Gorenstein-projective and semi-Gorenstein-projective modules. II

Claus Michael Ringel, Pu Zhang

Abstract

Let k be a field and q a non-zero element of k. In Part I, we have exhibited a 6 dimensional k-algebra $\Lambda=\Lambda(q)$ and we have shown that if q has infinite multiplicative order, then Λ has a 3-dimensional local module which is semi-Gorenstein-projective, but not torsionless, thus not Gorenstein-projective. This Part II is devoted to a detailed study of all the 3-dimensional local Λ-modules for this particular algebra Λ. If q has infinite multiplicative order, we will encounter a whole family of 3 -dimensional local modules which are semi-Gorenstein-projective, but not torsionless.

Key words and phrases. Gorenstein-projective module, semi-Gorenstein-projective module, torsionless module, extensionless module, reflexive module, t-torsionfree module, \mho-quiver.

2010 Math. Subject Classification. Primary 16G10, 16G50. Secondary 16E05, 16E65, 20 G42.
Supported by NSFC 11431010

1. Introduction.

(1.1) We refer to our previous paper [RZ1] as Part I. As in Part I, let k be a field, and q a non-zero element of k. We consider again the k-algebra $\Lambda=\Lambda(q)$ generated by x, y, z with relations

$$
x^{2}, y^{2}, z^{2}, y z, x y+q y x, x z-z x, z y-z x .
$$

The algebra Λ is a 6 -dimensional local algebra with basis $1, x, y, z, y x, z x$. Its socle is $\operatorname{soc} \Lambda=\operatorname{rad}^{2} \Lambda=\Lambda y x \oplus \Lambda z x$. If not otherwise stated, all the modules considered will be left Λ-modules.

We follow the terminology used in Part I. In particular, we denote by $\mho M$ the cokernel of a minimal left $\operatorname{add}(\Lambda)$-approximation of M. In addition, we introduce the following definitions. We say that a module M is extensionless if $\operatorname{Ext}^{1}(M, \Lambda)=0$. An indecomposable semi-Gorenstein-projective module will be said to be pivotal provided it is not torsionless. An indecomposable ∞-torsionfree module will be said to be pivotal provided it is not extensionless. Thus, a module M is semi-Gorenstein-projective if and only if $\Omega^{t} M$ is extensionless for all $t \geq 0$; a torsionless module M is reflexive if and only if $\mho M$ is torsionless (see Part I (2.4)); a module M is ∞-torsionfree if and only if $\mho^{t} M$ is reflexive for all $t \geq 0$; and M is Gorenstein-projective if and only if M is both semi-Gorenstein-projective and ∞-torsionfree.
(1.2) We are interested in the semi-Gorenstein-projective and the ∞-torsionfree modules and will exhibit those which are 3 -dimensional. We recall that a finite length module is said to be local provided its top is simple. Thus, a local module is indecomposable; and if R is a left artinian ring, then a left R-module M is local if and only if M is a quotient of an indecomposable projective module. A consequence of our study is the following assertion

Proposition. Let M be a non-zero module of dimension at most 3 . If M is semi-Gorenstein-projective, then all the modules $\Omega^{t} M$ with $t \geq 0$ are 3 -dimensional and local. If M is ∞-torsionfree, then all the modules $\mho^{t} M$ with $t \geq 0$ are 3 -dimensional and local. In particular, if M is Gorenstein-projective, then all the modules $\Omega^{t} M$ and $\mho^{t} M$ with $t \geq 0$ are 3 -dimensional and local.
(1.3) The text restricts the attention to the 3 -dimensional local modules. We recall that if A is a finite-dimensional algeba, an A-module M is said to have Loewy length at most t provided $\operatorname{rad}^{t} M=0$. The starting point of our investigation are two observations. The first one:

Proposition 1. A module of dimension at most 3 has Loewy length at most 2.
The second observation is:
Proposition 2. An indecomposable 3-dimensional torsionless module is local.
The proof of Proposition 1 will be given in (2.6), the proof of Proposition 2 in (2.7).
(1.4) The 3-dimensional local modules. We identify $(a, b, c) \in k^{3} \backslash\{0\}$ with $a x+b y+c z$ and denote by $(a: b: c)$ the 1-dimensional subspace of k^{3} generated by (a, b, c). The left ideal

$$
U(a, b, c)=U(a: b: c)=\Lambda(a, b, c)+\operatorname{soc} \Lambda
$$

has dimension 3 , and we obtain the left Λ-module

$$
M(a, b, c)=M(a: b: c)={ }_{\Lambda} \Lambda / U(a, b, c) .
$$

Clearly, $M(a, b, c)$ is a 3-dimensional local module and the modules $M(a, b, c), M\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ are isomorphic if and only if $(a: b: c)=\left(a^{\prime}: b^{\prime}: c^{\prime}\right)$. Let us add that the definition of $M(a, b, c)$ implies that $\Omega M(a, b, c) \simeq U(a, b, c)$, this will be used throughout the text.

Conversely, any 3-dimensional local module is isomorphic to a module of the form $M(a, b, c)$. In order to see this, one should look at the factor algebra $\bar{\Lambda}$ of Λ modulo $\operatorname{soc} \Lambda=\operatorname{rad}^{2} \Lambda$, thus $\bar{\Lambda}$ is the k-algebra generated by x, y, z with relations all monomials of length 2. The Λ-modules of Loewy length at most 2 are just the modules annihilated by all monomials of length 2 , thus the $\bar{\Lambda}$-modules. It is clear that the modules $M(a, b, c)=\bar{\Lambda} /(a: b: c)$ are representatives of the 3-dimensional local $\bar{\Lambda}$-modules. According to Proposition 1, all the 3 -dimensional Λ-modules are $\bar{\Lambda}$-modules, thus the modules $M(a, b, c)$ are representatives of the 3 -dimensional local Λ-modules.
(1.5) The following theorem characterizes the modules of dimension at most 3 which have some relevant properties. We write $o(q)$ for the multiplicative order of q.

Theorem. An indecomposable module M of dimension at most 3 is

- torsionless if and only if M is simple or isomorphic to $\Lambda(x-y)$, to Λz, to a module $M(1, b, c)$ with $b \neq-q$, to $M(0,1,0)$ or to $M(0,0,1)$;
- extensionless if and only if M is isomorphic to a module $M(1, b, c)$ with $b \neq-1$;
- reflexive if and only if M is isomorphic to a module $M(1, b, c)$ with $b \neq-q^{i}$ for $i=1,2$;
- Gorenstein-projective if and only if M is isomorphic to a module $M(1, b, c)$ with $b \neq$ $-q^{i}$ for $i \in \mathbb{Z}$;
- semi-Gorenstein-projective if and only if M is isomorphic to a module $M(1, b, c)$ with $b \neq-q^{i}$ for $i \leq 0$;
- ∞-torsionfree if and only if M is isomorphic to a module $M(1, b, c)$ with $b \neq-q^{i}$ for $i \geq 1$;
- pivotal semi-Gorenstein-projective if and only if $o(q)=\infty$ and M is isomorphic to a module $M(1,-q, c)$;
- pivotal ∞-torsionfree if and only if $o(q)=\infty$ and M is isomorphic to a module $M(1,-1, c)$.

For the proof of the Theorem, see (7.9).
Looking at the Theorem, the reader will be aware that in the context considered here, the relevant modules of dimension at most 3 are of the form $M(1, b, c)$ with $b, c \in k$. Nearly all the modules mentioned in Theorem are of this kind, the only exceptions are four isomorphism classes of torsionless modules, namely the 2-dimensional left ideals $\Lambda(x-y)$ and Λz, as well as the 3 -dimensional modules $M(0,1,0)$ and $M(0,0,1)$.
(1.6) As we have seen in (1.4), the set of isomorphism classes of the 3-dimensional local modules can be identified in a natural way with the projective plane $\mathbb{P}^{2}=\mathbb{P}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right)$, with the element $(a: b: c) \in \mathbb{P}^{2}$ corresponding to the module $M(a, b, c)$.

We use homogeneous coordinates in order to highlight elements and subsets of \mathbb{P}^{2} (or the corresponding modules):

Let H be the affine subspace of \mathbb{P}^{2} given by the points $(1: b: c)$ with $b, c \in k$. As we have mentioned already, Theorem (1.5) shows that it is this subset H which is of special interest. We will see in section 7 that H is a union of \mathcal{V}-components, and that the set of 3 -dimensional Gorenstein-projective modules is always a (proper) subset of H. A module M in H is torsionless if and only if it does not belong to the line $T=\{(1:(-q): c) \mid c \in k\}$, and is extensionless if and only if it does not belong to the line $E=\{(1:(-1): c) \mid c \in k\}$ (see (6.1) and (5.1), respectively):

H

In case the multiplicative order $o(q)$ of q is infinite, H is the set of the 3-dimensional modules which are semi-Gorenstein-projective or ∞-torsionfree; the line E consists of the pivotal semi-Gorenstein-projective modules in H; the line T of the pivotal ∞-torsionfree modules in H.

Let us emphasize: There are 3-dimensional pivotal semi-Gorenstein-projective modules if and only if there are 3-dimensional pivotal ∞-torsionfree modules if and only if the multiplicative order of q is infinite.

Note that a 3-dimensional local module M belongs to H if and only if $\operatorname{soc} M=$ $\operatorname{Ker}(y)=\operatorname{Ker}(z)=y M \oplus z M$, see A. 4 in the appendix.
(1.7) The algebra $\Lambda=\Lambda(q)$ with $o(q)=\infty$ was exhibited in Part I in order to present a module M which is not reflexive, such that both M and its Λ-dual M^{*} are semi-Gorenstein-projective: namely the module $M=M(1,-q, 0)$. Now we see:

Let $o(q)=\infty$ and assume that M is a module of dimension at most 3 . Then both M and M^{*} are semi-Gorenstein-projective, whereas M is not reflexive, if and only if M is isomorphic to a module of the form $M(1,-q, c)$ with $c \in k$. In this case M is not even torsionless and all the modules $M(1,-q, c)^{*}$ with $c \in k$ are isomorphic, see (9.5). Thus, we encounter a 1-parameter family of pairwise non-isomorphic semi-Gorenstein-projective left modules M such that their Λ-dual modules M^{*} are isomorphic and semi-Gorensteinprojective.

Also, we see that for all $c \neq 0$, the modules $M(1,-1, c)$ are pairwise non-isomorphic ∞-torsionfree modules with a fixed module $\Omega M(1,-1, c)=M(0,0,1)$, see (4.1). Thus, we encounter non-isomorphic ∞-torsionfree modules with isomorphic first syzygy module (of course, in this situation, the syzygy module cannot be ∞-torsionfree).
(1.8) The modules $M(1, b, 0)$ with $b \in k$ have been studied already in Part I (there, they have been denoted by $M(-b)$). Theorem (1.5) shows that these modules are quite typical for the behavior of the modules $M(1, b, c)$. Namely: The module $M(1, b, c)$ is Gorenstein-projective (or semi-Gorenstein-projective, or ∞-torsionfree, or torsionless, or extensionless) if and only if $M(1, b, 0)$ has this property.
(1.9) Outline of the paper. Section 2 provides some preliminary results. Here, the main target is to show that any module of length at most 3 has Loewy length at most 2. In section 3 we collect some formulae which show that certain products of elements in Λ are zero. Sections 4 to 7 deal with the 3 -dimensional local left Λ-modules, section 8 with the 3 -dimensional local right Λ-modules. Section 9 discusses the Λ-duality. The final section 10 provides an outline of the general frame for this investigation: the study of semi-Gorenstein-projective and ∞-torsionfree modules over local algebras with radical cube zero. There is an appendix which provides a diagrammatic description of the 3 dimensional indecomposable left Λ-modules.

2. Some left ideals and some right ideals of Λ.

(2.1) Lemma. The left ideal $\Lambda(a, b, c)$ is 2-dimensional if and only if $a+b=0$ and $a c=0$. We have $\operatorname{soc} \Lambda(1,-1,0)=\Lambda y x$ and $\operatorname{soc} \Lambda(0,0,1)=\Lambda z x$.

Proof. An easy calculation shows that $\operatorname{soc} \Lambda(1,-1,0)=\Lambda y x$ and $\operatorname{soc} \Lambda(0,0,1)=\Lambda z x$. Thus, the left ideals $\Lambda(0,0,1)$ and $\Lambda(1,-1,0)$ are 2-dimensional.

Now, let $L=\Lambda(a, b, c)$ be any left ideal. If $a \neq 0$, then $y x \in L$ since $y(a, b, c)=a y x$.
First, assume that $a+b \neq 0$. Then $z(a, b, c)=(a+b) z x$ shows that $z x \in L$. We know already that for $a \neq 0$, also $y x \in L$. If $a=0$, then $b \neq 0$. Thus $x(a, b, c)=-q b y x+c z x$ shows that also in this case $y x \in L$. Thus L cannot be 2 -dimensional.

Next, assume that $a c \neq 0$. Since $a \neq 0$, we know that $y x \in L$. Since $c \neq 0$, we use $x(a, b, c)=-q b y x+c z x$ in order to see that $z x \in L$. Again, L cannot be 2-dimensional.
(2.2) Let L be a 2-dimensional left ideal, different from $\operatorname{soc} \Lambda$. Then either $L \subseteq$ $U(1,-1,0)$ and then $\operatorname{soc} L=\Lambda y x$ and L is isomorphic to $\Lambda(x-y)$ or else $L \subseteq U(0,0,1)$ and then $\operatorname{soc} L=\Lambda z x$ and L is isomorphic to Λz.

Proof: There is an element $(a, b, c)+w \in L$, with $(a, b, c) \neq 0$ and $w \in \operatorname{soc} \Lambda$. Since $\operatorname{rad} \Lambda((a, b, c)+w)=\operatorname{rad} \Lambda(a, b, c)$, also $L^{\prime}=\Lambda(a, b, c)$ is 2 -dimensional and $L \subseteq L^{\prime}+\operatorname{soc} \Lambda=$ $U(a, b, c)$. According to $(2,1),(a: b: c)$ is equal to $(1:(-1): 0)$ or to $(0: 0: 1)$. Of course, L and L^{\prime} are isomorphic as (left) modules.
(2.3) Lemma. There is no 3-dimensional torsionless module with simple socle.

