The (n — 1)-antichains in a root poset of width n.
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Abstract. Let A be a Dynkin diagram of rank n > 2 and & the correspond-
ing root poset (it consists of all positive roots with respect to some root basis).
Antichains in @ of cardinality ¢ will be called t-antichains. There always exists
a unique maximal (n—1)-antichain A. We will show that for A # Eg all roots in
A have the same length with respect to the root basis, whereas for A = Eg, this
antichain consists of roots of length 4 and 5. It follows from these considerations
that in general one cannot recover the poset structure of ®, by looking at the
set of (n—1)-antichains in @ .

Given a root system ® of Dynkin type A, the root poset &, = & (A) is the set of
positive roots in ® with respect to some fixed choice of a root basis; here, one takes the
following partial ordering: = < y provided y — = is a non-negative linear combination of
elements of the root basis. The root posets and its antichains play an important role in
many parts of mathematics.

If P is a poset, a subset A of cardinality ¢ which consists of pairwise incomparable
elements is called a t-antichain. The width of a finite poset P is the maximal number ¢
such that there exists a t-antichain in P. It is well-known that the width of ®_ is the
rank n = n(A) of the root system (thus the number of vertices of A). Since ® has an
n-antichain, it has many (n — 1)-antichains. We say that an (n — 1)-antichain A in a
poset P is mazximal, provided it does not lie in the ideal generated by any other (n — 1)-
antichain. Of course, in a finite poset P, any (n — 1)-antichain is contained in a maximal
(n — 1)-antichain.

For any positive root x, we denote by [(x) the sum of the coefficients when written as
a linear combination with respect to the root basis, thus [(z) — 1 is the height of = in the
root poset ®,. For any natural number ¢, let ®; be the set of roots z with [(z) =t (thus
these are the elements of height ¢ — 1 in the root poset). Clearly, ®; is an antichain.

Theorem. For any Dynkin diagram A of rank n > 2, there is a number h = h(A)
with the following property: If A # Eg, then ®y, is the unique mazximal (n — 1)-antichain
of ®1. If A = Eg, then @y, is an (n — 1)-antichain, but not maximal; the unique mazimal
(n —1)-antichain lies in @, UPp11; and all (n — 1)-antichains but the mazimal one belong
to the ideal generated by ®y,.
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Remark 1. Let us stress that in general, a poset of width n will have several maximal
(n — 1)-antichains, here are two examples for n = 3.



Remark 2. For a given Dynkin diagram A, we denote by r(i) = ra(i) the number
of positive roots x with [(x) = i. Then, the number h(A) listed above is the largest
number ¢ such that r(i) = n — 1. It follows that (i) is also the largest number ¢ such that
r(g —i+ 1) = 1, where g is the Coxeter number for A. Namely, for all 1 < i < g, one
knows that

r@i)+r(g—i+1)=n

(see Humphreys [H, Theorem 3.20] and Armstrong [Ar, Theorem 5.4.1]; we are indebted
to H. Thomas for pointed out these references).

The proof of the theorem will be given case by case, starting with the case A, and
ending with Fy, the case Gy is of course trivial. If necessary, we will refer to the visualization
of the various root posets as exhibited in the appendix.

The case A,,. The root poset has the form of a triangle, it may be identified with
the poset P of the real intervals [i, j], where 1 < i < j < n are integers, and the partial
ordering is just given by inclusion. (The reader should be aware: For the interval [i, j]
considered as an element of P = ®, we have [([i,j]) = j —i+ 1, and the height of [7, j] in
P = @, is equal to the (Euclidean) length j — i of the interval [i, j]). The set P, consists
of the elements [1,2],[2,3],...[n—1,n], it is an (n — 1)-antichain. If n = 2, then P, is the
only 2-antichain. Thus, we may assume that n > 3.

For 1 <i < j <mn,let X[i,j] be the set of elements in P which are comparable with
[i,7]. Let L[i,j] be the set of elements of the form [i,¢] with i < ¢ < j and [s, j] with
1 < s <. Similarly, let R[z, j] be the set of elements of the form [i,¢] with j < ¢ < n and
[s,1] with 7 < s < j. Note that both Ll[i, j|] and R[i, j] are chains.

