitting monomorphism, we know

that ξXF (w) = 0, thus F (w) = 0. Since F = F̃ VF and F̃ is faithful, we see that

VF (w) = 0. It follows that VF (u) is a splitting monomorphism, thus there is some x

in A/KerF such that xVF (u) = 1VF (X). As we know, the morphism x can be written

in the form x = VF (s)
−1VF (u

′) for some morphisms u′ : Y → X ′ and s : X → X ′

in A with VF (s) invertible. This implies that VF (u
′u) = VF (u

′)VF (u) = VF (s) is an

isomorphism. If we now apply F̃ , we see that also F (u′u) = F̃ VF (u
′u) = F̃ VF (s) is

an isomorphism. �

4.2. The Verdier quotient functors are objective. As an immediate conse-

quence of Theorem 1.1, we recover the following well-known result (see, for example,

Krause [Kr], Proposition 4.6.2):

Corollary. Let A be a triangulated category and K a triangulated subcategory of A.

Then the Verdier quotient functor VK : A −→ A/K is objective.

Proof. Clearly, ṼK is the identity functor on A/K, thus faithful. It follows that ṼK

is objective. �

4.3. Sincere triangle functors. It is well-known that a sincere triangle functor F

which is full is also faithful, see J. Rickard [Ric], p.446, l.1. The previous discus-

sions provide necessary and sufficient conditions for a sincere functor to be faithful:

Namely, for any triangle functor F , there are the following implications:

faithful ⇐⇒ (RSM) =⇒ (SM) =⇒ (WSM) ⇐⇒ objective

(see 3.2, 3.3, 3.1, 1.1). Since a sincere objective functor is of course faithful, all these

conditions are equivalent in case F is sincere.
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4.4. Full triangle functors are objective.

Corollary. A full triangle functor is objective.

Proof. According to Proposition 3.3, a full triangle functor satisfies the condition

(SM), thus (WSM), and therefore F is objective by Theorem 1.1. �

5. Triangle functors F with VF full

The aim of this section is to present the proof of Theorem 1.2.

5.1. If VF is full, then (I) is satisfied. We assume that F : A → B is a triangle

functor such that VF is full. We want to show that F satisfies the condition (I).

Let u : X → Y be a morphism in A such that F (u) is an isomorphism, and

(X, Y, Z, u, v, w) a distinguished triangle in A. Thus

(F (X), F (Y ), F (Z), F (u), F (V ), ξXF (w)) is a distinguished triangle in B. Since

F (u) is an isomorphism, F (Z) = 0, thus Z belongs to Ker(F ) and therefore VF (u)

is invertible in A/Ker(F ). Since VF is full, there is a map u′ : Y → X such

that VF (u
′) = (VF (u))

−1. If we apply the functor F̃ (with F = F̃ VF ) we see that

F (u′) = F (u)−1.

5.2. The Verdier quotient functor VF for a functor F satisfying (I). We

assume that F : A → B is a triangle functor which satisfies the condition (I). Note

that the morphisms of A/Ker(F ) are of the form a/s = VF (a)(VF (s))
−1, where a, s

are morphisms in A with VF (s) being invertible. In order to show that VF is full, it

is sufficient to show that the morphisms of the form (VF (s))
−1 are in the image of

VF .

5.3. The case when F is objective. Let F : A → B be an objective triangle

functor which satisfies the condition (I). Let s be a morphism in A such that VF (s) is

invertible. Apply the functor F̃ (with F̃VF = F ) to VF (s). Since VF (s) is invertible,

we see that F (s) = F̃VF (s) is invertible in B. Since F satisfies the condition (I),

there is s′ : Y → X such that F (s′) = (F (s))−1.

Now F is objective, thus the functor F̃ is faithful according to Theorem 1.1. Since

F̃ is faithful, it follows from F̃ VF (s
′) = (F̃VF (s))

−1 that also VF (s
′) = (VF (s))

−1.

5.4. The case when A is a Fitting category. Let us assume now that A is a

Fitting category. If a is an endomorphism ofX = X ′⊕X ′′ with a(X ′) ⊆ X ′, a(X ′′) ⊆

X ′′, then we write a = a′ ⊕ a′′.

Consider a triangle functor F satisfying the condition (I) and let us write V = VF .