Proof. Assume that U is a 3 -dimensional torsionless module with simple socle. Then U is a submodule of Λ. It is a proper submodule, thus of Loewy length at most 2. Therefore, U is the sum of two 2 -dimensional left ideals $L \neq L^{\prime}$ with $\operatorname{soc} L=\operatorname{soc} L^{\prime}$. Now we use (2.2). If L, L^{\prime} have socle equal to $\Lambda y x$, then $U=L+L^{\prime}=U(1,-1,0)$. If L, L^{\prime} have socle equal to $\Lambda z x$, then also $U=L+L^{\prime}=U(0,0,1)$. In both cases soc $\Lambda \subseteq U$, a contradiction.
(2.4) Any 3-dimensional left ideal contains soc Λ.
(2.5) The 3 -dimensional left ideals are the subspaces $U(a, b, c)$. They have the following structure: $U(1,-1,0)=\Lambda(1,-1,0) \oplus \Lambda z x ; U(0,0,1)=\Lambda(0,0,1) \oplus \Lambda y x$; and if $a+b \neq 0$ or ac $\neq 0$, then $U(a, b, c)=\Lambda(a, b, c)$ is a local module (in particular, indecomposable).

Proof. The left ideals $U(a, b, c)$ are 3-dimensional. Conversely, let U be a 3-dimensional left ideal of Λ. Since $\operatorname{soc} \Lambda$ is contained in U, there is an element $(a, b, c) \neq 0$ with $(a, b, c) \in U$, thus $U=U(a, b, c)$.

If $a+b=0$ and $a c=0$, then $(a: b: c)$ is equal to $(1:(-1): 0)$ or to $(0: 0: 1)$. By (2.1), we have $U(1,-1,0)=\Lambda(1,-1,0) \oplus \Lambda z x$ and $U(0,0,1)=\Lambda(0,0,1) \oplus \Lambda y x$. If $a+b \neq 0$ or $a c \neq 0$, then $U(a, b, c)=\Lambda(a, b, c)$ is a local module, thus indecomposable.
(2.6) Proposition. Any module of dimension at most 3 has Loewy length at most 2.

Proof. Let M be a module of dimension at most 3 . If M is not local, then clearly M has Loewy length at most 2. If $\operatorname{dim} M \leq 2$, then again M has Loewy length at most 2. Thus, we can assume that M is 3 -dimensional and local and therefore a factor module of Λ, say $M=\Lambda / U$. According to (2.4), $\operatorname{soc} \Lambda \subseteq U$, thus M is annihilated by soc Λ, and therefore M has Loewy length at most 2 .
(2.7) Lemma. Any indecomposable torsionless module M of dimension at most 3 is local and isomorphic to a left ideal of Λ. If $\operatorname{dim} M=3$, then M is of the form $U(a, b, c)$.

Proof. Let M be indecomposable and torsionless. If $\operatorname{dim} M \leq 2$, then M is of course local and isomorphic to a left ideal. Thus we can assume that $\operatorname{dim} M=3$.

Since M is torsionless, there is a set of non-zero maps $u_{i}: M \rightarrow{ }_{\Lambda} \Lambda$ (say with index set I) such that $\bigcap_{i \in I} K_{i}=0$, where K_{i} is the kernel of u_{i}.

If $K_{i}=0$ for some i, then already u_{i} is an embedding (thus M is isomorphic to a left ideal). In particular, if the socle of M is simple, then we must have $K_{i}=0$ for some i.

Thus, we can assume that the socle of M is not simple. Therefore M has to be a local module and we have a surjective map $\pi:{ }_{\Lambda} \Lambda \rightarrow M$.

It remains to look at the case where $\operatorname{dim} K_{i}=1$ or 2 for all i. Since the only 2 dimensional submodule of M is its radical, we have $\bigcap_{i \in I^{\prime}} K_{i}=0$, where I^{\prime} is the set of indices i with $\operatorname{dim} K_{i}=1$. But then $K_{i} \cap K_{j}=0$ for some $i \neq j$ in I^{\prime}. This shows that we can assume that $I=\{1,2\}$ and that K_{1}, K_{2} are different 1-dimensional submodules of M.

Now u_{i} provides an isomorphism from M / K_{i} onto a (2-dimensional) left ideal of Λ. Since M / K_{i} is indecomposable, (2.2) shows that M / K_{i} is isomorphic to $\Lambda(1,-1,0)$ or to $\Lambda(0,0,1)$. Let $K_{i}^{\prime}=\operatorname{Ker}\left(u_{i} \pi\right)$ for $i=1,2$.

If $M / K_{i} \simeq \Lambda(1,-1,0)$, then K_{i}^{\prime} is equal to $\Lambda(x+q y)+\Lambda z$, since $\Lambda(0,0,1)$ is annihilated by $x+q y$ and by z. Similarly, if $M / K_{i} \simeq \Lambda(0,0,1)$, then K_{i}^{\prime} is equal to $\Lambda(x+q y)+\Lambda z$. Thus one of M / K_{i} has to be isomorphic to $\Lambda(1,-1,0)$, the other one to $\Lambda(0,0,1)$ and $\operatorname{Ker}(\pi)=K_{1}^{\prime} \cap K_{2}^{\prime}=U(0,0,1)$. It follows that $M \simeq{ }_{\Lambda} \Lambda / \operatorname{Ker}(\pi)={ }_{\Lambda} \Lambda / U(0,0,1)$. But ${ }_{\Lambda} \Lambda / U(0,0,1)$ is isomorphic to the left ideal $\Lambda(1,-1,1)=U(1,-1,1)$.

We have shown that M is isomorphic to a left ideal, thus of the form $U(a, b, c)$, see (2.5). Since we assume that M is indecomposable, (2.5) asserts that M is local.

We need to know also the right ideals $(a, b, c) \Lambda$. Note that $U(a, b, c)$ is always a twosided ideal and it will be pertinent to denote $U(a, b, c)$ by $U^{\prime}(a, b, c)$, if we consider it as a right ideal (thus as a right module).
(2.8) The right ideals $(a, b, c) \Lambda$. If $a \neq 0$ or $b c \neq 0$, then $(a, b, c) \Lambda=U(a, b, c)$ is 3dimensional. The right ideals $(0,1,0) \Lambda$ and $(0,0,1) \Lambda$ are 2 -dimensional with $\operatorname{soc}(0,1,0) \Lambda=$ $y x \Lambda$ and $\operatorname{soc}(0,0,1) \Lambda=z x \Lambda$.

Proof: Let $V=(a, b, c) \Lambda$. First, let $a \neq 0$. Then $z x$ belongs to V, since $(a, b, c) z=a z x$. Also $y x \in V$, since $(a, b, c) y=-q a y x+c z x$. Second, assume that $a=0$ and $b c \neq 0$. Then $(0, b, c) y=c z x$ shows that $z x \in V$, and $(0, b, c) x=b y x+c z x$ shows that also $y x \in V$.
(2.9) If a 3-dimensional indecomposable right module N is torsionless, then it is isomorphic to a right ideal, thus to $U^{\prime}(a, b, c)$ for some $(a, b, c) \neq 0$.

Proof. Let N be a 3-dimensional indecomposable torsionless right module. As in (2.7) one shows that N is isomorphic to a right ideal, using (2.8) instead of (2.2). It remains to see that all 3-dimensional right ideals are of the form $U^{\prime}(a, b, c)$. Here, one has to copy the proof of (2.5).

3. The transformations ω and ω^{\prime}.

If $(a: b: c)$ is different from $(1:(-1): 0)$ and $(0: 0: 1)$, then (2.5) shows that $U(a, b, c)$ is a 3-dimensional local module, thus of the form $M\left(a^{\prime}: b^{\prime}: c^{\prime}\right)$. In order to describe in which way ($a^{\prime}: b^{\prime}: c^{\prime}$) depends on ($a: b: c$), we will need the transformations ω and ω^{\prime}. We start with some equalities in Λ.
(3.1) Formulae. Let $a, b, c \in k$. Then

$$
\begin{align*}
\left(a x+q b y-\frac{a}{a+b} c z\right)(a x+b y+c z) & =0 \quad \text { if } \quad a+b \neq 0 \tag{1}\\
z(a x-a y+c z) & =0 \tag{2}\\
(a x+b y+c z)\left(a x+q^{-1} b y-\frac{a+q^{-1} b}{a} c z\right) & =0 \quad \text { if } \quad a \neq 0 \tag{3}\\
(b y+c z) z & =0 \tag{4}
\end{align*}
$$

Proof of the equality (1):

$$
\begin{aligned}
& \left(a x+q b y-\frac{a}{a+b} c z\right)(a x+b y+c z) \\
& \quad=a b x y+a c x z+q a b y x-\frac{a}{a+b} a c z x-\frac{a}{a+b} b c z y \\
& \quad=a b(x y+q y x)+\left(1-\frac{a}{a+b}-\frac{b}{a+b}\right) a c z x=0 .
\end{aligned}
$$

The proof of the remaining equalities is similar.
(3.2) In case $a+b \neq 0$, let $\omega(a, b, c)=\left(a, q b,-\frac{a}{a+b} c\right)$. In case $a^{\prime} \neq 0$, let $\omega^{\prime}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=$ $\left(a^{\prime}, q^{-1} b^{\prime},-\frac{a^{\prime}+q^{-1} b^{\prime}}{a^{\prime}} c^{\prime}\right)$.

Proposition. The transformation ω provides a bijection from the set $\left\{(a, b, c) \in k^{3} \mid\right.$ $a(a+b) \neq 0\}$ onto the set $\left\{\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \in k^{3} \mid a^{\prime}\left(a^{\prime}+q^{-1} b^{\prime}\right) \neq 0\right\}$, with inverse ω^{\prime}.

Proof. Let $a(a+b) \neq 0$. Then $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\omega(a, b, c)$ is defined and $a^{\prime}=a \neq 0$, and $a^{\prime}+q^{-1} b^{\prime}=a+q^{-1} q b=a+b \neq 0$. Thus ω maps $\left\{(a, b, c) \in k^{3} \mid a(a+b) \neq 0\right\}$ into $\left\{(a, b, c) \in k^{3} \mid a\left(a+q^{-1} b\right) \neq 0\right.$. Similarly, ω^{\prime} maps $\left\{\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \in k^{3} \mid a^{\prime}\left(a^{\prime}+q^{-1} b^{\prime}\right) \neq 0\right.$ into $\left\{(a, b, c) \in k^{3} \mid a(a+b) \neq 0\right.$. It is easy to check that $\omega^{\prime} \omega(a, b, c)=(a, b, c)$ for $a(a+b) \neq 0$ and that $\omega \omega^{\prime}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ for $a^{\prime}\left(a^{\prime}+q^{-1} b^{\prime}\right) \neq 0$.
4. The isomorphism class of $U(a, b, c) \simeq \Omega M(a, b, c)$.
(4.1) Proposition. Let $(a, b, c) \neq 0$. Then

$$
\Omega M(a, b, c) \simeq\left\{\begin{array}{cl}
M(\omega(a, b, c)) & \text { if } a \neq 0, a+b \neq 0, \tag{1}\\
M(0,0,1) & \text { if } a \neq 0, a+b=0, c \neq 0 \\
\Lambda(x-y) \oplus \Lambda z x & \text { if } a \neq 0, a+b=0, c=0 \\
M(0,1,0) & \text { if } a=0, b \neq 0, \\
\Lambda z \oplus \Lambda y x & \text { if } a=0, b=0 .
\end{array}\right.
$$

Proof: If $a=0$ and $b=0$, then $U(a, b, c)=U(0,0,1)$. If $a+b=0$ and $c=0$, then $U(a, b, c)=U(1,-1,0)$. According to (2.3), $U(0,0,1)=\Lambda z \oplus \Lambda y x$ and $U(1,-1,0)=$ $\Lambda(x-y) \oplus \Lambda z x$, This shows (5) and (3). In this way, we have considered all triples (a, b, c) with $a+b=0$ and $a c=0$.

Thus, let $a+b \neq 0$ or $a c \neq 0$. By (2.5), $U(a, b, c)=\Lambda(a, b, c)$ is local and we look at the surjective map $\phi:{ }_{\Lambda} \Lambda \rightarrow U(a, b, c)$ which sends 1 to (a, b, c).

Let $a+b \neq 0$. According to formula (1) of (3.1), $\Lambda(a, b, c)$ is annihilated by $\omega(a, b, c)$, thus $M(\omega(a, b, c)))={ }_{\Lambda} \Lambda / \Lambda(\omega(a, b, c))$ maps onto $\Lambda(a, b, c)$. Since the modules $M(\omega(a, b, c))$ and $\Lambda(a, b, c)$ both have dimension 3, we see that $U(a, b, c)=\Lambda(a, b, c)$ is isomorphic to $M(\omega(a, b, c))$. This yields (1) and (4) (namely, if $a=0$, and $b \neq 0$, we have $\omega(0, b, c)=$ $(0, q b, 0))$.

Finally, we show (2). For $c \neq 0$, the module $U(1,-1, c)$ is isomorphic to $M(0,0,1)$. Now we use in the same way formula (2) of (3.1).

The following picture outlines the position of the partition of \mathbb{P}^{2} which is used in the Proposition.

(4.2) Corollary. The syzygy functor Ω provides a bijection from the set of isomorphism classes of modules $M(a, b, c)$ with $a(a+b) \neq 0$ onto the set of isomorphism classes of modules $M\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ with $a^{\prime}\left(a^{\prime}+q^{-1} b^{\prime}\right) \neq 0$ and we have $\Omega M(a, b, c)=M(\omega(a, b, c))$ for $a(a+b) \neq 0$.

Proof. This follows directly from Propositions (3.2) and (4.1).
5. The extensionless modules $M(a, b, c)$.
(5.1) Proposition. The module $M(a, b, c)$ is extensionless if and only if $a(a+b) \neq 0$.

