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Let Λ be a connected left artinian ring with radical square zero and
with n simple modules. If Λ is not self-injective, then we show that any
module M with Exti(M,Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We
also determine the structure of the artin algebras with radical square zero
and n simple modules which have a non-projective module M such that
Exti(M,Λ) = 0 for 1 ≤ i ≤ n.

Xiao-Wu Chen [C] has recently shown: given a connected artin algebra Λ with radical
square zero then either Λ is self-injective or else any CM module is projective. Here we
extend this result by showing: If Λ is a connected artin algebra with radical square zero and
n simple modules then either Λ is self-injective or else any module M with Exti(M,Λ) = 0
for 1 ≤ i ≤ n + 1 is projective. Actually, we will not need the assumption on Λ to be
an artin algebra; it is sufficient to assume that Λ is a left artinian ring. And we show
that for artin algebras the bound n + 1 is optimal by determining the structure of those
artin algebras with radical square zero and n simple modules which have a non-projective
module M such that Exti(M,Λ) = 0 for 1 ≤ i ≤ n.

From now on, let Λ be a left artinian ring with radical square zero, this means that
Λ has an ideal I with I2 = 0 (the radical) such that Λ/I is semisimple artinian. We also
assume that Λ is connected (the only central idempotents are 0 and 1). The modules
to be considered are usually finitely generated left Λ-modules. Let n be the number of
(isomorphism classes of) simple modules.

Given a module M , we denote by PM a projective cover, by QM an injective envelope
of M . Also, we denote by ΩM a syzygy module for M , this is the kernel of a projective
cover PM → M. Since Λ is a ring with radical square zero, all the syzygy modules are
semisimple. Inductively, we define Ω0M = M, and Ωi+1M = Ω(ΩiM) for i ≥ 0.

Lemma 1. If M is a non-projective module with Exti(M,Λ) = 0 for 1 ≤ i ≤ d + 1
(and d ≥ 1), then there exists a simple non-projective module S with Exti(S,Λ) = 0 for
1 ≤ i ≤ d.

Proof: We have Exti(M,Λ) ≃ Exti−1(ΩM,Λ), for all i ≥ 2. Since M is not projective,
ΩM 6= 0. Now ΩM is semisimple. If all simple direct summands of ΩM are projective, then
also ΩM is projective, but then the condition Ext1(M,Λ) = 0 implies that Ext1(M,ΩM) =
0 in contrast to the existence of the exact sequence 0 → ΩM → PM → M → 0. Thus, let
S be a non-projective simple direct summand of ΩM.

Lemma 2. If S is a non-projective simple module with Ext1(S,Λ) = 0, then PS is
injective and ΩS is simple and not projective.
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Proof: First, we show that PS has length 2. Otherwise, ΩS is of length at least 2,
thus there is a proper decomposition ΩS = U ⊕ U ′ and then there is a canonical exact
sequence

0 → PS → PS/U ⊕ PS/U ′ → S → 0,

which of course does not split. But since Ext1(S,Λ) = 0, we have Ext1(S, P ) = 0, for any
projective module P . Thus, we obtain a contradiction.

This shows also that ΩS is simple. Of course, ΩS cannot be projective, again according
to the assumption that Ext1(S, P ) = 0, for any projective module P .

Now let us consider the injective envelope Q of ΩS. It contains PS as a submodule
(since PS has ΩS as socle). Assume that Q is of length at least 3. Take a submodule I of
Q of length 2 which is different from PS and let V = PS + I, this is a submodule of Q of
length 3. Thus, there are the following inclusion maps u1, u2, v1, v2:

ΩS
u1

−−−−→ PS

v1





y





y

u2

I
v2

−−−−→ V

The projective cover p : PI → I has as restriction a surjective map p′ : radPI → ΩS. But
radPI is semisimple, thus p′ is a split epimorphism, thus we obtain a map w : ΩS → PI
such that pw = v1. We consider the exact sequence induced from the sequence 0 → ΩS →

PS → S → 0 by the map w:

0 −−−−→ ΩS
u1

−−−−→ PS
e1

−−−−→ S −−−−→ 0

w





y





yw′

∥

∥

∥

0 −−−−→ PI
u′

1

−−−−→ N
e′
1

−−−−→ S −−−−→ 0

Here, N is the pushout of the two maps u1 and w. Since we know that u2u1 = v2v1 =
v2pw, there is a map f : N → V such that fu′

1 = v2p and fw′ = u2. Since the map
[ v2p u2 ] : PI ⊕ PS → V is surjective, also f is surjective.