Let s : X → Y be a morphism in A and assume that V (s) is invertible. Thus also
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F (s) = F̃V (s) is invertible. Since the condition (I) is satisfied, there is a morphism

t : Y → X such that F (s)−1 = F (t).

Let a = ts. This is a morphism X → X and since A is a Fitting category,

there is a direct decomposition X = X ′ ⊕ X ′′ with a(X ′) ⊆ X ′, a(X ′′) ⊆ X ′′

(thus a = a′ ⊕ a′′) such that the restriction a′ of a to X ′ is an automorphism,

whereas the restriction a′′ of a to X ′′ is nilpotent. Applying F , we see that 1F (X) =

F (a) = F (a′) ⊕ F (a′′). Since F (a′′) is nilpotent, it follows that F (X ′′) = 0 and

therefore V (X ′′) = 0. We denote by u′ : X ′ → X the canonical inclusion, by

p′ : X → X ′ the canonical projection, thus p′u′ = 1X′ and p′au′ = a′. Now

(X ′, X,X ′′, u′, p′′, 0) and (X ′′, X,X ′, u′′, p′, 0) are distinguished triangles in A. It

follows that (V (X ′), V (X), 0, V (u′), 0, 0) and (0, V (X), V (X ′), 0, V (p′), 0) are dis-

tinguished triangles in A/KerF . It follows that V (p′) and V (u′) are isomorphisms,

thus V (p′)V (u′) = 1V (X′) implies that V (u′)V (p′) = 1V (X).

Let b′ = (a′)−1 : X ′ → X ′. We consider the map

u′b′p′tsu′p′ = u′b′p′au′p′ = u′b′a′p′ = u′p′ : X → X.

If we apply V , we get

V (u′b′p′t)V (s) = V (u′b′p′ts) = V (u′b′p′ts)V (u′p′) = V (u′b′p′tsu′p′) = V (u′p′) = 1V (X).

This shows that V (s)−1 = V (u′b′p′t).

5.5. Examples of Fitting categories. Let k be a field. A Hom-finite k-category

A is an additive category such that HomA(X, Y ) is a finite-dimensional k-space

for arbitrary objects X and Y of A, such that the composition of morphisms is

k-bilinear. A Hom-finite k-category A is called a Krull-Remak-Schmidt category

provided all idempotents of A split. It is well-known that any Hom-finite Krull-

Remak-Schmidt k-category is a Fitting category.

Let us outline the proof. If Λ is a finite-dimensional k-algebra, the classical

Fitting lemma asserts that the category modΛ of all finite-dimensional Λ-modules

is a Fitting category. Of course, also the full subcategory proj Λ of all projective

Λ-modules is a Fitting category. Now assume that A is a Hom-finite Krull-Remak-

Schmidt k-category. Let X be an object in A and add(X) the full subcategory of

all direct summands of finite direct sums of copies of X . Let Γ(X) = End(X)op.

Then the category add(X) is equivalent to the category proj Γ(X) of all projective

Γ(X)-modules, thus it is a Fitting category.



OBJECTIVE FUNCTORS 11

6. Proof of Theorem 1.3

(i) =⇒ (ii). According to Proposition 3.1, the condition (SM) is equivalent to the

conditions (WSM) and (I). According to Theorem 1.1, the condition (WSM) implies

that F is objective. Thus F is an objective functor which satisfies the condition (I).

According to Theorem 1.2(2), we see that VF is full.

(ii) =⇒ (iii). We assume that F is objective and VF is full. We always have

Ker(F ) = Ker(VF ). Lemma 2.2 asserts that ker(F ) = 〈Ker(F )〉, since by assumption

F is objective. Since VF is always objective, we similarly have ker(VF ) = 〈Ker(VF )〉.

Thus, we see that ker(F ) = ker(VF ). It follows that there exists a faithful functor

Φ : A/ ker(F ) → A/Ker(F ) such that VF = ΦπF (namely Φ(f) = VF (f), where f

is the residue class of f modulo ker(F )).

Since VF is full, the factorization VF = ΦπF shows that also Φ is full. Altogether

we see that Φ is full and faithful. Of course, Φ is dense, since the objects of both

A/ ker(F ) and A/Ker(F ) are those of A and are not permuted under Φ.

(iii) =⇒ (ii). Let Φ : A/ ker(F ) → A/Ker(F ) be an equivalence with VF = ΦπF .

