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1. Introduction.

The algebras which we consider are finite-dimensional local k-algebras A, where k is
a field, and J will denote the radical of A. Usually, we will assume that A/J = k. The
modules to be considered are left A-modules of finite length.

We denote by |M | the length of the module M and define t(M) = t0(M) = | topM |.
For n ∈ N, let tn(M) = t(ΩnM), where ΩM = ΩAM is the first syzygy module of M (as
in commutative algebra [BH,L], one may call the numbers tn(M) the Betti numbers ofM).

1.1. The Ω-growth of a module. We draw the attention to the asymptotic behavior
of the Betti numbers tn(M) of a module M . If M is a module, we consider the following
numerical invariant

γ(M) = lim sup
n

n
√
tn(M)

which we call the Ω-growth of M . If M has finite projective dimension, then γ(M) = 0;
otherwise γ(M) ≥ 1. Note that

γ(M) = lim sup
n

n
√
tn(M) = lim sup

n

n
√
|ΩnM |.

This follows from the fact

tn(M) ≤ |ΩnM | ≤ |AA| · tn(M)

for all n ≥ 0 (since, t(N) ≤ |N | ≤ |AA| · t(N) for any module N).
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If A is a local algebra with simple module S, we define

γA = γ(S).

Theorem 1. Let A be a local algebra. Then γA ≤ |AJ | and γ(M) = γ(ΩM) ≤ γA
for any module M . If M is a module such that S is a direct summand of ΩnM for some
n ≥ 0, then γ(M) = γA.

1.2. A local algebra A with radical J = J(A) is said to be short provided J3 = 0.
Let e = e(A) = |J/J2| and, for A being short, let a = a(A) = |J2|. If A is a short local
algebra, we call (e(A), a(A)) the Hilbert-type of A. Let us assume now that A is short and
that A/J = k, so that S = k.

An A-module has Loewy length at most 2 iff it is annihilated by J2. If M is a module
with Loewy length at most 2, we call dimM = (t(M), |JM |) (or its transpose, if we
need to invoke matrix multiplication) the dimension vector of M . Let us remark that
|M | = t(M) + |JM |. Recall from [RZ] that a module M is said to be bipartite provided
socM = JM . A module has Loewy length at most 2 if and only if it is the direct sum of
a bipartite and a semisimple module.

Let A be a short local algebra of Hilbert type (e, a). The following matrix plays an
important role

ωe
a =

[
e −1
a 0

]
,

since it controls the change of the dimension vectors of modules of Loewy length at most 2,
when we apply Ω = ΩA. Namely, the vectors dimΩM and ωe

a dimM differ only slightly
(see 3.1, where we recall the Main Lemma of [RZ]). A module M of Loewy length at most
2 will be said to be aligned provided dimΩM = ωe

a dimM . We study the aligned modules
very carefully in section 3.

1.3. Koszul modules. The main aim of the paper is to discuss the existence and
the structure of Koszul modules. For a general ring, there are different proposals of what
should be seen as a “Koszul module”. For dealing with short local algebras and modules
of Loewy length at most 2, all these approaches coincide (see 4.8). Let A be a short local
algebra. A module M of Loewy length at most 2 will be said to be a Koszul module
provided dimΩnM = (ωe

a)
n dimM for all n ≥ 0, thus provided all modules ΩnM are

aligned, for n ≥ 0. A short local algebra is called a left Koszul algebra provided the simple
module S is a Koszul module.

If M has Loewy length at most 2 and ΩnM is bipartite for all n > 0, then M is Koszul
(see 4.2). Thus, if M is not Koszul, then S is a direct summand of ΩnM for some n > 0,
therefore Theorem 1 asserts that γ(M) = γA. The following theorem deals with the short
local algebras which have a non-zero Koszul module.

Theorem 2. Let A be a short local algebra of Hilbert type (e, a). If there exists a
non-zero Koszul module M of Loewy length at most 2, then the algebra is left Koszul, we
have a ≤ 1

4e
2 and γA = 1

2 (e+
√
e2 − 4a ). In addition, either γ(M) = γA or else a > 0 and

γ(M) = 1
2 (e−

√
e2 − 4a ).
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We recall that the spectral radius ρ(ω) of a linear transformation ω : Rn → Rn is the
maximum of the absolute values of the (complex) eigenvalues of ω. Note that for a ≤ 1

4e
2,

we have ρ(ωe
a) =

1
2 (e+

√
e2 − 4a ), see 5.4. Thus, Theorem 2 asserts that the existence of

a non-zero Koszul module M implies that γA = ρ(ωe
a).

Theorem 2 provides a generalization of what Lescot [L] calls his key lemma: the
assertion that (for a commutative short local algebra A with socA = J2) the existence of
a non-zero Koszul module of Loewy length at most 2 implies that S is a Koszul module
(see [L], 3.6).

Theorem 3. Let A be a short local algebra of Hilbert type (e, a). Let M be a non-zero
module of Loewy length at most 2 with γ(M) < γA. Then M is a Koszul module, and the
numbers γ(M) and γA are positive integers with

e = γ(M) + γA, and a = γ(M) · γA.

In particular, we have 0 < γ(M) < 1
2e < γA < e and e2−4a = (γA−γ(M))2 (thus e2−4a

is the square of a positive integer; in particular, positive). Also, dimM is a multiple of
(1, γA) and dimΩnM = γ(M)n dimM for all n ∈ N.

For example, let us look at the special case e = 7. If there is a non-zero module M of
Loewy length at most 2 with γ(M) < γA, then γ(M) = 1 or 2 or 3, thus a = 6, 10, 12,
respectively (and dimM is a multiple of (1, 6), (1, 5), (1, 4), respectively). Let us exhibit
for e = 7 the graph of ρ(ωe

a) =
1
2 (e

2 +
√
e− 4a ) as a function of a (it contains the pairs

(6, 6), (10, 5), (12, 4), they are marked by bullets •), as well as (marked by small circles ◦)
the three possible pairs (a, γ(M)), where M is a Koszul module with γ(M) < γA, namely
the pairs (6, 1), (10, 2), (12, 3):

e = 7

ρ(ωe
a)
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1.4. Left Conca ideals. Let A be a local algebra and U an ideal of A. We say that
U is a left Conca ideal provided U2 = 0 and J2 ⊆ JU . If A has a left Conca ideal U , then
A is short (namely, J3 ⊆ J2U ⊆ JU2 ⊆ U2 = 0). Since J2 ⊆ U , the modules annihilated
by U have Loewy length at most 2.

Theorem 4. Let A be a short local algebra. If A has a left Conca ideal U , then any
module annihilated by U is a Koszul module; in particular, S is a Koszul module, thus A
is a left Koszul algebra.
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This generalizes part of Theorem 1.1 of [AIS].

1.5. Construction of left Koszul algebras.

Theorem 5. Given a pair e, a of natural numbers, then the following assertions are
equivalent.
(i) There is a short local algebra of Hilbert type (e,a) which is left Koszul.
(ii) There is a commutative short local algebra of Hilbert type (e,a) which is left Koszul.
(iii) We have a ≤ 1

4e
2.

Theorem 6. Let c, d be positive integers. Let e = c+ d, a = cd. Then there are short
local algebras of Hilbert type (e, a) (even commutative ones) with a Koszul module with
dimension vector (1, c).

Of course, if c, d are positive integers and e = c+ d and a = cd, then we have a ≤ 1
4e

2.
The algebras which we construct in the proof of Theorem 5 (showing that (iii) implies (ii))
and of Theorem 6 are short local algebras with a left Conca ideal.

1.6. A lower bound for γA.

Theorem 7. Let A be a short local algebra of Hilbert type (e, a). If a ≤ 1
4e

2, then

γA ≥ 1
2 (e+

√
e2 − 4a ).