But recall that we assume that Ext1(S,Λ) = 0, thus Ext1(S, PI) = 0. This means
that the lower exact sequence splits and therefore the socle of N = PI ⊕ S is a maximal
submodule of N (since I is a local module, also PI is a local module). Now f maps the
socle of N into the socle of V , thus it maps a maximal submodule of N into a simple
submodule of V . This implies that the image of f has length at most 2, thus f cannot
be surjective. This contradiction shows that Q has to be of length 2, thus Q = PS and
therefore PS is injective.

Lemma 3. If S is a non-projective simple module with Exti(S,Λ) = 0 for 1 ≤ i ≤ d,
then the modules Si = ΩiS with 0 ≤ i ≤ d are simple and not projective, and the modules
P (Si) are injective for 0 ≤ i < d.

The proof is by induction. If d ≥ 2, we know by induction that the modules Si with
0 ≤ i ≤ d− 1 are simple and not projective, and that the modules P (Si) are injective for
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0 ≤ i < d− 1. But Ext1(Ωd−1S,Λ) ≃ Extd(S,Λ) = 0, thus Lemma 2 asserts that also Sd

is simple and not projective and that P (Sd−1) is injective.

Lemma 4. Let S0, S1, . . . , Sb be simple modules with Si = Ωi(S0) for 1 ≤ i ≤ b.
Assume that there is an integer 0 ≤ a < b such that the modules Si with a ≤ i < b are
pairwise non-isomorphic, whereas Sb is isomorphic to Sa. In addition, we asssume that
the modules P (Si) for a ≤ i < b are injective. Then Sa, . . . , Sb−1 is the list of all the
simple modules and Λ is self-injective.

Proof: Let S be the subcategory of all modules with composition factors of the form
Si, where a ≤ i < b. We claim that this subcategory is closed under projective covers and
injective envelopes. Indeed, the projective cover of Si for a ≤ i < b has the composition
factors Si and Si+1 (and Sb = Sa), thus is in S. Similarly, the injective envelope for Si

with a < i < b is Q(Si) = P (Si−1), thus it has the composition factors Si−1 and Si, and
Q(Sa) = Q(Sb) = P (Sb−1) has the composition factors Sb−1 and Sa. Since we assume that
Λ is connected, we know that the only non-trivial subcategory closed under composition
factors, extensions, projective covers and injective envelopes is the module category itself.
This shows that Sa, . . . , Sb−1 are all the simple modules. Since the projective cover of any
simple module is injective, Λ is self-injective.

Theorem 1. Let Λ be a connected left artinian ring with radical square zero. Assume
that Λ is not self-injective. If S is a non-projective simple module such that Exti(S,Λ) = 0
for 1 ≤ i ≤ d, then the modules Si = ΩiS with 0 ≤ i ≤ d are pairwise non-isomorphic
simple and non-projective modules and the modules P (Si) are injective for 0 ≤ i < d.

Proof. According to Lemma 3, the modules Si (with 0 ≤ i ≤ d) are simple and non-
projective, and the modules P (Si) are injective for 0 ≤ i < d. If at least two of the modules
S0, . . . , Sd are isomorphic, then Lemma 4 asserts that Λ is self-injective, but this we have
excluded.

Theorem 2. Let Λ be a connected left artinian ring with radical square zero and with
n simple modules. The following conditions are equivalent:
(i) Λ is self-injective, but not a simple ring.
(ii) There exists a non-projective module M with Exti(M,Λ) = 0 for 1 ≤ i ≤ n+ 1.
(iii) There exists a non-projective simple module S with Exti(S,Λ) = 0 for 1 ≤ i ≤ n.

Proof. First, assume that Λ is self-injective, but not simple. Since Λ is not semisimple,
there is a non-projective module M . Since Λ is self-injective, Exti(M,Λ) = 0 for all i ≥ 1.
This shows the implication (i) =⇒ (ii). The implication (ii) =⇒ (iii) follows from
Lemma 1. Finally, for the implication (iii) =⇒ (ii) we use Theorem 1. Namely, if Λ is not
self-injective, then Theorem 1 asserts that the simple modules Si = ΩiS with 0 ≤ i ≤ n
are pairwise non-isomorphic. However, these are n + 1 simple modules, and we assume
that the number of isomorphism classes of simple modules is n. This completes the proof
of Theorem 2.

Note that the implication (ii) =⇒ (i) in Theorem 2 asserts in particular that either
Λ is self-injective or else that any CM module is projective, as shown by Chen [C]. Let
us recall that a module M is said to be a CM module provided Exti(M,Λ) = 0 and
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Exti(TrM,Λ) = 0, for all i ≥ 1 (here Tr denotes the transpose of the module); these
modules are also called Gorenstein-projective modules, or totally reflexive modules, or
modules of G-dimension equal to 0. Note that in general there do exist modules M with
Exti(M,Λ) = 0 for all i ≥ 1 which are not CM modules, see [JS].