Since πF is always full, and Φ is an equivalence of functors, also VF is full.

Since VF is always objective, and Φ−1 is an equivalence, also πF = Φ−1VF is

objective. But this implies that F is objective. (Namely, assume that F (f) = 0,

then f ∈ ker(F ) = ker(πF ). Since πF is objective, f factors through an object K

with πF (K) = 0. Thus 1K belongs to ker(F ), but this means that F (K) = 0.)

(ii) =⇒ (iv). We assume that F is objective and that VF is full. There is the

factorization F = F̃VF . Let F1 = VF and F2 = F̃ . By assumption, F1 = VF is a full

and dense triangle functor. Since F is objective, Theorem 1.1 asserts that F2 = F̃

is faithful.

(v) =⇒ (i). We assume that F = F2F1 : A → B where F1 is a full triangle

functor whereas F2 is a faithful triangle functor. In order to show (SM), we start

with a morphism u : X → Y in A such that F (u) is a splitting monomorphism. Let

(X, Y, Z, u, v, w) be a distinguished triangle in A, thus

(F (X), F (Y ), F (Z), F (u), F (v), ξXF (w)) is a distinguished triangle in B. Since F (u)

is a splitting monomorphism, we know that ξXF (w) = 0, thus also F (w) = 0.

Since F2 is faithful, it follows from F2F1(w) = 0 that F1(w) = 0 and therefore

F1(u) is a splitting monomorphism. In this way, we see that there is a morphism

c : F1(Y ) → F1(X) such that cF1(u) = 1F1(X). Since F1 is full, there is u′ : Y → X

such that F1(u
′) = c, thus F1(u

′u) = 1F1(X). We apply F2 to this equality in order

to see that F (u′u) = 1F (X). �
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7. Dual conditions

7.1. We also may consider dual conditions, in particular the following ones:

(WSE) For each morphism v : Y −→ Z in A such that F (v) is a splitting

epimorphism in B, there exists a morphism v′ : Z ′ −→ Y such that F (vv′) is an

isomorphism in B.

(SE) For each morphism v : Y −→ Z in A such that F (v) is a splitting epimor-

phism in B, there exists a morphism v′ : Z −→ Y such that F (vv′) = 1F (Z).

(RSE) For each morphism v : Y −→ Z in A such that F (v) is a splitting epimor-

phism in B, the morphism v is a splitting epimorphism in A.

Of course, there are the following trivial implications:

(RSE) =⇒ (SE) =⇒ (WSE)

Note that most of the conditions considered in the paper are self-dual conditions:

that a functor F is objective or that VF is full, or that F is faithful, are self-dual

conditions. Here, ”duality” (or better: left-right symmetry) refers to the procedure

of looking at the opposite Aop of a given category A, and to consider a functor

F : A → B as a functor F op : Aop → Bop, with F op(X) = F (X), F op(F ) = F (f) for

any object X and any morphism f in Aop. Since we assume that F is covariant, also

F op is covariant. For example, we see that F satisfies (SE) if and only if it satisfies

both (WSE) and (I), this is the dual assertion of Proposition 3.1.

By duality, the theorems 1.1, 1.3 and the proposition 3.2 yield:

Theorem 1.1′. Let F : A −→ B be a triangle functor between triangulated

categories. Then the following are equivalent:

(i)op F satisfies the condition (WSE).

(ii) F is objective;

Theorem 1.3′. Let F : A −→ B be a triangle functor between triangulated

categories. Then the following are equivalent:

(i)op F satisfies the condition (SE);

(ii) F is objective and VF is full.

Proposition 3.2′. Let F : A −→ B be a triangle functor between triangulated

categories. Then the following are equivalent:

(i)op F satisfies the condition (RSE).

(ii) F is faithful.
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In particular, we see that F satisfies the condition (WSM) if and only if it satisfies

the condition (WSE), that F satisfies the condition (SM) if and only if it satisfies

the condition (SE) and that F satisfies the condition (RSM) if and only if it satisfies

the condition (RSE).

7.2. As a bonus for the reader, let us insert a direct proof that the condition (WSM)

for a triangle functor F implies the condition (WSE):

Proof. Assume that F is a triangle functor which satisfies the condition (WSM).