Assume that j —i = a. The complement of X[i,j] in P can be covered by the sets
Lis,s + a] with 1 < s < i and the sets R[s,s + a] with i < s < n — a. These are
(t—1)+ (n—a—1i) = n—a—1 chains, thus if [i, j] belongs to a b-antichain, then b < n—a.
This shows that the elements [4, j] with j — 4 > 2 cannot belong to an (n — 1)-antichain.

The cases B,, and C,,. The root posets P of type B,, and C,, both can be identified
with the subset of ®(Ag,_1) consisting of all intervals [i, j] which satisfy the additional
condition i 4+ j < 2n. The set P consists of the elements [1,3],[2,4],---,[n — 1,n+ 1], it
clearly is an (n — 1)-antichain.

Let us show that no element [i,j] with [([,j]) > 4 belongs to an (n — 1)-antichain.
Again, we denote by X[i, j] the set of elements which are comparable with X[z, j].

Let j — i = a. The complement of X[, j] in P can be covered by the sets Lls, s + a]
with 1 < s < ¢ and the sets R[s,s + a] with i < s such that [s, s + a] still belongs to P.
But [s, s + a] belongs to P means that 25 +a < 2n, thus s <n — . Thus the complement
is covered by (i —1)+([n—5]—i) = [n—5] —1=mn—[%] —1 chains. As a consequence,
if [¢, j] belongs to a b-antichain, then b < |n — §].

This shows that for a > 3, the element [i, j] cannot belong to an (n — 1)-antichain.
Therefore P5 is the maximal (n — 1)-antichain.



The case D,,. For a visualization of the root poset ®, (ID,,) see the appendix. We see
there nicely the two levels, the lower one is the root poset for one of the subdiagrams A,,_1,
the upper level has again the shape of a triangle, but rotated by 90°. Unfortunately, the
picture seems to conceal the action of an automorphism of order 2, thus let us “squeeze”
the picture slightly. Here the case n = 6:

What we see immediately is the existence of a poset map 7 onto the root poset of type
B,,_1 or C,,_;. For the further calculations it seems convenient to consider instead of
®(D,,) the root poset P = ®(D,,+1). In terms of roots the map 7 is best expressed by
looking at type C (not B), thus let P/ = &, (C,,) and define 7w: P — P’ by

Tn
T T e = (wh t, Tn—3, Tn—2;, Tn—1+Tn ) .

Tn—-3 Tn—-2 Tn—-1

Let us introduce now labels for the vertices of P = &, (D,,+1) (having in mind the
map 7). We will use as vertices the pairs [¢, j] with 1 <7 < j < 2n—1 such that i+j < 2n
(these are represented in the picture by bullets) as well as additional pairs [i,n — 4" with
1 < i < n (they are represented by small circles). The pairs [i, j] are ordered in the
same way as in P’ (thus via the inclusion relation of intervals). Also, the pairs [i, j] with
i+ j # n together with the new vertices [i,n — ]’ form another copy of P’ inside P (and
there are no additional relations). Of course, the map 7 is now defined by 7 ([, j]) = [4, j]
and 7([¢i,n —1]") = [i,n — 1.

Consider a vertex [i, j] or [¢, j]" of P and assume that it belongs to some antichain A.
Let j —i = a. We want to show that |A| > n implies that a < 2.

First, consider [i, j] with i + j # n. We consider in P’ the subsets X[, j|, L[s, s + a]
with 1 < s <4 and R[s,s + a] with i < s <n — g, and form the inverse images under 7.
As we know from the last section, the number of these sets is n. — [§].

Clearly, m~1X[i, j] are the elements in P which are comparable with [i,j] thus, A
contains no other element from this set. Let us say that a subset of a poset is almost a chain
provided it contains at most one pair of incomparable elements. The sets 7~ !L[s, s + d
and 7' R[s, s + a] are almost chains, thus the intersection of A with any such set consists

of at most 2 elements and then these elements are of the form [u,n — u] and [u,n —u]" for
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some u. However, if A contains at most one element of the form [u,n —u| and at most one
element of the form [u,n — u]’. This shows: If A intersects one of the sets 7~ !L[s, s + d
and 7! R[s, s + a] in two elements, then all the others in at most one element. Thus the
number of elements of A is bounded by n — [§] 4 1. It follows that [A| > n implies that
[51+1<1, thusa < 2.