For the proof, we need some preparations.
(5.2) Lemma. The following conditions are equivalent:
(i) The module $M(a, b, c)$ is extensionless.
(ii) The inclusion map $\iota: U(a, b, c) \rightarrow{ }_{\Lambda} \Lambda$ is a left $\operatorname{add}(\Lambda)$-approximation.
(iii) $U(a, b, c)=\Lambda(a, b, c)$ and the inclusion map $\iota: \Lambda(a, b, c) \rightarrow{ }_{\Lambda} \Lambda$ is a left $\operatorname{add}(\Lambda)$ approximation.
(iv) The subspace $U(a, b, c)$ is indecomposable both as a left module and as a right module, and the image of every homomorphism ${ }_{\Lambda} U(a, b, c) \rightarrow_{\Lambda} \Lambda$ is contained in $U(a, b, c)$.

Proof. The equivalence of (i) and (ii) follows from Part I, Lemma 2.1.
(ii) \Longrightarrow (iii): We assume (ii). If $U(a, b, c)=U_{1} \oplus U_{2}$ with U_{1}, U_{2} both non-zero, then a minimal left $\operatorname{add}(\Lambda)$-approximation $U(a, b, c) \rightarrow \Lambda^{t}$ is the direct sum of minimal left $\operatorname{add}(\Lambda)$-approximations $U_{1} \rightarrow \Lambda^{t_{1}}$ and $U_{2} \rightarrow \Lambda^{t_{2}}$, thus $t=t_{1}+t_{2} \geq 2$. This shows that $U(a, b, c)$ is indecomposable. According to (2.5), this means that $U(a, b, c)=\Lambda(a, b, c)$.
(iii) \Longrightarrow (iv). Since $\Lambda(a, b, c)$ is a local module, it is indecomposable. Thus $U(a, b, c)=$ $\Lambda(a, b, c)$ implies that $U(a, b, c)$ considered as a left module is indecomposable. Given any homomorphism $\phi: U(a, b, c) \rightarrow{ }_{\Lambda} \Lambda$, (iii) provides $\lambda \in \Lambda$ with $\phi(a, b, c)=(a, b, c) \lambda \in$ $(a, b, c) \Lambda \subseteq U(a, b, c)$. Now assume that $(a, b, c) \Lambda$ is a proper subset of $U(a, b, c)$. Let $w \in$ $\operatorname{soc} \Lambda$. Since Λw is simple, there is a homomorphism $\phi: \Lambda(a, b, c) \rightarrow \Lambda$ with $\phi(a, b, c)=w$ and (iii) asserts that $w=\phi(a, b, c)=(a, b, c) \lambda$ for some $\lambda \in \Lambda$. This shows that soc $\Lambda \subseteq$ $(a, b, c) \Lambda$ and therefore $U(a, b, c)=(a, b, c) \Lambda$. In particular, $U(a, b, c)$ is indecomposable also as a right Λ-module.
(iv) \Longrightarrow (ii). Let $\phi: U(a, b, c) \rightarrow_{\Lambda} \Lambda$ be a homomorphism. Since $U(a, b, c)$ is indecomposable as a left module, we have $U(a, b, c)=\Lambda(a, b, c)$. Since $U(a, b, c)$ is indecomposable as a right module, we have $U(a, b, c)=(a, b, c) \Lambda$. According to (iv), $\phi(a, b, c) \in U(a, b, c)=$ $(a, b, c) \Lambda$, thus $\phi(a, b, c)=(a, b, c) \lambda=r_{\lambda} \iota(a, b, c)$ for some $\lambda \in \Lambda$, where $r_{\lambda}:{ }_{\Lambda} \Lambda \rightarrow{ }_{\Lambda} \Lambda$ is the right multiplication by λ. Since the left module $U(a, b, c)=\Lambda(a, b, c)$ is generated by (a, b, c), the equality $\phi(a, b, c)=r_{\lambda} \iota(a, b, c)$ implies that $\phi=r_{\lambda} \iota$.
(5.3) Lemma. Let R be a ring and X a left R-module. If $\phi:{ }_{R} R \rightarrow X$ is an R-module homomorphism and $w \in R$ annihilates X, then $R w \subseteq \operatorname{Ker} \phi$.

Corollary. Let L be a left ideal of R and X an R-module annihilated by $w_{1}, \ldots, w_{t} \in$ R. The image of any map $R / L \rightarrow X$ is a factor module of $R /\left(L+R w_{1}+\cdots R w_{t}\right)$.

Proof. Let $\phi: R / L \rightarrow X$ be a homomorphism. Let $\pi: R \rightarrow R / L$ be the canonical projection. By construction, L is contained in $\operatorname{Ker}(\phi \pi)$. By the lemma, also the left ideals $R w_{i}$ are contained in $\operatorname{Ker}(\phi \pi)$. Thus $L+R w_{1}+\cdots+R w_{t} \subseteq \operatorname{Ker}(\phi \pi)$.
(5.4) Proof of Proposition (5.1). According to (5.2), $M(a, b, c)$ is extensionless if and only if condition (iv) is satisfied. We look at all the elements $(a: b: c) \in \mathbb{P}^{2}$, using the partition of \mathbb{P}^{2} into the subsets (1) to (5) as in (4.1).

The cases (3) and (5): Both $U(1,-1,0)$ and $U(0,0,1)$ are decomposable as left modules, see (2.5). Case (4): According to (4.1), $U(0,1, c) \simeq M(0,1,0)$. Obviously, $M(0,1,0)$ has Λz as a factor module, thus there is a homomorphism $U(0,1, c) \rightarrow{ }_{\Lambda} \Lambda$ with image Λz and $\Lambda z \nsubseteq U(0,1, c)$. The case (2) is similar: (4.1) shows that $U(1,-1, c) \simeq M(0,0,1)$, and $M(0,0,1)$ maps onto Λz; thus there is a homomorphism $U(1,-1, c) \rightarrow_{\Lambda} \Lambda$ with image Λz and $\Lambda z \nsubseteq U(1,-1, c)$. This shows that none of the modules $M(a, b, c)$ with $a(a+b)=0$ is extensionless.

It remains to consider the case (1). Thus, assume that $a(a+b) \neq 0$. Let $\left(1, b^{\prime}, c^{\prime}\right)=$ $\omega(1, b, c)$, thus $b^{\prime}=q b$. We want to show that the conditions (iv) of (5.2) are satisfied. According to (2.5) and (2.8), $U(a, b, c)$ is indecomposable both as a left module and as a right module, It remains to show that the image of every homomorphism ${ }_{\Lambda} U(a, b, c) \rightarrow_{\Lambda} \Lambda$ is contained in $U(a, b, c)$.
(a) The only left ideal isomorphic to $U(1, b, c)$ is $U(1, b, c)$ itself. Proof. The 3dimensional left ideals are of the form $U\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)$, for some $\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right) \neq 0$, see (2.5). Assume that $U(1, b, c) \simeq U\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)$. We have $U\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right) \simeq \Omega M\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)$ and by (4.1) we must be in case (1), namely $a^{\prime \prime} \neq 0$ and $a^{\prime \prime}+b^{\prime \prime} \neq 0$. In particular, we may assume that $a^{\prime \prime}=1$ and (4.1)(1) asserts that $\Omega M\left(1, b^{\prime \prime}, c^{\prime \prime}\right)=M\left(\omega\left(1, b^{\prime \prime}, c^{\prime \prime}\right)\right)$. The isomorphy $M(\omega(1, b, c)) \simeq M\left(\omega\left(1, b^{\prime \prime}, c^{\prime \prime}\right)\right)$ implies that the triples $\omega(1, b, c)$ and $\omega\left(1, b^{\prime \prime}, c^{\prime \prime}\right)$ yield the same element in \mathbb{P}^{2}, and since the first coordinate of both triples is equal to 1 , we have $\omega(1, b, c)=\omega\left(1, b^{\prime \prime}, c^{\prime \prime}\right)$. Since $1+b \neq 0$ and $1+b^{\prime \prime} \neq 0$, we use (3.2) in oder to conclude that $(1, b, c)=\left(1, b^{\prime \prime}, c^{\prime \prime}\right)$.
(b) The left ideal Λz is not a factor module of $U(1, b, c)$. The proof uses Corollary (5.3) for the left ideal $L=U\left(1, b^{\prime}, c^{\prime}\right)$ and the module $X=\Lambda z$ which is annihilated by y and z. Namely, on the one hand, we have $U(1, b, c) \simeq \Omega M(1, b, c) \simeq M(\omega(1, b, c))=$ $M\left(1, b^{\prime}, c^{\prime}\right)=\Lambda / U\left(1, b^{\prime}, c^{\prime}\right)=\Lambda / L$. On the other hand, $\operatorname{rad} \Lambda=\Lambda\left(x+b^{\prime} y+c^{\prime} z\right)+\Lambda y+\Lambda z \subseteq$ $U\left(1, b^{\prime}, c^{\prime}\right)+\Lambda y+\Lambda z \subseteq \operatorname{rad} \Lambda$ shows that $L+\Lambda y+\Lambda z=\operatorname{rad} \Lambda$. Therefore, (5.3) asserts that the image of any homomorphism $U(1, b, c) \rightarrow \Lambda z$ is a factor module of $\Lambda / \operatorname{rad} \Lambda$, thus simple or zero.
(c) The left ideal $\Lambda(x-y)$ is not a factor module of $U(1, b, c)$. Again, we use Corollary (5.3) for $L=U\left(1, b^{\prime}, c^{\prime}\right)$ and now for $X=\Lambda(x-y)$. Note that $\Lambda(x-y)$ is annihilated by $x-q y$ and z. We recall from (b) that $U(1, b, c) \simeq \Lambda / L$. And we have $\operatorname{rad} \Lambda=\Lambda\left(x+b^{\prime} y+\right.$ $\left.c^{\prime} z\right)+\Lambda(x-q y)+\Lambda z$, since $b^{\prime}=q b \neq-q$. Therefore, we also have $U\left(1, b^{\prime}, c^{\prime}\right)+\Lambda(x-$ $q y)+\Lambda z=\operatorname{rad} \Lambda$, and (5.3) asserts that the image of any homomorphism $U(1, b, c) \rightarrow \Lambda z$ is simple or zero.

Any homomorphism $\phi: U(1, b, c) \rightarrow{ }_{\Lambda} \Lambda$ maps into $U(1, b, c)$. Proof. According to (b) and (c), the image I of ϕ is not of dimension 2. If the image I is of dimension 3, then (a) shows that I is equal to $U(1, b, c)$. Of course, if I is of dimension at most 1 , then $I \subseteq \operatorname{soc} \Lambda \subseteq U(1, b, c)$.
(5.5) Corollary. If $M(a, b, c)$ is extensionless, then $\Omega M(a, b, c) \simeq M(\omega(a, b, c))$.

Proof. This follows directly from (5.1) and the case (1) of (4.1).
6. The torsionless modules $M(a, b, c)$.
(6.1) Proposition. The module $M(a, b, c)$ is torsionless if and only if either $a(a+$ $\left.q^{-1} b\right) \neq 0$ or else $a=0$ and $b c=0$ (so that $(a: b: c)$ is equal to $(0: 1: 0)$ or to $(0: 0: 1)$).

In order to prove (6.1), we consider the possible cases separately. First, we consider the modules $M(a, b, c)$ with $a \neq 0$. In section 5 we have seen that $M(1, b, c)$ is extensionless if and only if $b \neq-1$, and then $\Omega M(1, b, c) \simeq M(\omega(1, b, c))$. There is the following corresponding assertion concerning the torsionless modules (see also (7.1)).
(6.2) The module $M(1, b, c)$ is torsionless if and only if $b \neq-q$, and in this case $\mho M(1, b, c) \simeq M\left(\omega^{\prime}(1, b, c)\right)$.

Proof. Let $b \neq-q$. Then $\omega^{\prime}(1, b, c)=\left(1, q^{-1} b, c^{\prime}\right)$ for some c^{\prime}. According to (5.1) and (5.5), $M\left(1, q^{-1} b, c^{\prime}\right)$ is extensionless and $\Omega M\left(1, q^{-1} b, c^{\prime}\right) \simeq M(1, b, c)$, since $\omega\left(1, q^{-1} b, c^{\prime}\right)=$ $\omega \omega^{\prime}(1, b, c)=(1, b, c)$. This shows that $M(1, b, c)$ is torsionless and that $\mho M(1, b, c) \simeq$ $M\left(\omega^{\prime}(1, b, c)\right)$.

Conversely, we consider $M(1,-q, c)$ and assume, for the contrary, that $M(1,-q, c)$ is torsionless. According to (2.7), this means that $M(1,-q, c)$ is isomorphic to a left ideal $U\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\Omega M\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$. According to (4.1), we must be in the case $a^{\prime}+b^{\prime} \neq 0$ and $a^{\prime} \neq$ 0 . We can assume that $a^{\prime}=1$, thus $1+b^{\prime} \neq 0$. We have $\Omega M\left(1, b^{\prime}, c^{\prime}\right) \simeq M\left(\omega\left(1, b^{\prime}, c^{\prime}\right)\right)=$ $M\left(1, q b^{\prime}, c^{\prime \prime}\right)$ for some $c^{\prime \prime}$. Since $M(1,-q, c) \simeq \Omega M\left(1, b^{\prime}, c^{\prime}\right) \simeq M\left(1, q b^{\prime}, c^{\prime \prime}\right)$, we see that $(1,-q, c)=\left(1, q b^{\prime}, c^{\prime \prime}\right)$, thus $b^{\prime}=-1$. But this is a contradiction to $1+b^{\prime} \neq 0$.
(6.3) For $M=M(0,1,0)$ and $M(0,0,1)$, there is no monomorphism $M \rightarrow{ }_{\Lambda} \Lambda$ which is an $\operatorname{add}(\Lambda)$-approximation.

