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Abstract. Let k be a field, A a finite-dimensional hereditary k-
algebra and mod A the category of all finite-dimensional A-modules. We
are going to characterize the representation type of A (tame or wild)
in terms of the possible subcategories stat M of all M-static modules,
where M is an indecomposable A-module.

1. Introduction.

Let k be a field and A a finite-dimensional k-algebra. The A-modules to be considered
will be assumed to be finite-dimensional left modules. Let mod A be the category of these
A-modules. For properties of A-modules and of corresponding representations of quivers
see for example [ARS].

Let M be a A-module, let I'(M) = End(M)°P be the opposite of the endomorphism
ring of M. Consider the functor /' = Homp(M,—) : mod A — modI'(M) and its left
adjoint G = M ®p(ar) — (usually, we will just write Hom(M, —) instead of Hom (M, —)
and M ® — instead of M ®p(pr) —). There are canonical maps

un : GF(N) — N, for N a A-module, and
vy : X — FG(X), for X aI'(M)-module.

A A-module N is said to be M-static provided ppy is an isomorphism and we denote by
stat M the subcategory of mod A given by all M-static modules (subcategories considered
in the paper are assumed to be full). A I'(M)-module X is said to be M -adstatic provided
vx is an isomorphism and we denote by adstat M the subcategory of mod I'(M) given by
all M-adstatic modules. It is easy to see that the functors F' and G provide an equivalence
between the categories stat M and adstat M. For general properties of static and adstatic
modules we may refer to Alperin [A], Nauman [N1], [N2] and Wisbauer [W].
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We denote by add M the subcategory of mod A given by all direct summands of (finite)
direct sums of copies of M. Let cok(M) be the subcategory of all cokernels of maps in
add M, one always has

add M C stat M C cok(M).

Recall that a ring is said to be hereditary provided submodules of projective modules
are projective. In this paper, we will deal with finite-dimensional hereditary k-algebras
and we want to characterize the representation type of such an algebra A by looking at
the static subcategories of mod A. These algebras have been studied thoroughly (see in
particular [DR1] and [R]; we will recall the relevant facts in section 7): Such an algebra is
either tame or wild. In case A is tame, the category mod A consists of directed components
and separating tubes. In case A is wild, one knows that A is strictly wild. We will use this
knowledge in order to characterize the tameness of A in terms of the subcategories stat M
with M indecomposable.

Given a module M, let ab M be the smallest exact abelian subcategory in mod A which
contains M, it is the intersection of all exact abelian subcategories containing M, and also
the closure of add M using (inductively) kernels and cokernels. If M is an indecomposable
module, then abM = add M if and only if M is a brick (a brick is a module whose
endomorphism ring is a division ring),

We say that M is ab-projective provided M, considered as an object of the abelian
category ab M, is projective. Here are typical examples: of course, all bricks are ab-
projective; second, if I is an ideal of A which annihilates M and M is projective as a
A /I-module, then M is ab-projective.

Recall that a module is said to be serial provided it has a unique composition series. A
finite dimensional k-algebra is said to be a Nakayama algebra provided any indecomposable
module is serial (it is sufficient to assume that any indecomposable projective and any
indecomposable injective module is serial).

Theorem 1. Let A be a finite-dimensional hereditary k-algebra. The following con-
ditions are equivalent:
(i) A is tame.
(ii) Any indecomposable module is ab-projective.
(iii) If M is indecomposable, then I'(M) = End(M)°P is a Nakayama algebra
and adstat M = mod I'(M).
(iv) If M is indecomposable, then stat M is abelian.
(v) If M is indecomposable, then stat M = cok(M).

Theorem 2. Let A be a finite-dimensional hereditary k-algebra. The following con-
ditions are equivalent:
(i) A is wild.
(ii) There exists an indecomposable module M which is not a brick, but stat M = add M.
(iii) There exists a finite extension field k' of k such that for any finite-dimensional k'-
algebra T', there is a module M such that stat M is equivalent to modT'.
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2. M-static modules.