Next, consider a pair of the form [i, j] with j = n — i (the case of [i,n — 7]’ is similar).
Again, we consider in P’ the subsets X[i, j], L[s, s+ a] with 1 < s < i and R[s, s + a] with

i < s <n-—g,and form the inverse images under . Again, the number of these sets is

n—[%].

1\?OW, 771 X[i, j] are the elements in P which are comparable with [i, j] or [, j]’, thus
the intersection with A can consist of two elements. But now all the sets 7= 1L[s, s + d
and 7 R[s, s + a] are actually chains, thus A intersects any of these sets in at most one
element, therefore we have again [A| < n — [§] + 1 (instead of verifying that the almost
chains are chains, we also could use argue as in the case i + j # n; in particular, if A
contains both [i, j] and [i, j]’, then A intersects any set 7! L[s, s +a] and 77! R[s, s +a] in
at most one element). As before, n < |A] < n—[§]+1 implies that a < 2. This completes
the proof.

The cases E,, and F;. We use the following criterion:

Lemma. Let P be a finite poset. Let X be an n-antichain in P, let' Y be an m-
antichain with m < n, such that the ideal I generated by X and the coideal J generated
by Y are complements of each other. Assume that I has width n and that J has width m.
Finally, assume that for any element y € Y (with 1 <i < m) we can choose two elements
fy),g(y) € X with f(y) <y and g(y) <y such that the graph with vertices the elements
of X UY and edges (y, f(y)), (y,9(y)) fory €Y is a forest.

Then P has width n and X is the unique mazimal n-chain.

Proof: We show that for any element z € J, the set P(z) of elements not comparable
with z has width at most n — 2.

Write [ as a union of n chains and label the chain containing z € X by I,. Similarly,
J is the union of m chains, and the chain containing y € Y will be labeled J,,.

Thus we deal with the following situation: The elements of X are marked by black
squares M, the elements of Y are encircled. The lower lines indicate the chains I;, the
upper lines the chains J; and the lines connecting the elements of X and Y form the forest
which exists by assumption:

Thus, assume that z € J, say z € J, for some y € Y. Then the elements of P(z) do not
belong to Jy, Iy, I4)- Bub deletlng from P these chains, the remaining subset is the
union of n — 2 chains, thus P(z) has width at most n — 2.
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If B is any antichain in P, then either P contains an element z € J, then we have
shown that the cardinality of B is at most n — 1. If B does not contain such an element,
then B is contained in I and therefore the cardinality of B is at most n by assumption.
This shows the width of P is at most n. Since A is an n-antichain in P, we see that the
width of P is precisely n.

We consider now the case E,, with n = 6,7,8 and F,, with n = 4 case by case. Always,
we mark n— 1 vertices using black squares, they clearly form an (n—1)-antichain X and we
claim that this is the unique maximal (n — 1)-antichain. Let I be the ideal generated by X
and J = P\ I. The encircled vertices generate the coideal .J, they form an (n—2)-antichain
which we call Y.

Since we want to show that no element of J belongs to an (n — 1)-antichain, we may
delete from the beginning any element which is smaller than all the elements of Y. Thus,
we always delete the basis root with label ¢ (marked by a &). Since it is well-known that
the root basis is the only n-antichain of the root poset, we see that in this way we obtain
as P\ {c} a poset of width n — 1.

In order to be able to apply the Lemma (with n replaced by n — 1), we exhibit in all
four cases in the lower part chains I, for any x € X, in the upper part chains J,, for any
y € Y, and in-between X and Y a forest given by the vertices X UY and edges (y, f(y))
and (y,9(y)), fory € Y.

The case [Eg.




The case [E;.




The case FEjg




The case F4.

Final remark.

If P is a finite poset and ¢ a non-negative integer, let A;(P) be the set of t-antichains
in P.