Proof. Let M be equal to $M(0,1,0)$ or to $M(0,0,1)$. Assume that there is a monomorphism $u: M \rightarrow{ }_{\Lambda} \Lambda$ which is an $\operatorname{add}(\Lambda)$-approximation. The image $u(M)$ is a 3-dimensional left ideal, thus of the form $U(a, b, c)$ for some $(a, b, c) \neq 0$, see (2.7). The implication (ii) \Longrightarrow (iv) in (5.2) asserts that any homomorphism $U(a, b, c) \rightarrow{ }_{\Lambda} \Lambda$ maps into $U(a, b, c)$.

Obviously, both modules $M(0,1,0)$ and $M(0,0,1)$ have a factor module isomorphic to Λz, thus there is a surjective homomorphism $U(a, b, c) \rightarrow \Lambda z$, and therefore $\Lambda z \subseteq U(a, b, c)$. But Λz is an indecomposable module of length 2 , and $U(a, b, c) \simeq M$ is a local module of length 3 with socle of length 2. A local module of length 3 with socle of length 2 has no indecomposable submodule of length 2 , thus we obtain a contradiction.
(6.4) Proposition. The modules $M(0, b, c)$ with $b c \neq 0$ are not torsionless.

Proof. Let $M=M(0, b, c)$ with $b c \neq 0$ and assume that M is torsionless. According to (2.7), this means that $M \simeq U\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \simeq \Omega M\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ for some triple ($a^{\prime}, b^{\prime}, c^{\prime}$), and (2.5) asserts that $a^{\prime}+b^{\prime} \neq 0$ or $a^{\prime} c^{\prime} \neq 0$. Now we use (4.1) and have to distinguish
the three cases (1), (2) and (4). Case (1) means that $a^{\prime}+b^{\prime} \neq 0$ and $a^{\prime} \neq 0$, then $\Omega M\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \simeq M\left(\omega\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ and the first component of $\omega\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is a^{\prime}, thus non-zero. But then $M\left(\omega\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ cannot be isomorphic to $M(0, b, c)$. Case (4) means that $a^{\prime}=0$ and $b^{\prime} \neq 0$. Then $\Omega M\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \simeq M(0,1,0)$, thus not isomorphic to $M(0, b, c)$ with $b c \neq 0$. Finally, there is the case (2) with $a^{\prime}+b^{\prime}=0$ and $a^{\prime} c^{\prime} \neq 0$. Then $\Omega M\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \simeq M(0,0,1)$, again not isomorphic to $M(0, b, c)$ with $b c \neq 0$. In all cases, we get a contradiction.
(6.5) Proposition. If M is equal to $M(0,1,0)$ or $M(0,0,1)$, then M is torsionless and the module $\mho M$ has Loewy length 3. Since $\mho M$ is indecomposable and non-projective, it is not torsionless.

Proof. The modules M of the form $M(0,1,0)$ and $M(0,0,1)$ are torsionless, since (4.1), (4) and (2) assert that $M(0,1,0) \simeq \Omega M(0,1,0)$ and that $M(0,0,1) \simeq \Omega M(1,-1,1)$. According to (5.2), in both cases there is no inclusion map $M \rightarrow \Lambda$ which is an $\operatorname{add}(\Lambda)$ approximation. Thus, a minimal left add (Λ)-approximation of M is an injective map $M \rightarrow \Lambda^{t}$ with $t \geq 2$. This shows that $\mho M$ has dimension $6 t-3$ and its top has dimension t. According to Part I (3.2), $\mho M$ is indecomposable and not projective. The Loewy length of $\mho M$ has to be 3. [Namely, an indecomposable module with Loewy length at most 2 and top of dimension $t \geq 2$ has dimension at most $4 t-1$, since it is a proper factor module of $\bar{\Lambda}^{t}$. But $6 t-3 \leq 4 t-1$ implies $t \leq 1$, a contradiction.] An indecomposable non-projective module of Loewy length 3 cannot be torsionless.
(6.6) We finish this section by reformulating the results concerning the modules of the form $M(0, b, c)$ in terms of \mathcal{V}-components. Here, we will exhibit the structure of all the \mho-components containing modules of the form $M(0, b, c)$. We have to distinguish between the modules $M(0,1,0)$ and $M(0,0,1)$ and the modules $M(0, b, c)$ with $b c \neq 0$, thus lying on the dashed line $A^{\prime}=\{(0: b: c) \mid b c \neq 0\}$:

The modules in A^{\prime} are singletons (that is, components of type \mathbb{A}_{1}) in the \mho-quiver. And, there are the following two \mho-components of the form \mathbb{A}_{2} :

(If M is an indecomposable module, then we represent $[M]$ in the \mho-quiver usually just by a circle \circ. We use a bullet - in case we know that M is torsionless and extensionless, a black square \quad in case we know that M is extensionless, but not torsionless; and a black lozenge in case we know that M is torsionless, but not extensionless.)

7. The modules $M(1, b, c)$ and proof of Theorem (1.5).

We consider now the affine subspace H of \mathbb{P}^{2} given by the points $(1: b: c)$ with $b, c \in k$ and the corresponding modules $M(1, b, c)$. We recall that $o(q)$ denotes the multiplicative order of q.
(7.1) We have seen in (4.2) that Ω provides a bijection from the set of modules $M(1, b, c)$ with $b \neq-1$ onto the set of modules $M\left(1, b^{\prime}, c^{\prime}\right)$ with $b^{\prime} \neq-q$. The sections 5 and 6 strengthen this bijection as follows:

If $b \neq-1$, then the exact sequence

$$
0 \rightarrow M\left(1, b^{\prime}, c^{\prime}\right) \rightarrow{ }_{\Lambda} \Lambda \rightarrow M(1, b, c) \rightarrow 0
$$

with $\left(1, b^{\prime}, c^{\prime}\right)=\omega(1, b, c)$ is an \mho-sequences (here, $\left(1, b^{\prime}, c^{\prime}\right)$ is an arbitrary triple with $b^{\prime} \neq-q$, and $(1, b, c)=\omega^{\prime}\left(1, b^{\prime}, c^{\prime}\right)$). We obtain in this way all the \mho-sequences involving modules of the form $M(1, b, c)$.
(7.2) Reformulation. The neighborhood of $M(1, b, c)$ in the \mho-quiver looks like:

$$
\begin{aligned}
& \begin{array}{ccc}
\cdots \\
M(\omega(1, b, c)) & \circ \leftarrow----\bullet<-----0 \\
M(1, b, c) & M\left(\omega^{\prime}(1, b, c)\right) & b \notin\{-1,-q\}
\end{array} \\
& \begin{array}{ll}
\cdots(1,-q, c)) & M(1,-q, c) \\
\omega(---■ & b=-q \neq-1
\end{array} \\
& M(1,-1, c) \quad M\left(\omega^{\prime}(1,-1, c)\right) \quad b=-1 \neq-q
\end{aligned}
$$

and $M(1, b, c)$ is a singleton in the \mho-quiver if $q=1$ and $b=-1$.
(7.3) The module $M(1, b, c)$ is semi-Gorenstein-projective if and only if $b \neq-q^{t}$ for all $t \leq 0$. The module $M(1, b, c)$ is ∞-torsionfree if and only if $b \neq-q^{t}$ for all $t \geq 1$.

Proof: $M(1, b, c)$ is semi-Gorenstein-projective if and only if $\omega^{s}(1, b, c) \notin E$ for all $s \geq 0$. Since $\omega^{s}(1, b, c)=\left(1, q^{s} b, c_{s}\right)$ for some $c_{s} \in k$, we see that $M(1, b, c)$ is semi-Gorenstein-projective if and only if $1+q^{s} \neq 0$ for all $s \geq 0$, thus if and only if $q^{-s} \neq-b$ for all $s \geq 0$. Write $t=-s$.

Similarly, $M(1, b, c)$ is ∞-torsionfree if and only if $\omega^{-s}(1, b, c) \notin T$ for all $s \geq 0$, thus if and only if $1+q^{-1} q^{-s} b \neq 0$ for all $s \geq 0$, if and only if $-b \neq q^{s+1}$ for all $s \geq 0$. Write $t=s+1$.

Corollary. The module $M(1, b, c)$ is Gorenstein-projective if and only if $b \neq-q^{t}$ for all $t \in \mathbb{Z}$.
(7.4) Any module $M(1,0, c)$ with $c \in k$ is Gorenstein-projective with Ω-period 1 or 2 .

Proof. According to (6.2), the modules $M(1,0, c)$ are extensionless and torsionless. Since $\omega(1,0, c)=(1,0,-c)$, we see that $M(1,0,0)$ has Ω-period 1 , and $M(1,0, c)$ with $c \neq 0$ has Ω-period 2 in case the characteristic of k is different from 2 , otherwise its Ω-period is also 1 .
(7.5) Proposition. If $o(q)=\infty$, then any module of the form $M(1, b, c)$ is semi-Gorenstein-projective or ∞-torsionfree (whereas the modules of the form $M(0, b, c)$ are never semi-Gorenstein-projective nor ∞-torsionfree).

Proof. The first assertion follows immediately from (7.3), the additional assertion in the bracket is a consequence of (5.1), (6.4) and (6.5).
(7.6) Proposition. If $M(1, b, c)$ belongs to an \mho-component of the form \mathbb{A}_{n}, then $o(q)=n$.

Proof. We consider an \mho-component of type \mathbb{A}_{n}, say containing a module M which is not torsionless. Since M belongs to T, we have $M=M(1,-q, c)$ and the component consists of the modules $M, \Omega M, \ldots, \Omega^{n-1} M$. In particular, $\omega^{n-1}(1,-q, c)$ belongs to E. Now $\Omega^{n-1} M=M\left(\omega^{n-1}(1,-q, c)\right)=M\left(1,-q^{n}, c^{\prime}\right)$ for some c^{\prime}. Since $\Omega^{n-1} M$ is not extensionless, $\left(1,-q^{n}, c^{\prime}\right)$ belongs to E, thus $-q^{n}=-1$. This shows that $q^{n}=1$. Finally, for $1 \leq t<n$, we have $q^{t} \neq 1$, since otherwise $\omega^{t-1}(1,-q, c)$ would belong to E.

Corollary. If $o(q)=\infty$, then all the \mho-components in H are cycles or of type \mathbb{Z}, or $-\mathbb{N}$, or \mathbb{N}. Thus, any module in H is semi-Gorenstein-projective or ∞-torsionfree.

For $o(q)=\infty$, there are the following \mho-components of the form $-\mathbb{N}$ and \mathbb{N} :

with arbitrary elements $c_{0}, d_{1} \in k$ and $c_{t+1}=-\frac{1}{1-q^{t}} c_{t}$ for $t \geq 1$, whereas $d_{t+1}=$ $-\left(1-q^{-t}\right) d_{t}$ for $t \geq 0$. Of course, $\left(1,-q, c_{1}\right) \in T$ and $\left(1,-1, d_{0}\right) \in E$, thus the module $M\left(1,-q, c_{1}\right)$ is pivotal semi-Gorenstein-projective, whereas $M\left(1,-1, d_{0}\right)$ is pivotal ∞ torsionfree.
(7.7) The case that q has finite multiplicative order. Now let $o(q)=n<\infty$. Then the modules $M\left(1,-q^{t}, c\right)$ with $0 \leq t<n$ and $c \in k$ belong to \mho-components of the form \mathbb{A}_{n}. These \mho-components look as follows:
with an arbitrary element $c_{1} \in k$ and $c_{t+1}=-\frac{1}{1-q^{t}} c_{t}$ for $1 \leq t<n$ (of course, $\left(1,-1, c_{n}\right) \in$ E and $\left.\left(1,-q, c_{1}\right) \in T\right)$.

Corollary (7.3) asserts that the remaining modules $M(1, b, c)$ (those with $\left.-b \notin q^{\mathbb{Z}}\right)$ are Gorenstein-projective.

(7.9) Proof of Theorem (1.5).

Torsionless modules: According to (2.7), an indecomposable torsionless module is isomorphic to a left ideal. Of course, k is torsionless. According to (2.2), a 2-dimensional indecomposable left ideal is isomorphic to $\Lambda(x-y)$ or Λz. According to (2.3), a 3-dimensional indecomposable torsionless module has to be local, thus it is of the form $M(a, b, c)$, and (6.1) says that $a\left(a+q^{-1} b\right) \neq 0$ or else $M(a, b, c)$ is equal to $M(0,1,0)$ or to $M(0,0,1)$.

Extensionless modules: We show: An indecomposable module M of dimension at most 3 with simple socle is not extensionless.

Of course, $\operatorname{Ext}^{1}(k, \Lambda) \neq 0$, since otherwise we would have $\operatorname{Ext}^{1}(X, \Lambda)=0$ for all modules X.

Let I be an indecomposable module of length 2. A projective cover of I as an $\bar{\Lambda}$ module provides an exact sequence $0 \rightarrow k^{2} \rightarrow \bar{\Lambda} \rightarrow I \rightarrow 0$. We apply $\operatorname{Hom}_{\bar{\Lambda}}(-, J)$, where $J=\operatorname{rad} \Lambda$. We obtain the exact sequence

$$
0 \rightarrow \operatorname{Hom}_{\bar{\Lambda}}(I, J) \rightarrow \operatorname{Hom}_{\bar{\Lambda}}(\bar{\Lambda}, J) \rightarrow \operatorname{Hom}_{\bar{\Lambda}}\left(k^{2}, J\right) \rightarrow \operatorname{Ext}_{\bar{\Lambda}}(I, J) \rightarrow 0 .
$$

Now, $\operatorname{dim} \operatorname{Hom}_{\bar{\Lambda}}(I, J) \geq \operatorname{dim} \operatorname{Hom}_{\bar{\Lambda}}(k, J)=2, \operatorname{dim} \operatorname{Hom}_{\bar{\Lambda}}(\bar{\Lambda}, J)=\operatorname{dim} J=5$, and finally $\operatorname{dim} \operatorname{Hom}_{\bar{\Lambda}}\left(k^{2}, J\right)=4$, thus $\operatorname{dim} \operatorname{Ext} \frac{1}{\Lambda}(I, J) \geq 1$. This shows that there exists a non-split exact sequence $\epsilon: 0 \rightarrow J \xrightarrow{u} E \rightarrow I \rightarrow 0$ with some $\bar{\Lambda}$-module E. The inclusion map $\iota: J \rightarrow \Lambda$ yields an induced exact sequence $\epsilon^{\prime}: 0 \rightarrow \Lambda \rightarrow E^{\prime} \rightarrow I \rightarrow 0$. Assume that ϵ^{\prime} splits. Then we obtain a map $v: E \rightarrow \Lambda$ such that $v u=\iota$. Now E is an $\bar{\Lambda}$-module, thus of Loewy length at most 2. Therefore $v: E \rightarrow \Lambda$ maps into $\operatorname{rad} \Lambda=J$, thus $v=\iota v^{\prime}$ for some $v^{\prime}: E \rightarrow J$. But $\iota v^{\prime} u=v u=\iota$ implies that $v^{\prime} u$ is the identity map of E, thus ϵ splits, a contradiction. The exact sequence ϵ^{\prime} shows that $\operatorname{Ext}_{\Lambda}^{1}(I, \Lambda) \neq 0$. Thus I is not extensionless.