In view of Theorems 5 and 2, the assertion of Theorem 7 can be strengthened as follows.
Let A(a, e) be the class of all short local algebras of Hilbert type (e, a). Then: For a ≤ 1

4e
2,

the subset {γA | A ∈ A(e, a)} of R has a minimal element, namely 1
2 (e+

√
e2 − 4a ). (On

the one hand, Theorem 7 shows that 1
2 (e+

√
e2 − 4a ) is a lower bound; on the other hand,

according to Theorem 5, there is a Koszul algebra A in A(e, a) and Theorem 2 asserts that
γA = 1

2 (e+
√
e2 − 4a ).)

We have seen in [RZ] that there is a trichotomy for short local algebras: There are
the two special cases, first a = 1, second a = e − 1, and then there are the remaining
algebras with a /∈ {1, e − 1} (for example, Gorenstein projective modules or non-zero
minimal acyclic complexes of projective modules do not exist if a /∈ {1, e− 1}). Theorem
5 yields a further separation: namely between a ≤ 1

4e
2 and a > 1

4e
2: The class A(e, a)

contains a Koszul algebra iff a ≤ 1
4e

2. The disparity between a ≤ 1
4e

2 and a > 1
4e

2 can
be seen well if one looks at the spectral radius ρ(ωe

a) as a function of a (fixing e): we have
ρ(ωe

a) =
1
2

(
e+

√
e2 − 4a

)
for a ≤ 1

4 e
2, and ρ(ωe

a) =
√
a for a ≥ 1

4 e
2.
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Note that if a ≤ 1
4e

2, thus Theorem 7 asserts that ρ(ωe
a) is a lower bound for γA, and it

seems that this is also true for a > 1
4e

2.

1.7. Outline of the paper. Sections 3 and 4 provide characterizations of the aligned
modules and the Koszul modules, respectively. The Ω-growth of modules is discussed in
sections 2 and 5; in section 2, there is the proof of Theorem 1, in section 5 the proof
of Theorems 2 and 3. Section 6 deals with left Conca ideals and presents the proof of
Theorem 4. In section 7 we construct suitable algebras with left Conca ideals in order to
establish Theorems 5 and 6. The final section 8 provides a lower bound for γA, provided
a ≤ 1

4e
2.

1.8. Remark. As in the previous paper [RZ], we are dealing most of the time with
a short local algebra A and with modules of Loewy length at most 2, thus with A/J2-
modules, where J is the radical of A. But we take into account the syzygy functor ΩA

(note that ΩA sends any module to a module of length at most 2). It is well-known that
an A/J2-module M can be understood quite well by looking at the corresponding K(e)-

module M̃ = (M/JM, JM), where K(e) is the Kronecker algebra with e = e(A) arrows
(see for example the appendices A.1 and A.2 of [RZ]). The dimension vector dimM =

(t(M), |JM |) as introduced in 1.2 is just the class of M̃ in the Grothendieck group of
K(e) (note that it carries much more information than the class of M in the Grothendieck
group of A). A main tool which we use is the linear transformation ωe

a on the Grothendieck
group of K(e): the vectors dimΩM and ωe

a dimM often are equal, and always differ only
slightly. Thus ωe

a provides important information on the asymptotic behaviour of the Betti
numbers of M . One may be tempted to write ωA instead of ωe

a, but we refrain from doing
so in order to stress that this transformation depends only on the parameters e, a, and not
on the further structure of A.

Acknowledgement. We thank the referees for reading the manuscript and the
suggestions concerning the presentation of the results.

2. The Ω-growth of a module.

First, let us consider an arbitrary finite-dimensional algebra A.

2.1. Lemma. If M ′ is a direct summand of M , then γ(M ′) ≤ γ(M).

Proof. If M ′ is a direct summand of M , then ΩnM ′ is a direct summand of ΩnM,
thus |ΩnM ′| ≤ |ΩnM | for all n ≥ 0. �

2.2. Lemma. If 0 →M ′ →M →M ′′ → 0 is an exact sequence, then

γ(M) ≤ max{γ(M ′), γ(M ′′)}.

Proof. We start with minimal projective resolutions of M ′ and M ′′. The horseshoe
lemma provides a (not necessarily minimal) projective resolution of M . This shows that
tn(M) ≤ tn(M

′) + tn(M
′′) for all n ≥ 0. Therefore

lim sup n
√
tn(M) ≤ max{lim sup n

√
tn(M ′), lim sup n

√
tn(M ′′)}.
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�
2.3. Lemma. Let A be a finite-dimensional local algebra and M a module. Then

γ(M) = γ(ΩM) ≤ |AJ |.

Proof. Let J be the radical of A and d = |AJ |. Let m be the Loewy length of AJ (thus
Jm ̸= 0, and Jm+1 = 0). Let c = |AJm|.

For n ≥ 1, the module ΩnM is a submodule of JP (Ωn−1M), thus it has Loewy length
at most m. But if N is a module of Loewy length at most m, then JmP (N) ⊆ ΩN . This
shows that for n ≥ 1, we have

JmP (ΩnM) ⊆ Ωn+1M ⊆ JP (ΩnM).

Since |JmP (ΩnM)| = ctn(M) and |JP (ΩnM)| = dtn(M), we get

ctn(M) ≤ |Ωn+1M | ≤ dtn(M),

thus
γ(M) = lim sup n

√
tn(M) = lim sup n

√
|Ωn+1M | = γ(ΩM).

On the other hand, we have by induction tn+1(M) ≤ dnt1(M), therefore

γ(ΩM) = lim sup n
√
tn+1(M) ≤ lim sup n

√
dnt1(M) = d = |AJ |.

�

2.4. Proof of Theorem 1. We have seen in 2.3 that γA = γ(S) ≤ |AJ | and that
γ(M) = γ(ΩM).

It follows from 2.2 that γ(M) ≤ γ(S), using induction on the length of M . Thus
γ(M) ≤ γA.

Now assume that S is a direct summand of ΩnM for some n ≥ 0. Using 2.1 and 2.3,
we get γ(M) ≤ γ(S) ≤ γ(ΩnM) = γ(M). �

2.5. Remark. We should stress that the Ω-growth γ(M) of a module M measures
the exponential growth of the Betti numbers. A similar, but deviating measure, the
complexity, was introduced by Alperin and Evens [AE] in 1981 dealing with representations
of a finite group G: The complexity of a kG-module is the least integer c such that there
is a constant κ > 0 with tn(M) ≤ κ · nc−1 for all n ≥ 1. In contrast to the Ω-growth, the
complexity measures the polynomial growth of the Betti numbers. There is the following
obvious observation: If a kG-module M has finite complexity and is not projective, then
γ(M) = 1. This follows from the fact that limn

n
√
n = 1.

Dealing with an arbitrary finite-dimensional algebra, it may be advisable to look at
various measures for the growth of the Betti numbers. However, the present investiga-
tion seems to indicate that for short local algebras, it is the Ω-growth as defined in the
introduction which is the decisive invariant.

3. Aligned modules.
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From now on, A will be a short local k-algebra with radical J such that S = A/J = k.

3.1. We recall from [RZ] the Main Lemma. Let A be a short local algebra of Hilbert
type (e, a). If M is a module of Loewy length at most 2, then there is a unique natural
number w such that

dimΩM = ωe
a dimM + (w,−w).

The module ΩM has a direct summand of the form Sw′
with w′ ≥ w.

According to the Main Lemma, we have dimΩM = ωe
a dimM provided ΩM is bipar-

tite. But this formula is valid for a larger class of modules, namely the aligned modules.
We are going to provide several equivalent conditions for a module to be aligned.

3.2. If M is a module of Loewy length at most 2, let p : P (M) → M be a projective
cover. We consider ΩM as a submodule of JP (M) with inclusion map u : ΩM → JP (M)
and obtain in this way the exact sequence

ηM = ( 0 −→ ΩM
u−→ JP (M)

p−→ JM −→ 0 ).