We also draw the attention to the generalized Nakayama conjecture formulated by
Auslander-Reiten [AR]. It asserts that for any artin algebra Λ and any simple Λ-module S
there should exist an integer i ≥ 0 such that Exti(S,Λ) 6= 0. It is known that this conjecture
holds true for algebras with radical square zero. The implication (iii) =⇒ (i) of Theorem
2 provides an effective bound: If n is the number of simple Λ-modules, and S is simple,
then Exti(S,Λ) 6= 0 for some 0 ≤ i ≤ n.. Namely, in case S is projective or Λ is self-
injective, then Ext0(S,Λ) 6= 0. Now assume that S is simple and not projective and that
Λ is not self-injective. Then there must exist some integer 1 ≤ i ≤ n with Exti(S,Λ) 6= 0,
since otherwise the condition (iii) would be satisfied and therefore condition (i).

Theorem 1 may be interpreted as a statement concerning the Ext-quiver of Λ. Recall
that the Ext-quiver Γ(R) of a left artinian ring R has as vertices the (isomorphism classes
of the) simple R-modules, and if S, T are simple R-modules, there is an arrow T → S
provided Ext1(T, S) 6= 0, thus provided that there exists an indecomposable R-module M
of length 2 with socle S and top T . We may add to the arrow α : T → S the number
l(α) = ab, where a is the length of socPT and b is the length of QS/ soc (note that b may
be infinite). The properties of Γ(R) which are relevant for this note are the following: the
vertex S is a sink if and only if S is projective; the vertex S is a source if and only if S
is injective; finally, if R is a radical square zero ring and S, T are simple R-modules then
PT = QS if and only if there is an arrow α : T → S with l(α) = 1 and this is the only
arrow starting at T and the only arrow ending in S.

Theorem 1 assert the following: Let Λ be a connected left artinian ring with radical
square zero. Assume that Λ is not self-injective. Let S be a non-projective simple module
such that Exti(S,Λ) = 0 for 1 ≤ i ≤ d, and let Si = ΩiS with 0 ≤ i ≤ d. Then the local
structure of Γ(Λ) is as follows:
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such that there is at least one arrow starting in Sd (but may-be no arrow ending in S0).
To be precise: the picture is supposed to show all the arrows starting or ending in the
vertices S0, . . . , Sd (and to assert that the vertices S0, . . . , Sd are pairwise different).

Let us introduce the quivers ∆(n, t), where n, t are positive integers. The quiver ∆(n, t)
has n vertices and also n arrows, namely the vertices labeled 0, 1, . . . , n − 1, and arrows
i → i+1 for 0 ≤ i ≤ n− 1 (modulo n) (thus, we deal with an oriented cycle); in addition,

4



let l(α) = t for the arrow α : n−1 → 0 and let l(β) = 1 for the remaining arrows β:
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Note that the Ext-quiver of a connected self-injective left artinian ring with radical square
zero and n vertices is just ∆(n, 1). Our further interest lies in the cases t > 1.

Theorem 3. Let Λ be a connected left artinian ring with radical square zero and with
n simple modules.
(a) If there exists a non-projective simple modules S with Exti(S,Λ) = 0 for 1 ≤ i ≤ n−1,

or if there exists a non-projective module M with Exti(M,Λ) = 0 for 1 ≤ i ≤ n, then
Γ(Λ) is of the form ∆(n, t) with t > 1.

(b) Conversely, if Γ(Λ) = ∆(n, t) and t > 1, then there exists a unique simple module S
with Exti(S,Λ) = 0 for 1 ≤ i ≤ n − 1, namely the module S = S(0) (and it satisfies
Extn(S,Λ) 6= 0).

(c) If Γ(Λ) = ∆(n, t) and t > 1, and if we assume in addition that Λ is an artin algebra,
then there exists a unique indecomposable module M with Exti(M,Λ) = 0 for 1 ≤ i ≤
n, namely M = TrD(S(0)) (and it satisfies Extn+1(M,Λ) 6= 0).

Here, for Λ an artin algebra, D denotes the k-duality, where k is the center of Λ
(thus D = Homk(−, E), where E is a minimal injective cogenerator in the category of
k-modules); thus DTr is the Auslander-Reiten translation and TrD the reverse.

Proof of Theorem 3. Part (a) is a direct consequence of Theorem 1, using the inter-
pretation in terms of the Ext-quiver as outlined above. Note that we must have t > 1,
since otherwise Λ would be self-injective.