A similar proof shows that $\operatorname{Ext}^{1}(V, \Lambda) \neq 0$ for any 3 -dimensional module V with simple socle. Again, we use that V is an $\bar{\Lambda}$-module (see (1.3) Proposition 1), thus we start with an exact sequence $0 \rightarrow k^{5} \rightarrow \bar{\Lambda}^{2} \rightarrow V \rightarrow 0$.

This completes the proof that an indecomposable module M of dimension at most 3 with simple socle is not extensionless. The remaining indecomposable modules of dimension at most 3 are the modules of the form $M(1, b, c)$. According to (5.1) M(1,b,c) is extensionless if and only if $b \neq-1$.

Reflexive modules: We recall from Part I that a module M is reflexive if and only if both M and $\mho M$ are torsionless. We show: A module M with simple socle is not reflexive. Assume that M has simple socle and is torsionless. Since M has simple socle, there is an embedding $M \rightarrow_{\Lambda} \Lambda$, say with cokernel Q. The elements $y x$ and $z x$ cannot both belong to $u(M)$, since the socle of $u(M)$ is simple. If $y x \notin u(M)$, then $y x Q \neq 0$, otherwise $z x Q \neq 0$. Let $f: M \rightarrow{ }_{\Lambda} \Lambda^{t}$ be a minimal left add(Λ)-approximation; its cokernel is $\mho M$. There is $u^{\prime}:{ }_{\Lambda} \Lambda^{t} \rightarrow \Lambda$ with $u^{\prime} f=u$. The map u^{\prime} has to be surjective, since otherwise u^{\prime} would vanish on the socle of $\Lambda^{\prime} \Lambda^{t}$. This implies that the map $\mho M \rightarrow Q$ induced by u^{\prime} is also surjective. Since $\mho M$ is indecomposable, non-projective and not annihilated by $\operatorname{rad}^{2} \Lambda$, $\mho M$ cannot be torsionless.

Let us assume that M is reflexive and $\operatorname{dim} M \leq 3$. It follows that M has to be a torsionless module with $\operatorname{dim} M=3$. Since also $\mho M$ has to be torsionless, (6.5) shows that the cases $M(0,1,0)$ and $M(0,0,1)$ are not possible, thus M is of the form $M(1, b, c)$ with $b \neq-q$. Using (6.2) and (6.1), we see that we also must have $b \neq-q^{2}$. Conversely, the same references show that all the modules $M(1, b, c)$ with $b \neq-q^{i}$ for $i=1,2$ are reflexive.

Semi-Gorenstein-projective and ∞-torsionfree modules. The semi-Gorensteinprojective modules are extensionless, the ∞-torsionfree modules are reflexive. The previous considerations therefore show that we only have to consider the modules of the form $M(1, b, c)$. (7.3) provides the conditions on b so that $M(1, b, c)$ is semi-Gorensteinprojective, ∞-torsionfree, or Gorenstein-projective.

If $M(1, b, c)$ is pivotal semi-Gorenstein-projective, then $M(1, b, c)$ is not torsionless, thus $b=-q$. If $M(1,-q, c)$ is semi-Gorenstein-projective, then $-q \neq-q^{-s}$ for all $s \geq 0$,
thus $q^{s+1} \neq 1$ for all $s \geq 0$. This means that $o(q)=\infty$. Of course, there is also the converse: if $o(q)=\infty$, then $M(1,-q, c)$ is pivotal semi-Gorenstein-projective.

A similar argument shows that $M(1, b, c)$ is pivotal ∞-torsionfree if and only if $o(q)=$ ∞ and $b=-1$.

Remark. It seems worthwhile to note that the set of modules $M(1, b, c)$ with $b, c \in k$ is a union of \mho-components.

8. Right modules.

Recall that we write $U^{\prime}(a, b, c)$ instead of $U(a, b, c)$, if we consider $U(a, b, c)$ as a right ideal. Let $M^{\prime}(a, b, c)=\Lambda_{\Lambda} / U^{\prime}(a, b, c)$, this is a right module (of course, the sets $M(a, b, c)$ and $M^{\prime}(a, b, c)$ are the same, but we use the notation $M^{\prime}(a, b, c)$ if we want to stress that we deal with a right module).
(8.1) Proposition. Let $(a, b, c) \neq 0$. Then

$$
\Omega M^{\prime}(a, b, c) \simeq\left\{\begin{array}{cl}
M^{\prime}\left(\omega^{\prime}(a, b, c)\right) & \text { if } a \neq 0, \tag{1}\\
M^{\prime}(0,0,1) & \text { if } a=0, b c \neq 0 \\
y \Lambda \oplus z x \Lambda & \text { if } a=0, c=0 \\
z \Lambda \oplus y x \Lambda & \text { if } a=0, b=0
\end{array}\right.
$$

Proof. We have $\Omega M^{\prime}(a, b, c)=U^{\prime}(a, b, c)_{\Lambda}$. According to (2.8), $U^{\prime}(a, b, c)_{\Lambda}=(a, b, c) \Lambda$ if $a \neq 0$ or $b c \neq 0$, and $U^{\prime}(0,1,0)=y \Lambda \oplus z x \Lambda, U^{\prime}(0,0,1)=z \Lambda \oplus y x \Lambda$.

Consider the $\operatorname{map} \pi: \Lambda_{\Lambda} \rightarrow U^{\prime}(a, b, c)$ defined by $\pi(1)=(a, b, c)$. We assume that $a \neq 0$ or $b c \neq 0$, thus π is surjective. If $a \neq 0$, the formula (3.1) (3) asserts that $\omega^{\prime}(a, b, c)$ is in the kernel of π, thus π yields an epimorphism $M^{\prime}\left(\omega^{\prime}(a, b, c)\right)=\Lambda_{\Lambda} / \omega^{\prime}(a, b, c) \Lambda \rightarrow U^{\prime}(a, b, c)$. Since this is a map between 3-dimensional modules, it has to be an isomorphism.

If $a=0$ and $b c \neq 0$, we use formula (3.1) (4) in order to get similarly an isomorphism $M^{\prime}(0,0,1)=\Lambda_{\Lambda} /(0,0,1) \Lambda \rightarrow U^{\prime}(0, b, c)$.
(8.2) If a 3-dimensional indecomposable right module N is torsionless and no embedding $N \rightarrow \Lambda_{\Lambda}$ is a left $\operatorname{add}\left(\Lambda_{\Lambda}\right)$-approximation, then $\mho N$ has Loewy length 3 and is not torsionless.

Proof. Let $\phi: N \rightarrow \Lambda_{\Lambda}^{t}$ be a minimal left $\operatorname{add}\left(\Lambda_{\Lambda}\right)$-approximation of N. Since N is torsionless, ϕ is a monomorphism. By assumption, we must have $t \geq 2$. It follows that the cokernel $\mho N$ of ϕ is an indecomposable right Λ-module of length $6 t-3$ with top of length t. But an indecomposable right Λ-module of Loewy length at most 2 with top of length $t \geq 2$ is a right $\bar{\Lambda}$-module of length at most $4 t-1$. Thus $6 t-3 \leq 4 t-1$, therefore $2 t \leq 2$, thus $t \leq 1$, a contradiction. This shows that $\mho N$ has Loewy length equal to 3 . Of course, $\mho N$ is not projective. Since an indecomposable non-projective torsionless right Λ-module has Loewy length at most 2 , we see that $\mho N$ cannot be torsionless.
(8.3) The right modules $M^{\prime}(0, b, c)$. The only right module of the form $M^{\prime}(0, b, c)$ which is torsionless is $M^{\prime}(0,0,1)$. The right module $\mho M^{\prime}(0,0,1)$ has Loewy length 3 and thus it is not torsionless. No right module of the form $M^{\prime}(0, b, c)$ is extensionless.

Proof. Let $N=M^{\prime}(0, b, c)$.
(a) If N is torsionless, then $b=0$ (thus $(0: b: c)=(0: 0: 1))$. Namely, According to (2.9) , $M^{\prime}(0, b, c)$ arises as a right ideal and (8.1) shows that this happens only for $b=0$.
(b) No embedding $M^{\prime}(0,0,1) \rightarrow \Lambda_{\Lambda}$ is a left $\operatorname{add}\left(\Lambda_{\Lambda}\right)$-approximation. Proof. Let $\phi: M^{\prime}(0,0,1) \rightarrow \Lambda_{\Lambda}$ be an embedding. According to (2.9), the image of ϕ is of the form $U^{\prime}(0, b, c)$ with $b c \neq 0$. Now $M^{\prime}(0,0,1)$ has a factor module isomorphic to $(0,0,1) \Lambda$, thus there is $f: M^{\prime}(0,0,1) \rightarrow \Lambda_{\Lambda}$ with image $(0,0,1) \Lambda$. If ϕ is a left $\operatorname{add}\left(\Lambda_{\Lambda}\right)$-approximation, then there exists $f^{\prime}: \Lambda_{\Lambda} \rightarrow \Lambda_{\Lambda}$ with $f=f^{\prime} \phi$. The homomorphism f^{\prime} is the left multiplication by some element λ in Λ. If λ belongs to $\operatorname{rad} \Lambda$, then the image of $f^{\prime} \phi$ is contained in $\operatorname{rad}^{2} \Lambda=\operatorname{soc} \Lambda$. If λ is invertible, then the image of $f^{\prime} \phi$ is 3 -dimensional. In both cases, we get a contradiction, since the image of f is $(0,0,1) \Lambda$, thus 2 -dimensional and not contained in $\operatorname{soc} \Lambda$.
(c) It follows from (8.2) that $\mho M^{\prime}(0,0,1)$ has Loewy length 3 and is not torsionless.
(d) A right module of the form $M^{\prime}(0, b, c)$ is never extensionless: either $\Omega M^{\prime}(0, b, c)$ is decomposable, or else $\Omega M^{\prime}(0, b, c)=M^{\prime}(0,0,1)$ and according to (b), no embedding $M^{\prime}(0,0,1) \rightarrow \Lambda_{\Lambda}$ is a left $\operatorname{add}\left(\Lambda_{\Lambda}\right)$-approximation.

Reformulation. The right modules $M^{\prime}(0,1, c)$ are singletons in the \mho-quiver. The right module $M^{\prime}(0,0,1)$ belongs to an \mho-component of the form \mathbb{A}_{2} :

$$
M^{\prime}(0,0,1) \quad \stackrel{\star-----\boldsymbol{\bullet}}{\mho M^{\prime}(0,0,1)}
$$

(8.4) The right modules $M^{\prime}(1, b, c)$ with $c \neq 0$.

Proposition. Let $c \neq 0$. The right module $M^{\prime}(1, b, c)$ is torsionless if and only if $b \neq-1$, and then $\mho M^{\prime}(1, b, c)=M^{\prime}(\omega(1, b, c))$. Let $c^{\prime} \neq 0$. The right module $M^{\prime}\left(1, b^{\prime}, c^{\prime}\right)$ is extensionless if and only if $b^{\prime} \neq-q$, and then $\Omega M^{\prime}\left(1, b^{\prime}, c^{\prime}\right)=M^{\prime}\left(\omega^{\prime}\left(1, b^{\prime}, c^{\prime}\right)\right)$.

Remark. If $b \neq-1$ and $c \neq 0$, then $\omega(1, b, c)=\left(1, b^{\prime}, c^{\prime}\right)$ with $b^{\prime} \neq-q$ and some $c^{\prime} \neq 0$. If $b^{\prime} \neq-q$, then $\omega^{\prime}\left(1, b^{\prime}, c^{\prime}\right)=(1, b, c)$ with $b \neq-1$ and some $c \neq 0$. Thus, the proposition provides \mho-sequences

$$
0 \rightarrow M^{\prime}(1, b, c) \rightarrow \Lambda_{\Lambda} \rightarrow M^{\prime}\left(1, b^{\prime}, c^{\prime}\right) \rightarrow 0
$$

with $b \neq-1$ and $b^{\prime} \neq-q$ (and both c, c^{\prime} being non-zero). Any triple $(1, b, c)$ with $b \neq-1$ and $c \neq 0$ occurs on the left and given $(1, b, c)$, then we have $\left(1, b^{\prime}, c^{\prime}\right)=\omega(1, b, c)$ on the right. Any triple $\left(1, b^{\prime}, c^{\prime}\right)$ with $b^{\prime} \neq-q$ and $c^{\prime} \neq 0$ occurs on the right and given $\left(1, b^{\prime}, c^{\prime}\right)$, then we have $(1, b, c)=\omega^{\prime}\left(1, b^{\prime}, c^{\prime}\right)$ on the left.