Given any Dynkin diagram A of rank n with root poset ® , one knows that | A (P4 )| =
|A,—+(P)], for 0 <t < mn, see [At]. In particular, since A;(P;) = P, we always have

[An—1 ()] = [®4],

thus one may ask whether it is possible to recover also the partial ordering of ®, by
looking at the set of (n — 1)-antichains. Note that given a poset P, there are several ways
to consider A;(P) as a poset (for example, given two antichains z, y, one may define z <y
provided x lies in the ideal generated by y; alternatively, one also could use the property
that y is contained in the coideal generated by x).

As we want to point out, it is not possible in general to recover the partial ordering
of @4 by looking at the set of (n — 1)-antichains. Namely, consider the Dynkin type Fy
and let I be the ideal generated by ®5. As we have shown above, A3(®,) = A3(I). Now
the poset I has an automorphism ¢ of order 2, and ¢ induces an automorphism on A3(7I)
which is non-trivial (since obviously there are 3-antichains which are not invariant under
¢). But & itself has no non-trivial automorphisms.



Appendix: Some pictures of the root posets.

We exhibit a visualization of the root posets D,,, Eg,[E7, Eg and F4 which we found
useful when preparing this note. Indeed, the pictures which we found in the literature
and in the web did not seem to be quite convincing (for us). The pictures shown below
draw the attention to the fact that for any pair of elements x,z € ®,, the interval {y €
O, | x <y < 2z} is a distributive lattice which can be constructed in a convenient way
using 3-dimensional cubes. A drawback of our visualization is that it does not take into
account the diversity of the various edges (which otherwise could be indicated by using
different slopes). As a remedy, we label the edges by the corresponding basis vectors (it
is sufficient to do this at the boundary, since the modularity transfers this information to
the remaining edges).

For the sake of completeness, we also include the cases A,,,B,,,C,, and Gs. It is well-
known that the root posets B,, and C,, do not differ as long as we do not refer to the labels
of the edges. But since we present the cases D,,,[E,, and F, with labels, we do it also for
B,, and C,,, thus we have to present these types separately.

The cubical pictures for D,,,E, and F, stress a division of the positive roots into
“levels” which seems to be a kind of measure of the complexity of a positive root. The
roots belonging to a fixed level form a planar graph, often a rectangle. All levels have
a unique maximal element. Level 1 has n — 1 minimal elements, all other levels have a
unique minimal element. We list the minimal and the maximal elements, as well as the
number of roots belonging to the level.

The root poset As. o o o o

The root poset Ag. o o o




The root poset Bs. The root poset Cs.
o—s—o0 e o o—=Z—o
b a b a

o

The root poset Bg. The root poset Cg.
o o—>—o o o o o—=<—o
f e d ¢ b a f e d ¢ b a
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The root poset Ds. T .

The root poset Dg. T

The levels for D,,.

Level Conditions Minimal elements Maximal element ‘ number
. 0 n
1 u=20 n—1 simple roots 11111 (2)
1 1 n
2 u=1 00000 12..221 (2)
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The root poset Eg.

O O
e
Level Conditions Minimal elements Maximal element number
1 u=20 5 simple roots L1 (1) 11 15
2 u=1 00(1)00 11111 3x3+1
3 c=2 01;10 12:1>,21 3x3+2
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The root poset E;.

Level Conditions Minimal elements Maximal element number
1 u=20 6 simple roots 11(1)111 21
2 u=1c=<l 00(1)000 111111 3x4d+1
3 c=2d= 01;100 12;111 3x3
4 d=2 01;210 23421321 DX 3+5

13




The root poset Es.



Level Conditions Minimal elements Maximal element number
1 U= 7 simple roots L 1(1)1 111 28
2 u=1Lec=<l 00(1)0000 1111111 3x5+4+1
3 c=2d= 01;1000 12;1111 3 x4
4 d=2 e= 01;2100 12§2111 5x3
d=2, e= 01;2210 12§2221 5x3
6 d=3 12:143210 24254312 dbx4+14
The root poset F,. 8 Ei‘é ?l
Level Conditions Minimal elements Maximal element number
1 b<1 4 simple roots 1111 10
2 b>2 0210 2432 3X34+5
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O$O
The root poset Gs. a
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