(In order to see that this sequence is exact, we apply the Snake Lemma to the following
commutative diagram with exact rows:

0 −−−−→ JP (M) −−−−→ P (M) −−−−→ topM −−−−→ 0y yp

yp′′

0 −−−−→ JM −−−−→ M −−−−→ topM −−−−→ 0

The kernel of p : P (M) → M is ΩM . Since p′′ is an isomorphism, and p is surjective, we
see that the cokernel of JP (M) → JM is zero.)

Considering the top of the modules, the exact sequence ηM yields the exact sequence

ηM = ( topΩM
u−→ top JP (M)

p−→ JM −→ 0 ),

here we use that JM is semisimple, since the Loewy length of M is at most 2.

3.3. Proposition. Let M be a module of Loewy length at most 2. The following
conditions are equivalent.
(i) M is aligned (by definition, this means that dimΩM = ωe

a dimM).
(ii) t(ΩM) = et(M)− |JM |.
(iii) |JΩM | = at(M).
(iv) JΩM = J2P (M).
(v) JΩM = J2P (M) ∩ ΩM .
(vi) J2P (M) ⊆ JΩM.
(vii) The inclusion map u yields an injective map u : topΩM → top JP (M).
(viii) The sequence ηM induces an exact sequence 0 → topΩM −→ top JP (M) −→ JM → 0.
(ix) A minimal projective presentation P1 → P0 → M → 0 induces an exact sequence

0 → topP1 −→ top JP0 −→ JM → 0.
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Proof. Let us start with the equivalence of (ii), (iii). The Main Lemma (see 3.1) asserts
that

(t(ΩM), |JΩM |) = (et(M)− |JM |+ w, at(M)− w)

for some w. Thus, if t(ΩM) = et(M)−|JM | (the condition (ii)), then w = 0 and therefore
|JΩM | = at(M) (the condition (iii)). And conversely, if the condition (iii) is satisfied,
then again we have w = 0, thus condition (ii) is satisfied.

Assertion (i) is the conjunction of (ii) and (iii), thus it is of course equivalent to (i)
and to (iii). The inclusion map JΩM ⊆ J2P (M) shows that (iii) and (iv) are equivalent.

Since we assume that M has Loewy length at most 2, we have J2M = 0, thus M =
P (M)/ΩM implies that J2M ⊆ ΩM . This shows the equivalence of (iv) and (v).

Since ΩM ⊆ JP (M), we always have JΩM ⊆ J2P (M). Thus (iv) and (vi) are
equivalent.

For the equivalence of (iv) and (vii), we apply the Snake Lemma to the following
commutative diagram with exact rows

0 −−−−→ JΩM −−−−→ ΩM −−−−→ topΩM −−−−→ 0yu′

yu u

y
0 −−−−→ J2P (M) −−−−→ JP (M)

π−−−−→ top JP (M) −−−−→ 0

We have Ker(u) = 0 and Cok(u) = JM . Also, the vertical map u on the right is part of the
exact sequence ηM , thus its cokernel is also JM . Altogether, the Snake Lemma yields the
exact sequence 0 → Ker(u) → Coku′ → JM → JM → 0. The surjective map JM → JM
has to be an isomorphism, thus the nap Ker(u) → Coku′ has to be an isomorphism. This
mean that u′ is surjective (the condition (iv)) if and only if u is injective (the condition
(vii)).

The conditions (vii) and (viii) are of course equivalent, since ηM induces the exact

sequence ηM = ( topΩM
u−→ top JP (M)

p−→ top JM −→ 0 ), and this is a short exact
sequence if and only if u is injective.

The assertions (viii) and (ix) are equivalent, since P1 = P (ΩM) and in this way, topP1

is identified with topΩM. �
3.4. Remark. Let V be a proper left ideal of A. Then AA/V is aligned if and only

if J2 ⊆ JV. Namely, Ω(AA/V ) = V , thus we deal with condition (iv).
In particular: The simple module S is always aligned, since here we have V = J. (Of

course, we also may look at dimS = (1, 0); we have ΩS = AJ and dimAJ = (e, a) =
ωe
a(1, 0), this is condition (i).)

3.5. We recall from [RZ], 13.2: Let A be a short local algebra andM a module of Loewy
length at most 2. If ΩM is bipartite, then M is aligned. Conversely, if J2 = socAA, and
M is aligned, then M is bipartite.

The condition J2 = socAA has been discussed quite carefully in section 13 of [RZ].

3.6. Examples of aligned modules M such that ΩM is not bipartite.

(1) Note that 3.4 provides such an example, namely S is always aligned, whereas
ΩS = AJ is bipartite iff J2 = socAA. Note that for all short local algebras with a = 0 and
e ≥ 1, but also for many other short local algebras, we have J2 ̸= socAA.
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Here are two additional examples of indecomposable modules M of Loewy length 2
which are aligned, but ΩM is not bipartite.

(2) Here is a typical example of a short local algebra with J2 ̸= socAA: the algebra
A generated by x, y, z, with relations x2, y2, z2, xy − yx, xz, zx, yz, zy.

Let M = Ay ≃ A/(Ay + Az), thus ΩM = Ay ⊕ Az. Then dimM = (1, 1) and
dimΩM = (2, 1).

x y z

yx
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............
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x

M

•

• •.........................................................................
....
............

x
ΩM

(3) Consider now the algebra A A generated by x, y, z with the relations yx−xy, zy−
x2, zx, y2, xz, yz, z2 (thus J2 has the basis x2, yx). We define M by taking a suitable
submodule U of a projective module P and define M = P/U so that ΩM = U . Namely,
let P = A3 and let ΩM be the submodule of P generated by (x, y, 0), (0, x, y), (0, z, 0).
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It turns out that M is indecomposable and of Loewy length 2. Since A has Hilbert type
(3, 2) and dimΩM = dimM = (3, 6), we see that M is aligned (the condition (i) is
satisfied). But U = ΩM is not bipartite: the submodule JΩM is generated by

x(x, y, 0) = (x2, xy, 0), y(x, y, 0) = (xy, 0, 0), z(x, y, 0) = (0, x2, 0),

x(0, x, y) = (0, x2, xy), y(0, x, y) = (0, xy, 0), z(0, x, y) = (0, 0, x2),

thus equal to J2P , and therefore ΩM is isomorphic to the direct sum of two copies of A/J2

and one copy of the simple module S. Altogether, we see that M is aligned, but ΩM is
not bipartite.

Of course, in all the examples of 3.6, we have J2 ̸= socAA, see 3.5.

4. Koszul modules.

4.1. Koszul modules. Following Herzog-Iyengar [HI] (see also [AIS]) a module M
will be said to be a Koszul module provided a minimal projective resolution

· · · −→ Pn+1 → Pn → Pn−1 → · · · → P0 → M → 0

induces for any n ≥ 0 an exact sequence

ϵMn : 0 → Pn/JPn → JPn−1/J
2Pn−1 → · · · → JnP0/J

n+1P0 → JnM/Jn+1M → 0

(note that the image of di+1 : Pi+1 → Pi is contained in JPi, thus di+1(J
nPi+1) ⊆ Jn+1Pi

for all n ≥ 0).
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A local algebra is called a left Koszul algebra provided the simple module S is a Koszul
module.

Of course, the projective modules are always Koszul modules. IfM is a Koszul module,
then also ΩM is a Koszul module and has Loewy length at most 2 (since we assume, as
always, that A is a short local algebra). In the following, we usually will restrict the
attention to Koszul modules of Loewy length at most 2.