Proof of Proposition. We follow closely the proof of (5.1) and (6.1). We always assume that $c \neq 0$. As in (5.2) one sees that $M^{\prime}(1, b, c)$ is extensionless if and only if the image of every homomorphism $U^{\prime}(1, b, c) \rightarrow \Lambda_{\Lambda}$ is contained in $U^{\prime}(1, b, c)$.
(a) The module $M^{\prime}(1,-q, c)$ is not extensionless. Proof. According to (8.1), we have $U^{\prime}\left(1,-q, c^{\prime}\right) \simeq \Omega M^{\prime}\left(1,-q, c^{\prime}\right) \simeq M^{\prime}\left(\omega^{\prime}\left(1,-q, c^{\prime}\right)\right)=M^{\prime}(1,-1,0)$ for all $c^{\prime} \in k$. Thus, there is a homomorphism $U^{\prime}(1,-q, 0) \rightarrow \Lambda_{\Lambda}$ with image $U^{\prime}(1,-q, 0)$ and this image $U^{\prime}(1,-q, 0)$ is not contained in $U^{\prime}(1,-q, c)$.
(b) If $b \neq-q$, then the module $M^{\prime}(1, b, c)$ is extensionless. For the proof, we need three assertions (b1), (b2) (b3). Note that (8.1) asserts that $U^{\prime}(1, b, c) \simeq \Omega M^{\prime}(1, b, c) \simeq$ $M^{\prime}\left(\omega^{\prime}(1, b, c)\right)=M^{\prime}\left(1, q^{-1} b, c^{\prime}\right)$, where $\omega^{\prime}(1, b, c)=\left(1, q^{-1} b, c^{\prime}\right)$.
(b1) The only right ideal isomorphic to $U^{\prime}(1, b, c)$ is $U^{\prime}(1, b, c)$ itself. Proof. Let V be a right ideal of Λ_{Λ} which is isomorphic to $U^{\prime}(1, b, c)$, say $V=U^{\prime}\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)$ for some triple ($\left.a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)$. By (8.1), we have $U\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right) \simeq \Omega M^{\prime}\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)=M^{\prime}\left(a^{\prime \prime}, q^{-1} b^{\prime \prime}, d\right)$, where $\omega^{\prime}\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)=\left(a^{\prime \prime}, q^{-1} b^{\prime \prime}, d\right)$ for some d. We must have $a^{\prime \prime} \neq 0$, since $M\left(a^{\prime \prime}, q^{-1} b^{\prime \prime}, d\right) \simeq$ $U^{\prime}(1, b, c) \simeq M^{\prime}\left(1, q^{-1} b, c^{\prime}\right)$. Thus, we may assume that $a^{\prime \prime}=1$ and then $M^{\prime}\left(1, q^{-1} b^{\prime \prime}, d\right) \simeq$ $M^{\prime}\left(1, q^{-1} b, c^{\prime}\right)$ implies that $\left(1, q^{-1} b^{\prime \prime}, d\right)=\left(1, q^{-1} b, c^{\prime}\right)$. In particular, we have $b^{\prime \prime}=b \neq-q$. The equality $\omega^{\prime}\left(1, b^{\prime \prime}, c^{\prime \prime}\right)=\omega^{\prime}(1, b, c)$ yields $\left(1, b^{\prime \prime}, c^{\prime \prime}\right)=(1, b, c)$, see Proposition (3.2). Therefore $V=U\left(1, b^{\prime \prime}, c^{\prime \prime}\right)=U(1, b, c)$.
(b2) The right ideal $z \Lambda$ is not a factor module of $U^{\prime}(1, b, c)$. Proof. The right ideal $z \Lambda$ is annihilated by $x-y$ and z, thus Corollary (5.3) asserts that the image I of any homomorphism $M^{\prime}\left(1, b^{\prime}, c^{\prime}\right) \rightarrow z \Lambda$ is a factor module of $\Lambda /((1, b, c) \Lambda+(x-y) \Lambda+z \Lambda)$. Now $(x+b y+c z) \Lambda+(x-y) \Lambda+z \Lambda=\operatorname{rad} \Lambda$, since $b \neq-1$, thus I is simple or zero.
(b3) The right ideal $y \Lambda$ is not a factor module of $U^{\prime}(1, b, c)$. Proof. The right ideal $y \Lambda$ is annihilated by y and z, thus Corollary (5.3) asserts that the image I of any homomorphism $M^{\prime}\left(1, b^{\prime}, c^{\prime}\right) \rightarrow y \Lambda$ is a factor module of $\Lambda /((1, b, c) \Lambda+y \Lambda+z \Lambda)$. Now $(x+b y+c z) \Lambda+$ $y \Lambda+z \Lambda=\operatorname{rad} \Lambda$, since $b \neq-1$, thus I is simple or zero.

The assertions (b1), (b2) and (b3) show: if ϕ is any homomorphism $U^{\prime}(1, b, c) \rightarrow \Lambda_{\Lambda}$ and its image I is of dimension at least 2 , then I is contained in $U^{\prime}(1, b, c)$. Of course, if I is 1-dimensional, then I is contained in $\operatorname{soc} \Lambda_{\Lambda}$ and $\operatorname{soc} \Lambda_{\Lambda} \subseteq U^{\prime}(1, b, c)$. Thus, we have obtained a proof of (b). In addition, (8.1) asserts that $\Omega M^{\prime}(1, b, c) \simeq M^{\prime}\left(\omega^{\prime}(1, b, c)\right)$.
(c) If $b \neq-1$, then $M^{\prime}(1, b, c)$ is torsionless and $\mho M^{\prime}(1, b, c)=M^{\prime}(\omega(1, b, c))$. Proof. Let $\omega(1, b, c)=\left(1, b^{\prime}, c^{\prime}\right)$. Then $b^{\prime}=q b \neq-q$, and $\omega^{\prime}\left(1, b^{\prime}, c^{\prime}\right)=\omega^{\prime} \omega(1, b, c)=(1, b, c)$ by Proposition (3.2). According to (8.1), we have $\Omega M^{\prime}\left(1, b^{\prime}, c^{\prime}\right) \simeq M^{\prime}\left(\omega^{\prime}\left(1, b^{\prime}, c^{\prime}\right)\right)=$ $M^{\prime}(1, b, c)$. This shows that $M^{\prime}(1, b, c)$ is torsionless. According to (b), the module $M^{\prime}(\omega(1, b, c))$ is extensionless, thus $\mho M^{\prime}(1, b, c)=M^{\prime}\left(1, b^{\prime}, c^{\prime}\right)=M^{\prime}(\omega(1, b, c))$.
(d) The modules $M^{\prime}(1,-1, c)$ are not torsionless. Proof. Assume, for the contrary, that $M^{\prime}(1,-1, c)$ is torsionless, thus isomorphic to $U^{\prime}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ for some $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$. According to (8.1), we must have $a^{\prime} \neq 0$, thus we can assume that $a^{\prime}=1$, and $(1,-1, c)=\omega^{\prime}\left(1, b^{\prime}, c^{\prime}\right)=$ $\left(1, q^{-1} b^{\prime},-\left(1+q^{-1} b^{\prime}\right) c^{\prime}\right)$. It follows that $b^{\prime}=-q$ and therefore $c=-\left(1+q^{-1} b^{\prime}\right) c^{\prime}=0$, a contradiction.

This completes the proof of (8.4).
Reformulation. The neighborhood of $M^{\prime}(1, b, c)$ with $c \neq 0$ in the \mho-quiver looks as follows:

$$
\begin{aligned}
& \underset{M^{\prime}(\omega(1, b, c))}{\stackrel{\circ}{0}(1, b, c)} \quad \underset{M^{\prime}\left(\omega^{\prime}(1, b, c)\right)}{\circ} \quad b \notin\{-1,-q\} \\
& \begin{array}{ll}
\cdots & \circ---\cdots \rightarrow \\
M^{\prime}(\omega(1,-q, c)) & M^{\prime}(1,-q, c)
\end{array} \quad b=-q \neq-1
\end{aligned}
$$

and $M^{\prime}(1, b, c)$ is a singleton in the \mho-quiver if $q=1$ and $b=-1$.
Note that we want to use a fixed index set \mathbb{P}^{2} both for the (left) modules $M(a: b: c)$ and the right modules $M^{\prime}(a: b: c)$, Since we have drawn the dashed arrows in the \mho-quiver
of the left Λ-modules from right to left, we now have drawn the dashed arrows in the \mho-quiver of the right Λ-modules from left to right.

As in section 7 , we see that the \mho-components of the modules $M^{\prime}(1, b, c)$ with $c \neq 0$ are cycles, or of type \mathbb{Z}, \mathbb{N} or $-\mathbb{N}$ in case $o(q)=\infty$, and cycles or of type \mathbb{Z} or \mathbb{A}_{n} in case $o(q)=n<\infty$.

For $o(q)=\infty$, the right modules $M^{\prime}(1,-1, c)$ with $c \neq 0$ are pivotal semi-Gorensteinprojective, and the right modules $M^{\prime}(1,-q, c)$ with $c \neq 0$ are pivotal ∞-torsionfree.
(8.5) The right modules $M^{\prime}(1, b, 0)$.

The right modules $M^{\prime}(1, b, 0)$ have been considered already in Part I: these are just the right ideals $m_{\alpha} \Lambda$, where $m_{\alpha}=x-\alpha y$. Namely, we have

$$
M^{\prime}(1, b, 0)=(x+q b y) \Lambda=m_{-q b} \Lambda
$$

for all $b \in k$. (Proof: We have $M^{\prime}(1, b, 0)=\Lambda_{\Lambda} / U^{\prime}(1, b, 0)=\Lambda_{\Lambda} /(x+b y) \Lambda \simeq(x+q b y) \Lambda$, where we use that $(x+q b y)(x+b y)=0$ and that both right ideals $(x+b y) \Lambda$ and $(x+q b y) \Lambda$ are 3-dimensional, see (2.8).)

Let us recall the results presented in Part I using the present notation:
If $b \notin-q^{\mathbb{Z}}$, then $M^{\prime}(1, b, 0)$ is Gorenstein-projective and its \mho-component looks as follows:

In particular, if $o(q)=n$, then these \mho-components are cycles with n vertices, whereas for $o(q)=\infty$, one obtains \mho-components of type \mathbb{Z}.

For $o(q)=\infty$, there are three remaining \mho-components:

These \mho-components are of type $\mathbb{N}, \mathbb{A}_{2}$ and $-\mathbb{N}$, respectively.
For $2 \leq n=o(q)<\infty$, there are two remaining \mho-components, one is of type \mathbb{A}_{2}, the other of type \mathbb{A}_{n} :

In case $q=1$, there is only one additional \mho-component (of type \mathbb{A}_{2}), namely

(8.6) Similar to Theorem (1.5), here is the summary which characterizes the right modules of dimension at most 3 with relevant properties.

Theorem. An indecomposable right module N of dimension at most 3 is

- torsionless if and only if N is simple or isomorphic to $y \Lambda$, to $z \Lambda$, to a module $M^{\prime}(1, b, c)$ with $b \neq-1$, to $M^{\prime}(1,-1,0)$ or to $M^{\prime}(0,0,1)$.
- extensionless if and only if N is isomorphic to a module $M^{\prime}(1, b, c)$ with $b \neq-q$;
- reflexive if and only if M is isomorphic to a module $M^{\prime}(1, b, c)$ with $b \neq-q^{i}$ for $i=-1,0$;
- Gorenstein-projective if and only if N is isomorphic to a module $M^{\prime}(1, b, c)$ with $b \neq$ $-q^{i}$ for $i \in \mathbb{Z}$;
- semi-Gorenstein-projective if and only if N is isomorphic to a module $M^{\prime}(1, b, c)$ with $b \neq-q^{i}$ for $i \geq 0$ or to a module $M^{\prime}(1,-1, c)$ with $c \neq 0$;
- ∞-torsionfree if and only if N is isomorphic to a module $M^{\prime}(1, b, c)$ with $b \neq-q^{i}$ for $i \leq 0$;
- pivotal semi-Gorenstein-projective if and only if $o(q)=\infty$ and N is isomorphic to a module $M^{\prime}(1,-1, c)$ with $c \neq 0$;
- pivotal ∞-torsionfree if and only if $o(q)=\infty$ and N is isomorphic to a module $M^{\prime}(1,-q, c)$.
Whereas the set of modules $M(1, b, c)$ with $b, c \in k$ is a union of \mho-components, the right modules behave differently: as we have seen already in Part I, 7.2 , the $\mathcal{\mho}$-component containing the right module $M(1,-1,0)$ consists of $M(1,-1,0)$ and the 9 -dimensional right module $\mho M(1,-1,0)$.

9. The Λ-dual of $M(1, b, c)$ and $M^{\prime}(1, b, c)$.

We need the following (of course well-known) Lemma.
(9.1) Lemma. Let R be a ring and $w \in R$. If any left-module homomorphism $R w \rightarrow{ }_{R} R$ maps w into $w R$, then $\operatorname{Hom}\left(R w,{ }_{R} R\right) \simeq w R$ as right R-modules.

Proof. Let $u: R w \rightarrow{ }_{R} R$ be the inclusion map. We have $\operatorname{Hom}\left(R w,{ }_{R} R\right)=u R$, since for any homomorphism $f: R w \rightarrow_{R} R$, there is $\lambda \in R$ with $f(w)=w \lambda$, thus $f=u \lambda$. Now $I=\{r \in R \mid w r=0\}$ is a right ideal and $R_{R} / I \simeq w R$ as right modules (an isomorphism is given by the map $R_{R} \rightarrow w R$ defined by $\left.1 \mapsto w\right)$. Since $I=\{r \in R \mid u r=0\}$, we have in the same way $R_{R} / I \simeq u R$, and therefore $w R \simeq R_{R} / I \simeq u R=\operatorname{Hom}\left(R w,{ }_{R} R\right)$.
(9.2) Lemma. If $(1, b, c)$ is different from $(1,-1,0)$, then $M^{\prime}(1, b, c) \simeq \operatorname{Tr} M(1, b, c)$ and $M(1, b, c) \simeq \operatorname{Tr} M^{\prime}(1, b, c)$.