Given a morphism v : Y −→ Z such that F (v) is a splitting epimorphism, con-

sider a distinguished (X, Y, Z, u, v, w). Applying F we know that F (v) is a splitting

epimorphism, thus F (u) is a splitting monomorphism. By (WSM) there exists a

morphism u′ : Y −→ X ′ such that F (u′)F (u) is an isomorphism in B. We embed u′

into a distinguished triangle (Y,X ′, Z ′[1], u′, w′, v′[1]). By the octahedral axiom we

get the following commutative diagram

X
u

// Y

u′

��

v
// Z

��
�

�

�

w
// X [1]

X
u′u

// X ′

w′

��

// K

���
�

�
// X [1]

u[1]
��

Z ′[1]

v′[1]
��

Z ′[1]
v′[1]

//

β[1]
��

Y [1]

Y [1]
v[1]

// Z[1] .

Since F (u′u) is an isomorphism, it follows that F (K) = 0, and hence F (β[1]) is an

isomorphism. Thus F (vv′) = F (v)F (v′) = F (β) is an isomorphism. This shows

that F satisfies the condition (WSE). �

8. Examples of triangle functors which are not objective

The aim of this section is to present examples of triangle functors which are not

objective (but sincere).

If one compares triangulated categories with abelian categories, then one re-

lates the triangle functors between triangulated categories to the exact functors

between abelian categories, these are the functors which preserve the given struc-

ture. Whereas there do exist triangle functors which are not objective, all exact

functors are objective, as the following lemma shows.
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Lemma 8.1. Let F : A −→ B be an exact functor between abelian categories. Then

F is objective. Thus, an exact sincere functor between abelian categories is faithful.

Proof. Let f : X −→ Y be a morphism in A such that F (f) = 0. Let I be the

image of f , say f = hg with g : X −→ I an epimorphism and h : I −→ Y a

monomorphism. Then F (f) = F (hg) = F (h)F (g). Since F is exact, F (g) is epic

and F (h) is monic. Thus F (I) is the image of F (f). Since F (f) = 0, it follows that

F (I) = 0. By definition F is objective. �

Proposition 8.2. Let F0 : A −→ B be an exact sincere functor between abelian

categories. Then F0 induces a sincere triangle functor F : Db(A) −→ Db(B), where

Db(A) is the bounded derived category of A. Moreover, if A is not semi-simple

whereas B is semi-simple, then F is not objective.

Let us add that such a functor F always satisfies the condition (I). Namely, since

F is sincere, the Verdier quotient functor VF is the identity functor, in particular

VF is full. Thus, according to Theorem 1.2, F satisfies the condition (I).

Proof. Since F0 : A −→ B is an exact functor between abelian categories, it induces

a triangle functor F = (F, Id) : Db(A) −→ Db(B), which maps a complex C with

cohomology Hn(C) to the complex F (C) with cohomology F0(H
n(C)) = Hn(F (C)).

Assume that F (C) = 0. Then F0(H
n(C)) = 0, for all n ∈ Z. Since F0 is sincere,

it follows that Hn(C) = 0, for all n ∈ Z, thus C is acyclic and therefore C = 0 in

Db(A). This shows that F is sincere.

Since A is not semi-simple, there exist object X and Y in A with Ext1A(X, Y ) 6= 0.

Since B is semi-simple, Ext1B(F (X), F (Y )) = 0. Thus HomDb(A)(X, Y [1]) 6= 0, but

HomDb(B)(F (X), F (Y )[1]) = 0. That is, F is not faithful. It follows that F cannot

be objective, since sincere objective functors are faithful. �

Example. Let us consider an example in detail. Let A be the path algebra of

the quiver b −→ a over the field k and let B be the semisimple algebra given by the

quiver with the two vertices a, b and no arrow. Note that B is a subalgebra of A

and we consider the forgetful functor F0 : A-mod −→ B-mod, given by the inclusion

map B → A.

Given a vertex x, we denote by SA(x) or SB(x) the simple A-module of B-module,

respectively, corresponding to the vertex x, and we denote by PA(x) the indecom-

posable projective A-module corresponding to the vertex x. The functor F0 sends

SA(x) to SB(x) for x = a, b, and it sends PA(b) to SB(a)⊕ SB(b). Clearly, F0 is an

exact and faithful functor.
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The upper part of the following picture shows the Auslander-Reiten quiver of

Db(A), the dashed lines indicate the mesh relations. The lower part is the Auslander-

Reiten quiver of Db(B) (it just consists of isolated vertices) and here we use dotted

lines to indicate the two shift orbits in Db(B) (in the upper part, the shift orbits are

not marked in this way).