Proposition. Let A be a short local algebra and M a module of Loewy length at most
2. The following conditions are equivalent:
(i) M is a Koszul module.
(ii) For every n ≥ 1, the exact sequence 0 → ΩnM → P (Ωn−1M) → Ωn−1M → 0 induces

an exact sequence 0 → ΩnM/JΩnM → JP (Ωn−1M)/J2P (Ωn−1M) → JΩn−1M → 0.
(iii) dimΩnM = (ωe

a)
n dimM for all n ≥ 0.

(iv) The modules ΩnM with n ≥ 0 are aligned.

Proof of the equivalence of (i) and (ii). We use the isomorphisms topP (ΩiM) →
topΩiM . Also note that J2ΩiM = 0 for all i ≥ 0.

We can rewrite ϵMn as:

ϵMn : 0 → topP (ΩnM) → top JP (Ωn−1M) → · · · → top JnP (M) → top JnM → 0

For n = 0, this sequence ϵM0 : 0 → topP (M) → topM → 0 is always exact.
For n ≥ 1, we can use the isomorphism topP (ΩnM) → topΩnM in order to rewrite

ϵMn as
0 → topΩnM → top JP (Ωn−1M) → JΩn−1M → 0.

Note that this is just the exact sequence ηΩnM as considered in 3.2.
The equivalence of (ii) and (iii) for n ≥ 1 is given by Proposition 3.3, namely we use

the equivalence of (i) and (vii) for M replaced by Ωn−1M . By the definition of an aligned
module, the conditions (iii) and (iv) are the same. �

4.2. Proposition. Assume that M has Loewy length at most 2 and all the modules
ΩnM with n ≥ 1 are bipartite. Then M is a Koszul module.

If socAA = J2, and M is a Koszul module, then all the modules ΩnM with n ≥ 1 are
bipartite.

Proof. If m ≥ 0 and Ωm+1M is bipartite, then ΩmM is aligned, see 3.4 (2). Thus, the
assumption implies that all the modules ΩmM with m ≥ 0 are aligned. It follows from
Proposition 4.1 that M is Koszul.

Assume now that socAA = J2. Then [RZ] 13.2 asserts that any aligned module is
bipartite. Thus, if M is a Koszul module, then all the modules ΩnM with n ≥ 1 are
aligned, thus bipartite. �

Remarks. (1) If A is a short local algebra with a = 0, then ΩS = Se shows that S
is a Koszul module, thus A is a Koszul algebra.

(2) If A is a Koszul algebra, then usually not all modules are Koszul. A typical example
is the k-algebra A with generators x, y and relations x2, xy, y2. Let I = Ax ≃ A/Ax. As
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we see, I is Ω-periodic with period 1. It follows that I is a Koszul module. But it is easy
to see that the remaining indecomposable modules of length 2 are not Koszul.

Also, all self-injective short local algebras A with e ≥ 2 are Koszul algebras, but Propo-
sition A.8 in the Appendix of [RZ] asserts that there are countably many indecomposable
modules which are not Koszul.

(3) Here is an example of a Koszul module M such that none of the modules ΩnM
with n ≥ 1 is bipartite. Let A be generated by x, y with relations x2, xy, y2 (this algebras
has been considered already in [RZ], 9.3). Let I = Ax. Then ΩS = AJ = I ⊕ S, and
ΩI = I. Thus, by induction, we see that ΩnS = In⊕S for all n ≥ 0. It follows thatM = S
is a Koszul module. On the other hand, S is a proper direct summand of ΩnM = ΩnS,
for any n ≥ 1.

4.3. We say that a short exact sequence 0 →M ′ →M →M ′′ → 0 is t-exact, provided
t(M) = t(M ′) + t(M ′′). A submodule M ′ of M will be called a t-submodule provided the
canonical exact sequence 0 → M ′ → M → M/M ′ → 0 is t-exact, thus provided t(M) =
t(M ′) + t(M/M ′). Of course, if M ′ is a submodule of M , then t(M) = t(M ′) + t(M/M ′)
if and only if P (M) is isomorphic to P (M ′)⊕ P (M/M ′).

Similarly, a filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm = M will be called a t-filtration
provided t(M) =

∑m
j=1 t(Mj/Mj−1), or, equivalently, provided P (M) is isomorphic to⊕

j P (Mj/Mj−1). Note that if M has Loewy length at most 2 and 0 =M0 ⊆M1 ⊆ · · · ⊆
Mm =M is a t-filtration then dimM =

∑
j dimMj/Mj−1.

Lemma. Let A be a short local algebra. Let 0 → M ′ → M → M ′ → 0 be t-
exact. If M ′,M ′′ are aligned, then also M is aligned and there is a t-exact sequence
0 → ΩM ′ → ΩM → ΩM ′′ → 0.

Proof. We can assume that the map M ′ → M is the inclusion map of a submodule.
Since P (M) ≃ P (M ′)⊕P (M ′′), the horseshoe lemma yields an exact sequence 0 → ΩM ′ →
ΩM → ΩM ′′ → 0. Multiplying with J2, there is the exact sequence 0 → J2ΩM ′ →
J2ΩM → J2ΩM ′′ → 0. Now we have the inclusion maps u′ : JΩM ′ ⊆ J2ΩM ′, u : JΩM ⊆
J2ΩM , and u′′ : JΩM ′′ ⊆ J2ΩM ′′. If M ′,M ′′ are aligned, the maps u′, u′′ are bijective,
thus also u has to be bijective. This shows that M is aligned and therefore dimΩM =
ω(dimM). But this implies that

dimΩM = ω(dimM) = ω(dimM ′ + ω(dimM ′′)

= ω(dimM ′) + ω(dimM ′′) = dimΩM ′ + dimΩM ′′.

In particular, we have t(ΩM) = t(ΩM ′)+ t(ΩM ′′). This shows that ΩM ′ can be identified
with a t-submodule of ΩM with factor module ΩM ′′. �

4.4. Corollary. Let A be a short local algebra. Let M be a module of Loewy length
at most 2 and 0 =M0 ⊆M1 ⊆ · · · ⊆Mm =M a t-filtration. Let n ≥ 0.

(a) If all the modules Ωi(Mj/Mj−1) with 0 ≤ i ≤ n and 1 ≤ j ≤ m are aligned,
then ΩnM is aligned and Ωn+1M has a t-filtration with factors Ωn+1(Mj/Mj−1), where
1 ≤ j ≤ m.
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(b) If all the modules Mj/Mj−1 with 1 ≤ j ≤ m are Koszul modules, then also M is a
Koszul module.

Proof. Let ω = ωe
a. It is sufficient to show the assertions (a) and (b) for m = 2, the

general case follows easily by induction on m. Thus, let M ′ be a submodule of M and let
M ′′ = M/M ′. We assume that M ′ is a t-submodule of M , thus t(M) = t(M ′) + t(M ′′)
and P (M) ≃ P (M ′)⊕ P (M ′′).

(a) We show: If ΩiM ′,ΩiM ′′ are aligned for 0 ≤ i ≤ n, then ΩnM is aligned and
Ωn+1M ′ can be identified with a t-submodule of Ωn+1M with factor module Ωn+1M ′′. Proof
by induction on n. The case n = 0 has been shown in 4.3. Thus assume the assertion
is true for some n ≥ 0, and assume now that the modules ΩiM ′,ΩiM ′′ are aligned for
0 ≤ i ≤ n+ 1. By induction, we know that we may consider Ωn+1M ′ as a t-submodule of
Ωn+1M with factor module Ωn+1M ′′. Since Ωn+1M ′ and Ωn+1M ′′ are aligned, we apply
(1) in order to conclude that Ωn+1M is aligned and that Ωn+2M ′ can be identified with a
t-submodule of Ωn+2M with factor module Ωn+2M ′′. This completes the proof of (a).