Proof. We have $U^{\prime}(1, b, c)=(1, b, c) \Lambda$, and since $(1, b, c) \neq(1,-1,0)$, we also have $U(1, b, c)=\Lambda(1, b, c)$. By definition, $M(1, b, c)={ }_{\Lambda} \Lambda / U(1, b, c)$, thus $M(1, b, c)$ is the cokernel of the right multiplication $r_{(1, b, c)}:{ }_{\Lambda} \Lambda \rightarrow{ }_{\Lambda} \Lambda$ and $\operatorname{Tr} M(1, b, c)$ is the cokernel of the left multiplication $l_{(1, b, c)}: \Lambda_{\Lambda} \rightarrow \Lambda_{\Lambda}$, thus isomorphic to $\Lambda_{\Lambda} /(1, b, c) \Lambda=\Lambda_{\Lambda} / U^{\prime}(1, b, c)$.
(9.3) Proposition. If $b \notin\left\{-q,-q^{2}\right\}$, then $M(1, b, c)$ is reflexive and

$$
M(1, b, c)^{*}=M^{\prime}\left(\left(\omega^{\prime}\right)^{2}(1, b, c)\right)
$$

If $b \notin\left\{-1,-q^{-1}\right\}$, then $M^{\prime}(1, b, c)$ is reflexive and $M^{\prime}(1, b, c)^{*}=M\left(\omega^{2}(1, b, c)\right)$.
Proof. According to (7.1), we have the following two \mho-sequences:

$$
\begin{gathered}
0 \rightarrow M(1, b, c) \rightarrow_{\Lambda} \Lambda \rightarrow M\left(\omega^{\prime}(1, b, c)\right) \rightarrow 0, \\
0 \rightarrow M\left(\omega^{\prime}(1, b, c)\right) \rightarrow_{\Lambda} \Lambda \rightarrow M\left(\left(\omega^{\prime}\right)^{2}(1, b, c)\right) \rightarrow 0
\end{gathered}
$$

(the first one, since $\omega^{\prime}(1, b, c)=\left(1, b^{\prime}, c^{\prime}\right)$ with $b^{\prime}=q^{-1} b \neq-1$; the second one, since $\left(\omega^{\prime}\right)^{2}(1, b, c)=\left(1, b^{\prime \prime}, c^{\prime \prime}\right)$ with $\left.b^{\prime \prime}=q^{-2} b \neq-1\right)$ This implies that $M(1, b, c)$ is reflexive and that $X=J^{2} M(1, b, c)=M\left(\left(\omega^{\prime}\right)^{2}(1, b, c)\right)$ is a module with $\operatorname{Ext}^{i}(X, \Lambda)=0$ for $i=1,2$. According to Part I, Lemma 2.5, we have $\operatorname{Tr} X=\left(\Omega^{2} X\right)^{*}$. On the one hand, $\Omega^{2} X=\mho M(1, b, c)=M(1, b, c)$. On the other hand, (9.2) shows that $\operatorname{Tr} X=$ $\operatorname{Tr} M\left(\left(\omega^{\prime}\right)^{2}(1, b, c)\right)=M^{\prime}\left(\left(\omega^{\prime}\right)^{2}(1, b, c)\right)$, since $\left(\omega^{\prime}\right)^{2}(1, b, c)=\left(1, q^{-2} b, c^{\prime \prime}\right)$ for some $c^{\prime \prime}$ and $q^{-2} b \neq-1$. This yields the first assertion. The second can be shown in the same way, or just by applying the Λ-duality to $M(1, b, c)^{*}=M^{\prime}\left(\left(\omega^{\prime}\right)^{2}(1, b, c)\right)$.
(9.4) Proposition. For all $b, c \in k$,

$$
M(1, b, c)^{*}=M^{\prime}\left(\left(\omega^{\prime}\right)^{2}(1, b, c)\right)
$$

In particular, for all $b, c \in k$, the right module $M(1, b, c)^{*}$ is again 3-dimensional and local.
Whereas $\left(\omega^{\prime}\right)^{2}$ is a bijection from $\left\{(1, b, c) \mid b \notin\left\{-q,-q^{2}\right\}\right\}$ onto $\{(1, b, c) \mid b \notin$ $\left.\left\{-1,-q^{-1}\right\}\right\}$, we should stress that $\left(\omega^{\prime}\right)^{2}(1,-q, c)=\left(1,-q^{-1}, 0\right)$ and that $\left(\omega^{\prime}\right)^{2}\left(1,-q^{2}, c\right)=$ $(1,-1,0)$ for all $c \in k$. Thus, (9.3) combines the first assertion of (9.2) with the corresponding assertion for the remaining cases, namely:

$$
M(1,-q, c)^{*}=M^{\prime}\left(1,-q^{-1}, 0\right) \quad \text { and } \quad M\left(1,-q^{2}, c\right)^{*}=M^{\prime}(1,-1,0)
$$

for all $c \in k$.
Proof of Proposition. According to (9.2), we only have to consider the cases where $b=-q$ or $b=-q^{2}$.

Case 1. Let $b=-q$. As we have seen in (6.2), the module $M(1,-q, c)$ is not torsionless. Now obviously, there is a surjective homomorphism $M(1,-q, c) \rightarrow \Lambda(1,-1,0)$ with kernel $z M(1,-q, c)$. It follows that $z M(1,-q, c)$ is contained in the kernel of every homomorphism $M(1,-q, c) \rightarrow{ }_{\Lambda} \Lambda$ and therefore $M(1,-q, c)^{*}=(\Lambda(1,-1,0))^{*}$. Now, $(\Lambda(1,-1,0))^{*} \simeq$ $(1,-1,0) \Lambda=U^{\prime}(1,-1,0)$, as shown in Part I, 6.5. On the other hand, according to (8.1), we have $U^{\prime}(1,-1,0)=\Omega M^{\prime}(1,-1,0)=M^{\prime}\left(\omega^{\prime}(1,-1,0)\right)$ and $\omega^{\prime}(1,-1,0)=\left(1,-q^{-1}, 0\right)$.

Case 2: $b=-q^{2}$ and $o(q)=2$. The assumption $o(q)=2$ means that $q=-1 \neq 1$, in particular, the characteristic of k is different from 2 , and we have $b=-1$. Since $q=-1$ and the characteristic of k is different from 2 , (4.1) asserts that

$$
\Lambda(1,1,-2 c)=U(1,1,-2 c)=\Omega M(1,1,-2 c)=M(\omega(1,1,-2 c))=M(1,-1, c)
$$

On the other hand, we have

$$
(1,1,-2 c) \Lambda=U^{\prime}(1,1,-2 c)=\Omega M^{\prime}(1,1,-2 c)=M^{\prime}\left(\omega^{\prime}(1,1,-2 c)\right)=M^{\prime}(1,-1,0)
$$

We claim that any homomorphism $\Lambda(1,1,-2 c) \rightarrow{ }_{\Lambda} \Lambda$ maps $(1,1,-2 c)$ into $(1,1,-2 c) \Lambda$. Namely, let $\phi: \Lambda(1,1,-2 c) \rightarrow_{\Lambda} \Lambda$ be a homomorphism. Now $\Lambda(1,1,-2 c)$ is 3-dimensional, thus equal to $U(1,1,-2 c)$, and ${ }_{\Lambda} \Lambda / U(1,1,-2 c) \simeq M(1,1,-2 c)$. According to (5.1), the module $M(1,1,-2 c)$ is extensionless, since $1+1 \neq 0$. The implication (i) to (iv) in (5.2) shows that $\phi(1,1,-2 c) \in(1,1,-2 c) \Lambda$.

Since any homomorphism $\Lambda(1,1,-2 c) \rightarrow{ }_{\Lambda} \Lambda$ maps $(1,1,-2 c)$ into $(1,1,-2 c) \Lambda$, Lemma (9.0) implies that the right modules $(\Lambda(1,1,-2 c))^{*}$ and $(1,1,-2 c) \Lambda$ are isomorphic, thus $M(1,-1, c)^{*} \simeq M^{\prime}(1,-1,0)$.

Case 3. $b=-q^{2}$ and $o(q) \geq 3$. There is the \mho-sequence

$$
\epsilon: \quad 0 \rightarrow M\left(1,-q^{3}, c^{\prime}\right) \rightarrow_{\Lambda} \Lambda \rightarrow M\left(1,-q^{2}, c\right) \rightarrow 0
$$

for some c^{\prime} (here we use that $q^{2} \neq 1$). The Λ-dual of ϵ is the exact sequence

$$
0 \rightarrow M\left(1,-q^{2}, c\right)^{*} \rightarrow \Lambda_{\Lambda} \rightarrow M\left(1,-q^{3}, c^{\prime}\right)^{*} \rightarrow 0
$$

Since $q^{2} \neq 1$, proposition (9.3) asserts that $M\left(1,-q^{3}, c^{\prime}\right)^{*}=M^{\prime}\left(1,-q, c^{\prime \prime}\right)$ for some $c^{\prime \prime}$. Altogether we see that

$$
M\left(1,-q^{2}, c\right)^{*} \simeq \Omega\left(M\left(1,-q^{3}, c^{\prime}\right)^{*}\right)=\Omega M^{\prime}\left(1,-q, c^{\prime \prime}\right) \simeq M^{\prime}(1,-1,0)
$$

where the final isomorphism is due to (8.1).
(9.5) The algebra $\Lambda=\Lambda(q)$ with $o(q)=\infty$ was exhibited in Part I in order to present a module M which is not torsionless, such that M and M^{*} both are semi-Gorensteinprojective: namely the module $M=M(1,-q, 0)$ with $M^{*}=M^{\prime}(1,-q, 0)$. Now we see: all the modules $M(1,-q, c)$ with $c \in k$ are modules which are semi-Gorenstein-projective and not torsionless, and that the Λ-duals $M(1,-q, c)^{*} \simeq M^{\prime}\left(1,-q^{-1}, 0\right)$ are semi-Gorensteinprojective. We should stress that this concerns a 1-parameter family $M(1,-q, c)$ (with $c \in$ k) of semi-Gorenstein-projective left modules, and the single semi-Gorenstein-projective right module $M\left(1,-q^{-1}, 0\right)$.
(9.6) Proposition. Let $b, c \in k$.

$$
M^{\prime}(1, b, c)^{*}=\left\{\begin{array}{cl}
M\left(\omega^{2}(1 . b . c)\right) & \text { if } \quad b \notin\left\{-1,-q^{-1}\right\}, \\
U(0,0,1) & \text { if } \quad b=-1, c \neq 0, \\
U(1,-q, 0)+U(0,0,1) & \text { if } \quad b=-1, c=0, \\
M(0,0,1) & \text { if } \quad b=-q^{-1}, c \neq 0, q \neq 1, \\
U(1,-1,0) & \text { if } \quad b=-q^{-1}, c=0, q \neq 1
\end{array}\right.
$$

Whereas we saw in (9.4) that all the right modules $M(1, b, c)^{*}$ are 3-dimensional and local, not all the modules $M^{\prime}(1, b, c)^{*}$ are 3-dimensional and local: the module $M^{\prime}(1,-1,0)^{*}=$ $U(1,-q, 0)+U(0,0,1)$ has dimension 4, whereas the modules $M^{\prime}(1,-1, c)^{*}=U(0,0,1)$ for $c \neq 0$ and, in case $q \neq 1$, the module $M^{\prime}\left(1,-q^{-1}, 0\right)^{*}=U(1,-1,0)$ are decomposable.

Proof. According to (9.3), we only have to deal with the cases with $b \in\left\{-1,-q^{-1}\right\}$. If $c=0$, then we can refer to Part I. For $b=-1$, the end of 7.1 in Part I shows that
$M^{\prime}(1,-1,0)^{*} \simeq M\left(1,-q^{2}, 0\right)^{* *} \simeq U(1,-q, 0)+U(0,0,1)$. For $b=-q^{-1} \neq-1$, the end of 6.7 in Part I asserts that $M^{\prime}\left(1,-q^{-1}, 0\right)^{*} \simeq\left(M(1,-q, 0)^{* *} \simeq \Omega M(1,-1,0) \simeq U(1,-1,0)\right.$.

Now, we assume that $c \neq 0$. As in the proof of (9.4), we consider again 3 cases.
Case 1. $b=-1$. The module $M^{\prime}(1,-1, c)$ with $c \neq 0$ is not torsionless, see (8.4). Since the factor module $M^{\prime}(1,-1, c) / M^{\prime}(1,-1, c) z$ is isomorphic to $(0,0,1) \Lambda$, it follows that $M^{\prime}(1,-1, c)^{*} \simeq((0,0,1) \Lambda)^{*}$ and an easy calculation yields $((0,0,1) \Lambda)^{*} \simeq U(0,0,1)$. Namely, the inclusion map $u: z \Lambda \rightarrow \Lambda_{\Lambda}$ satisfies $y u=0$ and $z u=0$, thus a basis of $(z \Lambda)^{*}$ is given by $u, x u$ and the map $f: z \Lambda \rightarrow \Lambda_{\Lambda}$ with $f(z)=y x$, so that $(z \Lambda)^{*} \simeq$ ${ }_{\Lambda} \Lambda /(\Lambda y+\Lambda z) \oplus k \simeq U(0,0,1)$.

Case 2. $b=-q^{-1}$ and $o(q)=2$. Thus, the characteristic of k is different from 2 , $q=-1$ and $b=1$. The module $M^{\prime}(1,1, c)$ is torsionless: namely, by (8.1) we have $M^{\prime}(1,1, c) \simeq \Omega M^{\prime}\left(1,-1,-\frac{c}{2}\right)$, since $\omega^{\prime}\left(1,-1,-\frac{c}{2}\right)=(1,1, c)$. Now, $\Omega M^{\prime}\left(1,-1,-\frac{c}{2}\right) \simeq$ $U^{\prime}\left(1,-1, \frac{c}{2}\right)=\left(1,-1, \frac{c}{2}\right) \Lambda$. Since $q \neq 1$, the right module $M^{\prime}\left(1,-1,-\frac{c}{2}\right)$ is extensionless by (8.4), thus we can use (5.2) and (9.1) in order to see that $\left(\left(1,-1, \frac{c}{2}\right) \Lambda\right)^{*} \simeq \Lambda\left(1,-1, \frac{c}{2}\right)$. By (4.1) (2), we have $\Lambda\left(1,-1, \frac{c}{2}\right)=U\left(1,-1, \frac{c}{2}\right) \simeq \Omega M\left(\left(1,-1,-\frac{c}{2}\right)\right) \simeq M(0,0,1)$.