(b) We assume that Γ(Λ) = ∆(n, t) with t > 1. For 0 ≤ i < n, let S(i) be the simple
module corresponding to the vertex i, let P (i) be its projective cover, I(i) its injective
envelope. We see from the quiver that all the projective modules P (i) with 0 ≤ i ≤ n−2
are injective, thus Extj(−,Λ) = Extj(−, P (n−1)) for all j ≥ 1. In addition, the quiver
shows that ΩS(i) = S(i+1) for 0 ≤ i ≤ n−2. Finally, we have ΩS(n−1) = S(0)a for some
positive integer a dividing t and the injective envelope of P (n−1) yields an exact sequence

(∗) 0 → P (n−1) → I(P (n−1)) → S(n−1)t−1 → 0

(namely, I(P (n−1)) = I(socP (n−1)) = I(S(0)a) = I(S(0))a and I(S(0))/ soc is the
direct sum of b copies of S(n−1), where ab = t; thus the cokernel of the inclusion map
P (n−1) → I(P (n−1)) consists of t−1 copies of S(n−1)).

Since t > 1, the exact sequence (∗) shows that Ext1(S(n−1), P (n−1)) 6= 0. It also
implies that Ext1(S(i), P (n−1)) = 0 for 0 ≤ i ≤ n−2, and therefore that

Exti(S(0), P (n−1)) = Ext1(Ωi−1S(0), P (n−1))

= Ext1(S(i−1), P (n−1))

= 0
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for 1 ≤ i ≤ n−1.
Since Ωn−i−1S(i) = S(n−1) for 0 ≤ i ≤ n−1, we see that

Extn−i(S(i), P (n−1)) = Ext1(Ωn−i−1S(i), P (n−1))

= Ext1(S(n−1), P (n−1))

6= 0

for 0 ≤ i ≤ n−1. Thus, on the one hand, we have Extn(S(0),Λ) 6= 0, this concludes the
proof that S(0) has the required properties. On the other hand, we also see that S = S(0)
is the only simple module with Exti(S,Λ) = 0 for 1 ≤ i ≤ n−1. This completes the proof
of (b).

(c) Assume now in addition that Λ is an artin algebra. As usual, we denote the
Auslander-Reiten translationDTr by τ. LetM be a non-projective indecomposable module
with Exti(M,Λ) = 0 for 1 ≤ i ≤ n. The shape of Γ(Λ) shows that ΩM = Sc for some
simple module S (and we have c ≥ 1), also it shows that no simple module is projective.
Now Exti(S,Λ) = 0 for 1 ≤ i < n, thus according to (b) we must have S = S(0). It follows
that PM has to be a direct sum of copies of P (n−1), say of d copies. Thus a minimal
projective presentation of M is of the form

P (0)c → P (n−1)d → M → 0,

and therefore a minimal injective copresentation of τM is of the form

0 → τM → I(0)c → I(n−1)d.

In particular, soc τM = S(0)c and (τM)/ soc is a direct sum of copies of S(n−1).
Assume that τM 6= S(0), thus it has at least one composition factor of the form S(n−1)

and therefore there exists a non-zero map f : P (n−1) → τM. Since τM is indecomposable
and not injective, any map from an injective module to τM maps into the socle of τM .
But the image of f is not contained in the socle of τM , therefore f cannot be factored
through an injective module. It follows that

Ext1(M,P (n−1)) ≃ DHom(P (n−1), τM) 6= 0,

which contradicts the assumption that Ext1(M,Λ) = 0. This shows that τM = S(0) and
therefore M = TrDS(0).

Of course, conversely we see that M = TrDS(0) satisfies Exti(M,P (n−1)) = 0 for
1 ≤ i ≤ n, and Extn+1(M,P (n−1)) 6= 0.

Remarks. (1) The module M = TrDS(0) considered in (c) has length t2 + t− 1, thus
the number t (and therefore ∆(n, t)) is determined by M .

(2) If Λ is an artin algebra with Ext-quiver ∆(n, t), the number t has to be the square
of an integer, say t = m2. A typical example of such an artin algebra is the path algebra
of the following quiver
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with altogether n + m − 1 arrows, modulo the ideal generated by all paths of length 2.
Of course, if Λ is a finite-dimensional k-algebra with radical square zero and Ext-quiver
∆(n,m2), and k is an algebraically closed field, then Λ is Morita-equivalent to such an
algebra.

Also the following artin algebras with radical square zero and Ext-quiver ∆(1, m2)
may be of interest: the factor rings of the polynomial ring Z[T1, . . . , Tm−1] modulo the
square of the ideal generated by some prime number p and the variables T1, . . . , Tm−1.
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