(b) If M ′,M ′′ are Koszul modules, then M is Koszul. Proof. We use the equivalence
of (i) and (iv) in 4.1: IfM ′,M ′′ are Koszul, then all the modules ΩnM ′,ΩnM ′′ are aligned.
According to (a), all the modules ΩnM are aligned. Thus M is Koszul. �

4.5. Corollary. Let A be a short local algebra and U an ideal of A. Let n ≥ 0.
(a) Assume that for any local module N annihilated by U , the modules ΩiN with

0 ≤ i ≤ n are aligned. Then for any module M annihilated by U , the module ΩnM is
aligned.

(b) Assume that any local module N annihilated by U is a Koszul module, then any
module M annihilated by U is a Koszul module.

Proof. Any module M annihilated by U has a t-filtration whose factors are local
modules (of course annihilated by U). Namely, any composition series of topM lifts to a
t-filtration of M . Thus, we can apply 4.4. �

4.6. Proposition. Let A be a short local algebra. If there exists a non-projective
Koszul module, then A is a left Koszul algebra.

Proof. If N is a non-projective Koszul module, then ΩN is a non-zero module of
Loewy length at most 2 and is a Koszul module. Thus we can assume that there is given
a module M ̸= 0 of Loewy length at most 2 which is a Koszul module. According to 3.2,
we have the exact sequence

ηM = ( 0 −→ ΩM
u−→ JP (M)

p−→ JM −→ 0 ).

Since M is a Koszul module, M is aligned, thus 3.3 (vii) asserts that ηM is t-exact.
Consider the sequences

ηM (n) = ( 0 −→ Ωn+1M
Ωnu−−→ Ωn(JP (M))

Ωnp−−→ Ωn(JM) −→ 0 ).

with n ≥ 0. By induction on n we show that ηM (n) is t-exact, and that all modules ΩnS
is aligned.
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Proof of the induction. First, let n = 0. We know that ηM (0) = ηM is t-exact. Also,
the module Ω0S = S is always aligned. Now assume that for some n ≥ 0 the sequences
ηM (n) is t-exact and the modules ΩnS is aligned. SinceM is a Koszul module, the module
ΩnΩM is aligned. Since JM is semisimple, the modules Ωn(JM) is aligned. Thus, we can
apply Lemma 4.3 in order to conclude that Ωn(JP (M)) is aligned and that ηM (n+ 1) is
t-exact. Let m = | topM |. Then JP (M) = Ω(Sm). Since ΩnJP (M) = Ωn+1Sm is aligned
and m ≥ 1, we see that Ωn+1S is aligned. This completes the induction step.

Altogether, we see that ΩnS is aligned for all n ≥ 0, thus S is a Koszul module. �

4.7. Finally, let us draw the attention again to the simple module S. By definition,
A is a left Koszul algebra iff S is Koszul. What does it mean that S is a Koszul module?

If e, a are real number, one may define recursively the sequence bn = b(e, a)n with
n ≥ −1 as follows: b−1 = 0, b0 = 1 and

(∗) bn+1 = ebn − abn−1,

for n ≥ 0. By induction, one sees that (bn, abn−1) = (ωe
a)

n(1, 0).

Proposition. Let A be a short local algebra of Hilbert type (e, a). The module S is
Koszul iff dimΩnS = (b(e, a)n, a·b(e, a)n−1) for all n ≥ 0.

Proof. Write bn = b(e, a)n for all n ≥ −1. According to 4.1, S is a Koszul module iff
dimΩnS = (ωe

a)
n dimS for all n ≥ 0. Of course, dimS = (1, 0) = (b0, b−1), and therefore

(ωe
a)

n dimS = (ωe
a)

n(1, 0) = (bn, abn−1). �
Remark. Avramov-Iyengar-Şega have shown: if a < 1

4e
2, then for all n ≥ 0

b(e, a)n =
1

2n

⌊n
2 ⌋∑

j=0

(
n+ 1

2j + 1

)
(e2 − 4a)jen−2j ,

see Appendix B of [RZ].

4.8. Historical remark. The notion of a “Koszul” module is motivated by the
classical Koszul duality between the polynomial algebras and the exterior algebras. Various
kinds of such “Koszul modules” or “modules with linear resolution” have been introduced:
one wants to generalize some important features of the simple modules over certain well-
behaved algebras which Priddy [P] called Koszul algebras. It is now customary to call a
local ring “Koszul” in case its simple module is a “Koszul module”. One of the aims was
to obtain duality theorems for module categories. A more modest aim (and this is also
our target, here and in the previous paper [RZ]) is to understand projective resolutions
with nice (namely “linear”) behaviour. In the paper [GM] by Green and Mart́ınez (see
also [MZ]) a finitely generated moduleM over a semi-perfect, noetherian k-algebra A with
radical J , was said to have a linear resolution provided JΩn+1M = J2P (ΩnM)∩Ωn+1M,
for all n ≥ 0 (and Theorem 4.4 of [GM] asserts that the modules with a linear resolution
are just the “quasi-Koszul” modules defined by some Ext-condition). We use in this paper
the definition of a Koszul module M as formulated by Herzog and Iyengar [HI], see 4.1
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above; it has the advantage that not only the module M , but also its associated graded
module

⊕
t≥0 J

tM/J t+1M as a module over the graded algebra
⊕

t≥0 J
t/J t+1 has a linear

resolution, see Proposition 1.5 of [HI]. But we should note that in our case, where A is
a short local algebra, a module M with Loewy length at most 2 with a linear resolution
is already a Koszul module in the sense of [HI]: see the equivalence of (i) and (v) in
Proposition 3.3 and the equivalence of (i) and (iv) in Proposition 4.1.

5. Again: The Ω-growth of a module.

Let A be a short local algebra and M a module of Loewy length at most 2. What
are the possible values for γ(M)? First, we assume that M is not a Koszul module. The
following observation was mentioned already in the introduction, see 1.3.

5.1. Proposition. Let A be a short local algebra. Let M be a module of Loewy length
at most 2. If M is not Koszul, then γ(M) = γA.

Proof. Proposition 4.2 asserts that there is n ≥ 1 such that ΩnM is not bipartite.
Since ΩnM has Loewy length at most 2, we see that S is a direct summand of ΩnM .
According to Theorem 1, γ(M) = γA. �

It remains to consider the Koszul modules. We will need two elementary considerations
from real linear algebra. Given vectors x = (x1, x2) and y = (y1, y2) ∈ R2, we write x ≤ y
provided x1 ≤ y1 and x2 ≤ y2 and we write x < y provided x ≤ y and x ̸= y. Let
|x| = |x1|+ |x2|.

If ω : R2 → R2 is a linear transformation, let γω(x) = lim supn
n
√

|ωn(x)|.

5.2. Lemma. Let ω : R2 → R2 be a linear transformation. If x is an eigenvector of
ω with eigenvalue λ, then γω(x) = |λ|. If x is non-zero and not an eigenvector of ω, then
γω(x) = ρ(ω).

Proof. Of course, if ω(x) = λx, then γω(x) = |λ|. Thus, let us assume that x = (x1, x2)
is non-zero and not an eigenvector of ω.

First, let ω be semisimple with eigenvalues λ, λ′, where |λ′| ≤ |λ|. Thus we can assume

that ω =
[
λ 0

0 λ′

]
. Then ωn(x1, x2) = λn(x1 + (λ′/λ)nx2). Since 0 ≤ |(λ′/λ)nx2)| ≤ |x2|

and x1 ̸= 0, we see that γω(x1, x2) = |λ| · lim supn
n
√
|x1|+ |(λ′/λ)nx2| = |λ| = ρ(ω).