Case 3. $b=-q^{-1}$ and $o(q) \geq 3$. There is the \mho-sequence

$$
0 \rightarrow M^{\prime}\left(1,-q^{-2}, c^{\prime}\right) \rightarrow \Lambda_{\Lambda} \rightarrow M^{\prime}\left(1,-q^{-1}, c\right) \rightarrow 0
$$

for $c^{\prime}=\lambda c$ with $\lambda \neq 0$ (here we use that $q^{2} \neq 1$). The Λ-dual is the exact sequence

$$
0 \rightarrow M^{\prime}\left(1,-q^{-1}, c\right)^{*} \rightarrow{ }_{\Lambda} \Lambda \rightarrow M^{\prime}\left(1,-q^{-2}, c^{\prime}\right)^{*} \rightarrow 0
$$

We assume that $q \neq 1$ and $q \neq 2$. Then by Proposition (9.2), we have $M^{\prime}\left(1,-q^{-2}, c^{\prime}\right)^{*}=$ $M\left(1,-1, c^{\prime \prime}\right)$ for some multiple $c^{\prime \prime}=\lambda^{\prime} c^{\prime}$ with $\lambda^{\prime} \neq 0$. It follows that $M^{\prime}\left(1,-q^{-1}, c\right)^{*}=$ $\Omega M\left(1,-1, c^{\prime \prime}\right)$ and $c^{\prime \prime}=0$ if and only if $c=0$. By (4.1), we have $\Omega M\left(1,-1, c^{\prime \prime}\right)=M(0,0,1)$ in case $c \neq 0$, and $\Omega M(1,-1,0)=U(1,-1,0)$ in case $c=0$.
(9.7) Corollary. Let N be a right Λ-module of dimension at most 3 which is semi-Gorenstein-projective, but not Gorenstein-projective. Then N^{*} is not semi-Gorensteinprojective.

Proof. According to (8.6), N is isomorphic to a right module of the form $M^{\prime}\left(1,-q^{i}, c\right)$ with $i \leq-1$ and $c \in k$ or of the form $M^{\prime}(1,-1, c)$ with $c \neq 0$. We apply (9.6). If $i \leq-2$, then $N^{*}=M^{\prime}\left(1,-q^{i}, c\right)^{*}=M\left(1,-q^{i+2}, c^{\prime}\right)$ for some c^{\prime}, and according to (1.5), N^{*} is not semi-Gorenstein-projective, since $i+2 \leq 0$. If $i=-1$, then N^{*} is isomorphic to $M(0,0,1)$ or to $U(1,-1,0)$. If $N=M^{\prime}(1,-1, c)$ with $c \neq 0$, then N^{*} is isomorphic to $U(0,0,1)$. But by (1.5), $M(0,0,1), U(1,-1,0)$ and $U(0,0,1)$ are not semi-Gorenstein-projective.

10. The general context.

Our detailed study of the algebra $\Lambda(q)$ in Part I and Part II should be seen in the frame of looking at Gorenstein-projective (or, more general, semi-Gorenstein-projective and ∞-torsionfree modules) over local algebras with radical cube zero.
(10.1) Let A be a finite-dimensional local k-algebra with radical J such that $A / J=k$. Such an algebra is said to be short provided $J^{3}=0$. In commutative ring theory, the short local algebras have attracted a lot of interest, since some conjectures have been disproved
by looking at modules over short algebras, see [AIS] for a corresponding account. We have to thank D. Jorgensen for his advice concerning the present knowledge in the commutative case.

Let us assume now that A is short, but not necessarily commutative. Let $e=\operatorname{dim} J / J^{2}$ and $a=\operatorname{dim} J^{2}$ (thus $0 \leq a \leq e^{2}$). Here is a report about the relevant general results: If there exists an indecomposable module which is semi-Gorenstein-projective or ∞-torsionfree, but not projective, then either A is self-injective, so that $a \leq 1$ (and $e=1$ in case $a=0$), or else $a=e-1 \geq 2$. Always, both modules ${ }_{A} J$ and J_{A} have to be indecomposable.

Of course, if A is self-injective, then all modules are Gorenstein-projective, thus the interesting case is the case $a=e-1 \geq 2$. Our algebra $\Lambda(q)$ is of this kind (with $a=2$), as is the Jorgensen-Şega algebra [JŞ] (with $a=3$).

Not only the shape of the algebras is very restricted, also the modules themselves are very special: Let A be a short local algebra which is not self-injective. Let M be indecomposable and not projective. If M is semi-Gorenstein-projective and torsionless, or if M is ∞-torsionfree (in particular, if M is Gorenstein-projective), then $\operatorname{soc} M=\operatorname{rad} M$ and $\operatorname{dim} \operatorname{soc} M=a \cdot \operatorname{dim} \operatorname{top} M$ (by definition, $\operatorname{top} M=M / \operatorname{soc} M$). Also, if M is semi-Gorenstein-projective and torsionless, then $\operatorname{dim} \Omega^{i} M=\operatorname{dim} M$ for all $i \in \mathbb{N}$, whereas if M is ∞-torsionfree, then $\operatorname{dim} \mho^{i} M=\operatorname{dim} M$ for all $i \in \mathbb{N}$.

These assertions have been shown by Christensen and Veliche in the case that A is commutative and M is Gorenstein-projective, see [CV], and the proof can be modified in order to work in general, see [RZ2]. There is an essential difference between the commutative and the non-commutative algebras: If A is commutative, then all local modules which are semi-Gorenstein-projective or ∞-torsionfree are Gorenstein-projective, whereas this is not true for A non-commutative.

Thus, for our algebra $\Lambda(q)$, the non-projective indecomposable modules which are semi-Gorenstein-projective and torsionless, or which are ∞-torsionfree, are of dimension $3 t$ with socle of dimension $2 t$, where $t=\operatorname{dim} \operatorname{top} M$. For $t=1$, we deal with local modules with 2-dimensional socle: these are precisely the modules studied in the present paper.
(10.2) As we have mentioned, a 3 -dimensional local $\Lambda(q)$-module M belongs to H if and only if $\operatorname{soc} M=\operatorname{Ker}(y)=\operatorname{Ker}(z)=y M \oplus z M$. Thus, it seems to be of interest to study the full subcategory \mathcal{H} of all the $\Lambda(q)$-modules M with soc $M=\operatorname{Ker}(y)=\operatorname{Ker}(z)=$ $y M \oplus z M$.

It will be shown in [RZ3] that all reflexive modules which are semi-Gorenstein-projective or ∞-torsionfree belong to \mathcal{H}. On the other hand, we will exhibit a representation equivalence between \mathcal{H} and the category of finite-dimensional $k\left\langle x_{1}, x_{2}\right\rangle$-modules, where $k\left\langle x_{1}, x_{2}\right\rangle$ is the free algebra in two variables x_{1}, x_{2}.

Appendix. A diagrammatic description of the modules $M(a: b: c)$.

(A.1) If M is a left Λ-module annihilated by $\operatorname{rad}^{2} \Lambda$, then it is a left $\bar{\Lambda}$-module. Since $\bar{\Lambda}$ is a commutative k-algebra, also $D(M)=\operatorname{Hom}(M, k)$ is a left $\bar{\Lambda}$-module, thus a left Λ-module. As mentioned in (1.6), we identify the set of isomorphism classes of the 3dimensional local modules with the projective plane $\mathbb{P}^{2}=\mathbb{P}\left(\operatorname{rad} \Lambda / \operatorname{rad}^{2} \Lambda\right)$.

Proposition. Let M be an indecomposable 3-dimensional left Λ-module. Then M or $D(M)$ is isomorphic to one of the following pairwise non-isomorphic $\bar{\Lambda}$-modules $M(a, b, c)$:

Case	Modules	Position in \mathbb{P}^{2}	Diagram	Characterization
(1)	$M(0,0,1)$			$z M=0$
(2)	$M(0,1,0)$	ィ		$y M=0$
(3)	$M(1,0,0)$			$x M=0$
(4)	$\begin{gathered} M(1, b, 0) \\ b \in k^{*} \end{gathered}$	\qquad	with $x v=-b v_{1}$	$x M=y M$
(5)	$\begin{gathered} M(1,0, c) \\ c \in k^{*} \end{gathered}$		with $x v=-c v_{2}$	$x M=z M$
(6)	$\begin{gathered} M(0,1, c) \\ c \in k^{*} \end{gathered}$	<		$y M=z M$
(7)	$\begin{gathered} M(1, b, c) \\ b, c \in k^{*} \end{gathered}$			$x M, y M, z M$ non-zero and pairwise different

The diagrams describe the modules $M=M(a, b, c)$ as follows: The elements v, v_{1}, v_{2} form a basis of M. Both elements v_{1}, v_{2} are annihilated by x, y, z. If there is drawn a solid arrow $v \longrightarrow v_{i}$ with $i \in\{1,2\}$ and with label $\alpha \in\{x, y, z\}$, then $\alpha v=v_{i}$. If there is a dashed arrow $v \rightarrow v_{i}$ with label α, then $\alpha v=c_{1} v_{1}+c_{2} v_{2}$ with $c_{i} \neq 0$ (and we provide the coefficients c_{1}, c_{2} below the diagram). Finally, $z v=0$ in case (1), $y v=0$ in case (2), $x v=0$ in case (3).

The last column provides a characterization of the corresponding modules $M(a, b, c)$: For example, a local 3 -dimensional Λ-module M is a case-(1)-module provided $z M=0$, and so on.
(A.2) Remark. If M is an indecomposable 3-dimensional Λ-module, then its annihilator is equal to $U(a, b, c)$ for some $(a, b, c) \neq 0$ and M considered as a $\Lambda / U(a, b, c)$-module is either the unique indecomposable projective $\Lambda / U(a, b, c)$-module (and then a local module, thus isomorphic to $M(a, b, c))$ or the unique indecomposable injective $\Lambda / U(a, b, c)$-module (and then a module with simple socle, thus isomorphic to $D(M(a, b, c))$).
(A.3) Proof of the Proposition and the Remark. First, let us assume that M is local. According to (2.6) and (1.4), we know that $M \simeq M(a: b: c)$ for some $(a: b: c) \in \mathbb{P}^{2}$ and that these modules are pairwise non-isomorphic. As representatives of the elements of \mathbb{P}^{2}, we choose (as usual) the triples $\left(c_{1}, c_{2}, c_{3}\right)$ with $c_{i}=1$ for some i and $c_{j}=0$ for $j<i$. Clearly, there are the seven cases (1) to (7) as listed above. It remains to choose in every case a basis $\mathcal{B}(a, b, c)=\left\{v, v_{1}, v_{2}\right\}$ of $M(a, b, c)$. Recall that $M(a, b, c)=\bar{\Lambda} /(a: b: c)$ is a factor module of Λ and $\bar{\Lambda}$ has the basis $\{1, x, y, z\}$. We choose as elements of $\mathcal{B}(a, b, c)$ the residue class $v=\overline{1}$ as well as two of the three residue classes $\bar{x}, \bar{y}, \bar{z}$, namely $v_{1}=\bar{x}$ if $a=0$ and $v_{1}=\bar{y}$ otherwise, and then $v_{2}=\bar{y}$ in case $(a, b, c)=(0,0,1)$ and $v_{2}=\bar{z}$ otherwise. (We should remark that the vertices and the arrows of the diagram are those of the coefficient quiver $\Gamma(M(a, b, c), \mathcal{B}(a, b, c))$ as considered in $[\mathrm{R}]$, and the solid arrows focus the attention to a spanning tree.)

Second, assume that M is not local. Since M is an indecomposable module of length 3 and Loewy length 2, it follows that M has simple socle, thus $D(M)$ is local and therefore of the form (1) to (7).

Finally, M and $D(M)$ have the same annihilator, this is a 3-dimensional ideal, thus of the form $U(a, b, c)$. The 3 -dimensional local algebra $\Lambda / U(a, b, c)$ has a unique 3 -dimensional local module, this is the indecomposable projective $\Lambda / U(a, b, c)$-module, and dually, it has a unique 3 -dimensional module with simple socle, this is the unique indecomposable injective $\Lambda / U(a, b, c)$-module. This completes the proof.
(A.4) As we have mentioned in (1.6), of special interest is the affine subspace H of \mathbb{P}^{2} given by the points $(1: b: c)$ with $b, c \in k$. A 3-dimensional local module M belongs to H if and only if $\operatorname{soc} M=\operatorname{Ker}(y)=\operatorname{Ker}(z)=y M \oplus z M$.

Namely, H is the union of the sets (3), (4), (5) and (7).

References.

[AIS] L. L. Avramov, S. B. Iyengar, L. M. Şega. Free resolutions over short local rings. J. London Math. Soc. (2) 78 (2008), 459-476.
[CV] L. W. Christensen, O. Veliche. Acyclicity over local rings with radical cube zero. Illinois J. Mathematics. 51 (2007), 1439-1454.
[JS] D. A. Jorgensen, L. M. Şega. Independence of the total reflexivity conditions for modules. Algebras and Representation Theory 9 (2006), 217-226.
[R] C. M. Ringel. Exceptional modules are tree modules. Lin. Alg. Appl. 275-276 (1998), 471-493.
[RZ1] C. M. Ringel, P. Zhang: Gorenstein-projective and semi-Gorenstein-projective modules. To appear in Algebra \& Number Theory. arXiv:1808.01809v3.
[RZ2] C. M. Ringel, P. Zhang. Gorenstein-projective modules over short local algebras. In preparation.
[RZ3] C. M. Ringel, P. Zhang. Gorenstein-projective modules over short local algebras of Hilbert type (3,2). In preparation.

[^0]
[^0]: C. M. Ringel

 Fakultät für Mathematik, Universität Bielefeld
 POBox 100131, D-33501 Bielefeld, Germany
 ringel@math.uni-bielefeld.de
 P. Zhang

 School of Mathematical Sciences, Shanghai Jiao Tong University Shanghai 200240, P. R. China.
 pzhang@sjtu.edu.cn