��<
<<

<<
<<

<<
_____ PA(b)

v

!!B
BB

BB
BB

B

_____ SA(a)[1]

!!DD
DD

DD
DD

______ SA(b)[1]

$$II
III

III
I

________

__ SA(a)

u
=={{{{{{{{

_______ SA(b)

w
==||||||||

______ PA(b)[1]

==zzzzzzzz
______ SA(a)[2]

??���������

SB(a) SB(a)[1] S(a)[2]

SB(b) SB(b)[1]

The induced functor F : Db(A) −→ Db(B) sends SA(x)[i] to SB(x)[i] for x = a, b

and all i ∈ Z, and it sends PA(b)[i] to SA(a)[i]⊕ SA(b)[i]. In Db(A) we have labeled

three arrows u, v, w, they form a distinguished triangle (S(a), P (b), S(b), u, v, w).

Consider the map w : SA(b) −→ SA(a)[1]. Since HomDb(B)(SB(b), SB(a)[1]) = 0,

we have F (w) = 0. Thus, we see that F is not faithful.

On the other hand, consider the map u : SA(a) −→ PA(b). Applying the functor

F , we obtain the inclusion map SB(a) −→ SB(a) ⊕ SB(b) which is splitting mono:

there is a projection map u′ : SB(a)⊕ SB(b) −→ SB(a) with u′F (u) = 1SB(a). Since

there is no non-zero map PA(b) −→ SA(a), such a map u′ is not in the image of F .

This shows that the condition (SM) is not satisfied. Thus, Theorem 1.1 asserts that

F is not objective.
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9. Overlook

9.1. The main conditions. We consider any triangle functor F : A → B.
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(∗)

full

RSM
RSE

faithful

SM
SE

objective, VF full
· · ·

sincere
RI

WSM
WSE

objective

F̃ faithful

IVF full

The conditions in any box, line by line, are equivalent; note that in the central

box which mentions the conditions (SM) and (SE), the dots indicate that there

are several further equivalent conditions, namely the conditions (iii), (iv) and (v)

mentioned in Theorem 1.2 as well as the conjunction of the conditions (WSM) and

(I), see Proposition 3.1, and dually also the conjunction of (WEM) and (I).

The arrows show the relevant implications between the boxes. The dashed impli-

cation with the label (∗) is valid under the assumption that F is objective or that

A is a Fitting category.
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9.2. References. Two implications are trivial: a faithful functor is of course sin-

cere. And if F is a sincere triangle functor, then VF is the identity functor, thus

full. Here are the references for the remaining implications mentioned above:
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trivial trivial

3.3
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3.4
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1.2

9.3. Examples. Finally, let us outline typical examples in order to see that the

implications (A), (B), (C), (D), (E) and (F) cannot be reversed:
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(∗)
(C)

(B)

(A)

(E)

(D)

(F)

(A) Take any faithful functor which is not full, for example the zero functor

0 → A, where A is a non-zero triangulated category.

(B) Take any full functor which is not faithful, for example the zero functorA → 0,

where A is a non-zero triangulated category.

(C) Take any sincere functor F which is not objective as presented in section 8.

Such a functor is of course not faithful.

(D) In order to find an objective functor F such that VF is not full, consider a

Verdier quotient functor VK, these functors are very seldom full!

For example, let A be an Artin algebra, modA the category of finitely generated

A-modules, K−(A) the homotopy category of the upper bounded complexes over

modA, E the full subcategory of K−(A) consisting of the upper bounded acyclic
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complexes, and D−(A) the derived category of the upper bounded complexes over

modA. Then we have the Verdier quotient functor VE : K−(A) −→ K−(A)/E =

D−(A). It is well-known that VE is full if and only if A is semi-simple.

(E) Take any sincere functor F which is not objective as presented in section 8.

Since F is sincere, it satisfies the condition (I) but it cannot satisfy the condition

(SM), since otherwise it would be objective.

(F) Take a functor F which is not sincere, such that VF is full, for example the

zero functor A → 0, where A is a non-zero triangulated category.
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