Second, let ω be not semisimple. Let λ be its eigenvalue. If λ = 0, then γω(x) = 0 =

ρ(ω). Otherwise, we can assume that ω = λ
[
1 1

0 1

]
, thus ωn(x1, x2) = λn(x1 + nx2, x2) and

γω(x1, x2) = |λ| · lim supn
n
√

|x1 + nx2|+ |x2| = |λ| = ρ(ω). �

5.3. Lemma. Let ω : R2 → R2 be a linear transformation. Let x be an element of R2

such that ωnx > 0 for all n ≥ 0. Then ω has real eigenvalues. If x is an eigenvector with
eigenvalue λ, then λ is positive. If x is not an eigenvector, then ρ(ω) is an eigenvalue of
ω (and, of course, positive).

Note that this lemma is a version of the Perron-Frobenius theorem in dimension 2,
but in contrast to the classical Perron-Frobenius theorem, we cannot assert hat γω(x) is
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a simple eigenvalue of ω, as the example of ω =
[
2 −1

1 0

]
and x = (1, 0) shows: We have

ωnx = (n+ 1, n) > 0 for all n ≥ 0, and x is not an eigenvector of ω; on the other hand, 1
is an eigenvalue of ω with multiplicity 2.

Proof of Lemma. Let ρ = ρ(ω) be the spectral radius of ω. Let x be a vector in R2

with ωnx > 0 for all n ≥ 0. The existence of x shows that ω cannot be nilpotent, thus
ρ(ω) > 0. Of course, if x is an eigenvector with eigenvalue λ, then λ > 0. Thus, let us
assume that x is not an eigenvector.

Given a set X of vectors in R2, let C(X ) be the cone in R2 of all vectors which are linear
combinations of the elements in X using positive coefficients. Let C = C({ωn(x) | n ≥ 0}).
Then all non-zero vectors y ∈ C satisfy y > 0 and ω(C) ⊆ C. If C is a ray, then any
non-zero element in C is an eigenvector of ω, thus x is an eigenvector, a contradiction.

Thus, C is not a ray, and there is a basis y, y′ of R2 such that the topological closure
C of C is the cone C = C({y,y′}). We have ω(C) ⊆ C, in particular ω(y), ω(y′) ∈ C.

If ω(y) ∈ R+y, say ω(y) = λy with λ ∈ R+, let ω(y
′) = cy + dy′, thus c ≥ 0 and

d > 0. Now ω is similar to the matrix
[
λ c

0 d

]
, thus its eigenvalues are λ and d, and both

are positive. Therefore ρ(ω) = max{λ, d} is an eigenvalue.
Next, assume that ω(y) = λy′. Let y′ = cy+dy′. Then ω is similar to a matrix of the

form
[
0 c

1 d

]
, its eigenvalues are 1

2d±
1
2

√
d2 + 4c, thus the spectral radius is the eigenvalue

1
2d+

1
2

√
d2 + 4c.

Finally. it remains to consider the case that both ω(y), ω(y′) belong to the interior of
C, then ω is similar to a matrix with positive coefficients, thus the usual Perron-Frobenius
theorem asserts that the spectral radius of ρ(ω) is an eigenvalue of ω. �

5.4. Lemma. The transformation ωe
a has real eigenvalues iff a ≤ 1

4e
2. In this case,

both eigenvalues are non-negative and ρ(ωe
a) =

1
2 (e+

√
e2 − 4a).

If λ ̸= 0 is an eigenvalue of ωe
a, then (λ, a) is eigenvector of ωe

a with eigenvalue λ.

Proof: The eigenvalues of ωe
a are 1

2 (e±
√
e2 − 4a), thus they are real iff e2 ≥ 4a. Also,

since e2 − 4a ≤ e2, it follows from e2 ≥ 4a that
√
e2 − 4a ≤ e.

Let λ be an eigenvalue of ωe
a. The characteristic polynomial of ωe

a is T 2 − eT + a, thus
λ2 = eλ− a, therefore ωe

a(λ, a) = (eλ− a, aλ) = λ(λ, a). �

5.5. Proposition. Assume that A is a short local algebra of Hilbert type (e, a) with
e ≥ 2. If there exists a non-projective Koszul module M , then a ≤ 1

4e
2 and γ(M) is a

positive eigenvalue of ωe
a.

Proof. Let M be a non-projective Koszul module. Replacing, if necessary, M by
Ω(M), we can assume that M has Loewy length at most 2. Let x = dimM. Since M is
Koszul, we have (ωe

a)
nx = dimΩnM > 0 for all n ≥ 0. Thus, 5.3 assert that γ(M) is a

positive real eigenvalue. The existence of a real eigenvalue shows that a ≤ 1
4e

2, see 5.4. �
Corollary. Let A be a short local algebra of Hilbert type (e, a) with a > 1

4e
2. If M is

a non-projective module, then M is not Koszul, thus γ(M) = γA.

Proof. LetM be non-projective. Since a > 1
4e

2, Proposition 5.5 asserts thatM cannot
be Koszul. According to 5.1 we have γ(M) = γA.
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5.6. Proof of Theorems 2 and 3. Let A be a short local algebra of Hilbert type
(e, a).

First, let a = 0. Then ΩS = Se shows that S is a Koszul module (S is always aligned)
and γA = e. For any non-zero module M , the module ΩM is semisimple and not zero,
thus γ(M) = γA.

Now let a ̸= 0. If e = 1, then ΩJ = S, thus Ω2S = S shows that S is not Koszul, thus
there are no non-projective Koszul modules.

Thus, let e ≥ 2 and a ̸= 0. Let M ̸= 0 be a Koszul module of Loewy length at most
2. According to 4.6, A is left Koszul. According to 5.5 we know that a ≤ 1

4e
2 and that

γ(M) and γA are positive eigenvalues of ωe
a. Since a ̸= 0, we see that (1, 0) is not an

eigenvector of ωe
a, thus 5.2 asserts that γA = γω(1, 0) = ρ(ω) = 1

2 (e+
√
e2 − 4a ). Assume

that γ(M) ̸= γA, then γ(M) ̸= ρ(ω), thus 5.2 asserts that dimM is an eigenvector of ω
and γ(M) is the corresponding eigenvalue, thus equal to 1

2 (e−
√
e2 − 4a ). This completes

the proof of Theorem 2.

Now assume that there is a non-zero module M of Loewy length at most 2 with
γ(M) < γA. As we have seen, dimM is an eigenvector of ω and the corresponding
eigenvalue is γ(M). But this means that γ(M)dimM is a vector with integral coefficients,
thus γ(M) has to be rational and therefore e2−4a has to be the square of an integer. Since
dimM is an eigenvector of ω with eigenvalue γ(M), and all eigenvectors have multiplicity
1, dimM is a multiple of (γ(M), a) = (γ(M), γ(M)γA, and thus a multiple of (1, γA).

Let us assume that e = γ(M) + γA. Since 0 < γ(M) < γA, we have 2γ(M) <
γ(M)+γA = e, thus γ(M) < 1

2e. Since γ(M) < 1
2e, we have

1
2e = e− 1

2e < e−γ(M) = γA.
Since 0 < γ(M), we have γA < γ(M)+γA = e. This shows that 0 < γ(M) < 1

2e < γA < e.

Since S is a Koszul module, Theorem 2 asserts that γA = 1
2 (e +

√
e2 − 4a ) and γ(M) =

1
2 (e−

√
e2 − 4a ). It follows that γA − γ(M) =

√
e2 − 4a, thus (γA − γ(M))2 = e2 − 4a, so

that e2 − 4a is the square of a positive integer. �

6. Left Conca ideals.

6.1. Let A be a local algebra and U an ideal of A. We say that U is a left Conca ideal
provided U2 = 0 and J2 ⊆ JU . If A has a left Conca ideal U , then A is short (namely,
J3 ⊆ J2U ⊆ JU2 = 0).

Remark. The name corresponds to the considerations in [AIS]. Following [AIS] (but
dealing also with non-commutative local algebras), an element x may be called a left Conca
generator of J provided x2 = 0 ̸= x and J2 = Jx. If x is a left Conca generator of J , then
clearly Ax is a left Conca ideal (note that Ax is a twosided ideal, since xA = kx + xJ ⊆
kx + J2 ⊆ Ax). Obviously, the existence of a left Conca generator for J implies that
a ≤ e − 1. As we will see in 7.1, for any pair (e, a) with a ≤ 1

4e
2, there are short local

algebras of Hilbert type (e, a) with a left Conca ideal.

6.2. Proof of Theorem 4. Let U be a left Conca ideal in A. Let N be a local
module annihilated by U , thus, N ≃ A/V for some proper left ideal V of A and U ⊆ V ,
since UN = 0. Since J2 ⊆ JU ⊆ U ⊆ V ⊆ J , the factor module V/U is a subquotient
of AJ/J

2, thus semisimple. in addition, J2 ⊆ JU ⊆ JV ⊆ J2 shows that the embedding
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u : U → V yields the equality JU = JV . Thus, the Snake Lemma applied to

0 −−−−→ JU
1−−−−→ JV −−−−→ 0 −−−−→ 0y y ∥∥∥

0 −−−−→ U
u−−−−→ V −−−−→ V/U −−−−→ 0

shows that U is a t-submodule of V .
We show by induction on n ≥ 0: If N is a local module annihilated by U , then ΩiN is

aligned, for 0 ≤ i ≤ n.
First, let n = 0. We have N = AA/V for some left ideal V , thus ΩN = V , and as

we have mentioned already, J2 ⊆ JV = JΩN , thus condition (vi) of 3.3 asserts that N is
aligned.

Now, assume that we know for some n ≥ 0, that for all local modules N ′ annihilated
by U the modules ΩiN ′ with 0 ≤ i ≤ n are aligned. According to Corollary (a) in 4.5,
this implies that for all modules M annihilated by U , the modules ΩiM with 0 ≤ i ≤ n
are aligned. Let N be a local module annihilated by U , say N = AA/V for some left ideal
V . By induction assumption, we know that the modules ΩiN are aligned for 0 ≤ i ≤ n.
It remains to be seen that Ωn+1N is aligned. As we have mentioned, U is a t-submodule
of V . Now U is annihilated by U . Also, V/U is annihilated by U (since it is semisimple).
Thus, all the modules ΩiU and Ωi(V/U) are aligned, for 0 ≤ i ≤ n. We apply Lemma 4.4
(a) in order to conclude that ΩnV is aligned. Thus, Ωn+1N = ΩnV is aligned. �

Remark. This improves Theorem 3.2 of [AIS]. In addition, we should stress that
the proof yields the following stronger assertion: If A has a left Conca ideal U , then any
module with a t-filtration with factors annihilated by U is a Koszul module.

One should be aware that given any ideal U , there may be modules which are not
annihilated by U , but which have a t-filtration with factors annihilated by U . For exam-
ple, if A is of Hilbert type (2, 0) (thus, A is the local 3-dimensional algebra with radical
square zero) and U is one-dimensional, then there are just two indecomposable modules
annihilated by U , namely S and I = AA/U , but infinitely many indecomposable modules
which have a t-filtration with factors of the form I and S, namely the modules in the
Auslander-Reiten component which contains I as well as the preinjective modules.

6.3. Remark. A short local Koszul algebra A may not have any left Conca ideal.
Also, A may not have a left Conca ideal, whereas its opposite algebra has a left Conga
ideal.

Here is an example: Let A be generated by x, y, z with relations

x2, yx, zx, zy, y2 − xz, yz, z2,

so that J2 has the basis xy, y2 = xz. One easily checks that A has no left Conga ideal
(namely, any ideal U with U2 = 0 is contained in Ax+Az, thus JU ⊆ kxz). But xA (with
basis x, xy, xz is a right Conga ideal.

Since the opposite algebra of A has a left Conga ideal, A is a right Koszul algebra. In
order to see that A is also left Koszul, write AJ = S ⊕W where W = Ay + Az. Then
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ΩW =W 2. Therefore ΩnS = S⊕Wn has dimension vector (2n+1, 2n) = (ω3
2)

n(1, 0) and
this shows that S is a Koszul module. �

7. Construction of Koszul algebras.

7.1. Proposition. If 0 ≤ a ≤ 1
4e

2, there are short local algebras of Hilbert type (e, a)
(even commutative ones) with a left Conca ideal.

Proof. Assume that 0 ≤ a ≤ 1
4e

2.We are going to construct a commutative short local
algebra A of Hilbert type (e, a) which is Koszul.

Let c = ⌊ 1
2e⌋ and d = e − c. Since 0 ≤ a ≤ 1

4e
2, we have a ≤ cd (namely, for e even,

c = d = 1
2e and a ≤ c2 = cd, whereas for e odd, we have d = c + 1 and a ≤ 1

4 (2c + 1)2

implies that a ≤ c2 + c = cd). Thus we can write a =
∑d

j=1 a(j) with 0 ≤ a(j) ≤ c.
Let A = Λ(c; a(1), . . . , a(d)) be the commutative algebra generated by the elements

xi, yj with 1 ≤ i ≤ c and 1 ≤ j ≤ d and the relations xixi′ , yjyj′ for all i, i′ ∈ {1, . . . , c}
and j, j′ ∈ {1, . . . , d}, as well as xiyj for all pairs (i, j) with 1 ≤ j ≤ d and a(j) < i ≤ c. It
follows that J2 has the basis xiyj with 1 ≤ j ≤ d and 1 ≤ i ≤ a(j).

If U =
∑d

j=1Ayj , then U
2 = 0 and J2 ⊆ JU, thus U is a left Conca ideal. �

7.2. Proof of Theorem 5. If A is a short local left Koszul algebra of Hilbert
type (e, a), then Theorem 2 asserts that 0 ≤ a ≤ 1

4e
2. Conversely, 7.1 shows that for

0 ≤ a ≤ 1
4e

2, there are commutative short local algebras A of Hilbert type (e, a) with a
left Conca ideal. According to Theorem 4, these algebras A are left Koszul algebras. �

7.3. For any pair c, d of natural numbers, there exists a commutative short local algebra
Λ(c, d) of Hilbert type (e, a), where e = c+d and a = cd, with a module M with dimension
vector (1, c) such that ΩM ≃Md (thus γ(M) = d), and such that γA = max{c, d} = ρ(ωe

a).

Proof. Let A = Λ(c, d) be the commutative algebra generated by x1, . . . , xc, y1, . . . , yd,
and with relations xixi′ , yjyj′ for all i, i′ ∈ {1, . . . , c} and j, j′ ∈ {1, . . . , d}. Then J2 has
the basis xiyj with 1 ≤ i ≤ c, 1 ≤ j ≤ d. Let M = Ay1; this is a local module of Loewy
length 2 with socle x1y1, . . . , xcy1, thus with dimension vector (1, c). All the module Ayj
with 1 ≤ j ≤ d are isomorphic to M and J is isomorphic to Sc ⊕Md. Since A/

⊕d
j=1Ayj

is isomorphic to M , we see that ΩM ≃Md. It follows that γ(M) = d.
Here is a similar, but non-commutative example: a non-commutative short local algebra

Λ′(c, d) of the same Hilbert type (c+ d, cd) with a module M with dimension vector (1, c)
such that ΩM ≃ Md, so that γ(M) = d, whereas γA = max{c, d} = ρ(ωe

a). Let Λ′(c, d)
be generated by x1, . . . , xc, y1, . . . , yd, and with relations xixi′ , yjyj′ , yjxi for all i, i′ ∈
{1, . . . , c} and j, j′ ∈ {1, . . . , d}. Again, J2 has the basis xiyj with 1 ≤ i ≤ c, 1 ≤ j ≤ d.
Note that the elements x1, . . . , xd do not belong to J2, but to soc Λ′(c,d)J .

7.4. In particular, let us focus the attention to the case d = 1. The algebras Λ(c, 1)
and Λ′(c, 1) have a non-zero Ω-periodic module M .

On the other hand, let us stress that the algebra A = Λ′(c, 1) is a short local algebra
with J2 ⊂ socAA as well as J2 ⊂ socAA. Note that Lescot [L] Prop. 3.9 (2) has pointed
out that for a commutative short local algebra with J2 ⊂ socA and a non-projective
module M , the sequence tn(M) is always strictly increasing.
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8. A lower bound for γA.

8.1. Proof of Theorem 7. We assume that A is a short local algebra of Hilbert
type (e, a) with a ≤ 1

4e
2. Let ω = ωe

a and d(n) = ωn(1, 0) for all n ≥ 0. We have
ω(0,−1) = (1, 0) = d(0), and therefore ω(w,−w) = wd(1) + wd(0) for any w ∈ Z.

(1) Let us show that d(n) > 0 and that

lim sup
n

n
√
|d(n)| = 1

2 (e+
√
e2 − 4ac ).

According to Theorem 5, there exists a short local algebra A′ of Hilbert type (e, a)
which is left Koszul. Let S′ be the simple A′-module. Since S′ is a Koszul module,
we have dimΩA′S′ = d(n), thus d(n) > 0. Theorem 2 asserts that lim supn

n
√
|d(n)| =

lim supn
n
√
|Ωn

A′S′| = 1
2 (e+

√
e2 − 4ac ).

Let N (n) be the set of linear combinations of d(i) with 0 ≤ i ≤ n − 1 using non-
negative coefficients. For n ≥ 1, we apply the Main Lemma 3.1 to Ωn−1S and obtain
dimΩnS = ω(dimΩn−1S) + (wn,−wn) for some integer wn ≥ 0. In addition, we define
w0 = 0.

(2) Using induction on n ≥ 0, we show that

dimΩnS − d(n)− (wn,−wn) ∈ N (n).

Proof. The assertion holds true for n = 0, since dimS = d(n) and w0 = 0. Now
assume that the assertion is true for some n ≥ 0, thus we have

dimΩnS = d(n) + x with x = (wn,−wn) +

n−1∑
i=0

vid(i)

with non-negative integers vi, where 0 ≤ i < n.
We apply ω to x and get

ω(x) = ω(wn,−wn) +
n−1∑
i=0

viω(d(i))

= wnd(1) + wnd(0) +
n−1∑
i=0

vid(i+ 1),

thus ω(x) belongs to N (n+ 1). On the other hand, we have

dimΩn+1S = ω(dimΩnS) + (wn+1,−wn+1)

= ω(d(n) + x) + (wn+1,−wn+1)

= d(n+ 1) + (wn+1,−wn+1) + ω(x).

This shows that dimΩn+1S−d(n+1)− (wn+1,−wn+1) = ω(x), and we have seen already
that ω(x) belongs to N (n+ 1). �
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(3) We have |ΩnS| ≥ |d(n)| for n ≥ 0. Namely, the formula (2) implies that dimΩnS ≥
d(n) + (wn,−wn) (since d(i) ≥ 0 for all 0 ≤ i < n) and therefore |ΩnS| ≥ |d(n)|, since
|(wn,−wn)| = 0.

(4) Altogether, (1) and (3) show that

γA = lim sup
n

n
√
|ΩnS| ≥ lim sup

n

n
√
|d(n)| = 1

2 (e+
√
e2 − 4ac ),

this completes the proof. �

8.2. Let us show that γA does not only depend on the Hilbert type. Of course, as
we have seen, if A is a Koszul algebra, then γA is determined by the Hilbert type (e, a),
namely γA = ρ(ωe

a). But we will show that there are algebras A,A′ which are not Koszul
with γA ̸= γA′ (and both γA, γA′ different from ρ(ωe

a)).

Example. Short local algebras A of Hilbert type (3, 2) with γA = 2, ψ, 3, where
ψ = 1

2 (3 +
√
5) is the square of the golden ratio. Note that ρ(ω3

2) = 2.

First. If a short local algebra has Hilbert type (3, 2) and is Koszul, then theorem 2
asserts that γ(S) = ρ(ωe

a) = 1
2 (3 +

√
9− 4 · 2 ) = 2 (and we know from Theorem 5 that

such algebras do exist).

We define two algebras A,A′ of Hilbert type (3, 2) with generators x, y, z. The relations
for A are yx, zx, y2, zy, xz, yz, z2. The relations for A′ are yx, zx, xy, zy, xz, yz, z2.
The radicals J and J ′, respectively, look as follows:

x y z

x2 zy

............................................................
..
.......
.....

x z

............................................................
..
.......
.....

J x y z

x2 y2

............................................................
..
.......
.....

x y

............................................................
..
.......
.....

J ′

We will show that γA = ψ and γA′ = 3.

First, let us consider A. LetX = Ax ≃ A/(Ax2+Ay+Az) and Z = Ay ≃ A/(Ax+Ay),
these are indecomposable modules of length 2. We claim that for M ∈ add{S,X,Z}, we
have ΩM ∈ add{S,X,Z} and t2(M) = 3t1(M)− t0(M).

Proof. We can assume that M is indecomposable, thus M is one of S,X,Z. We
have ΩS = X ⊕ Z ⊕ S; second, we have ΩX = Ax2 ⊕ Z ⊕ Az ≃ Z ⊕ S2, and finally
ΩZ = X ⊕ Z. This shows already that ΩM ∈ add{S,X,Z}. It follows that Ω2S =
Ω(X⊕Z⊕S) ≃ X2⊕Z3⊕S3, therefore t2(S) = t(Ω2S) = 8. Since t1(S) = 3 and t0(S) = 1,
we have t2(S) = 3t1(S) − t0(S). Next, Ω

2X = Ω(Z ⊕ S2) ≃ X3 ⊕ Z3 ⊕ S2, therefore
t2(X) = t(Ω2X) = 8. Since t1(X) = 3 and t0(X) = 1, we have t2(X) = 3t1(X) − t0(X).
Finally, Ω2Z = Ω(X ⊕ Z) ≃ X2 ⊕ Z2 ⊕ S, therefore t2(Z) = t(Ω2Z) = 5. Since t1(X) = 2
and t0(X) = 1, we have t2(Z) = 3t1(Z)− t0(Z). �

By induction, we see that Ωn(S) ∈ add{S,X,Z} and that the numbers bn = tn(S)
satisfy the recursion bn+2 = 3bn+1 − bn for all n ≥ 0. Since b0 = 1 and bn = 3, it follows
that the numbers bn are the even-index Fibonacci numbers 1, 3, 8, 21, 55, 144, . . . and
therefore γA = γ(S) = lim supn bn = ϕ2 = ψ, where ϕ = 1

2 (1 +
√
5) is the golden ratio.
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Second, we consider A′. Let X = A′x ≃ A/(Ax2 + Ay + Az) and Y = A′y ≃
A/(Ax + Ay2 + Az), these are indecomposable modules of length 2. We claim that for
M ∈ add{S,X, Y }, we have ΩM ∈ add{S,X, Y } and t1(M) = 3t0(M).

Proof. We can assume thatM is indecomposable, thusM is one of the modules S,X, Y .
We have ΩS = J = X⊕Y ⊕S, and | topΩS| = 3. We have ΩX = Ax2⊕Y ⊕Az ≃ Y ⊕S2,
thus | topΩX| = 3. And similarly, ΩY ≃ X ⊕ S2, and thus | topΩY | = 3. �

By induction, ΩnS belongs to add{S,X, Y } and tn(S) = | topΩn(S)| = 3n. Therefore
γA′ = γ(S) = 3.
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