We will use a well-known characterization (see [A] and [W]) of the M-static modules
as cokernels of maps in add M. We need the following definitions: Let M, N be A-modules.
A map g : M’ — N is called a right M-approximation provided M’ belongs to add M and
for any map g : M — N there is ¢’ : M — M’ such that g = ¢q¢’ (this just means that
Hom(M, q) is surjective). A minimal right M-approximation is a right M-approximation
which is right minimal. In case A is a finite-dimensional algebra and M, N are finite-
dimensional A-modules, a minimal right M-approximation of N exists and we denote by
Qar(N) its kernel (see [DR2]), which is unique up to isomorphism.

Here is the characterization in the case of dealing with finite-dimensional modules for
finite-dimensional algebras:

Proposition 1. Let A be a finite-dimensional algebra and M, N finite-dimensional
A-modules. The following assertions are equivalent:
(i) N is M-static.
(ii) Both N and Qp(N) are generated by M.
(iii) There is an exact sequence

M =M LN -0

with M', M" in add M, such that q is a Tight M-approzimation.
(iv) There is an ezxact sequence
M — M — N—0

with M', M in add M, such that the sequence remains exact when we apply Hom (M, —).

Remark. Let us stress that the sequences provided in condition (iii) may not remain
exact when we apply Hom(M, —) as required in (iv). Here is an example: Take the quiver
with two vertices 1, 2, two arrows o, 3: 1 — 2 and one arrow v: 2 — 1, and take as relations
the paths avy, B .

o B 3y

1N~ 2
ol

We consider the module M = I(1) (the indecomposable injective module with socle S =
S(1)). Let N = M/S (this is the 3-dimensional indecomposable injective module for the
Kronecker quiver with arrows a, ). Let f: M — M be an endomorphism of M with
image S, and q: M — N its cokernel, thus we deal with the exact sequence

(%) ML mL N o

Since dim Hom(M, N) = 1, we see that ¢ is a right M-approximation, thus the sequence
is as required in (iii). However, dimHom(M,S) = 2 and Hom(M,S) is annihilated by
the radical of I'(M), thus a minimal right M-approximation of S is of the form M? — S.
If we write f = up with p: M — S and choose p’: M — S such that p,p’ is a basis of
Hom(M, S), then up’ € Hom(M, M) is in the kernel of the map Hom (M, ¢), but not in the
image of Hom(M, f). This shows that (x) does not stay exact when we apply Hom (M, —).
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Here is the proof of Proposition 1 (see [A], [W]).

(i) = (ii). Since puny : M @ Hom(M, N) — N is surjective, we easily see that N is
generated by M. Thus, the minimal right M-approximation q: M’ — N is surjective and
we have an exact sequence

u

0— QuN) S M LN O
The functor Hom(M, —) is left exact, thus

Hom(M,q)
e

0 — Hom (M, Qpr(N)) — Hom(M, M") Hom(M, N)

is exact. Since ¢ is a right M-approximation, the map Hom(M, q) is surjective, thus we
deal with the exact sequence

Hom(M,q)
e

0 — Hom(M, Qp(N)) — Hom(M, M) Hom(M,N) — 0.

The functor M ® — is right exact, thus the upper sequence in the following commutative
diagram is exact (as is the lower one):

, M ®Hom(M,q)
M®Hom(M, Q2 (N)) ——— M@Hom(M,M') —————% M@Hom(M,N) —— 0

/J‘QM(N)J/ HM/l HNl

u q
0 —— Qs (N) —r M 7, N - 0

The maps g and py are isomorphisms, thus it follows that the map uq,, () is surjective.
But this means that Qp;(N) is generated by M.
(i) = (iv). Since N is generated by M, there is an exact sequence

0—QuN) M LN—-0

where ¢ is a minimal right M-approximation of N. Since Q,/(N) is generated by M, and
right M-approximation p: M" — Q;(N) is surjective. Thus we obtain an exact sequence

M= M LN =0

and since w is injective and p, ¢ are right M-approximations, it follows that this sequence
is mapped under Hom (M, —) to an exact sequence.
(iv) = (i). We start with the exact sequence

M - M — N —0

and apply Hom (M, —). By assumption, we obtain the exact sequence

Hom(M,q)
e

Hom (M, M") — Hom (M, M") Hom(M,N) — 0.
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We apply the right exact functor M ® — and obtain the upper exact sequence of the
following commutative diagram:

M ® Hom(M, M") — M @ Hom(M, M) MEHmMLD -y r o Hom(M, N) ——— 0

/J‘M”J/ /J‘M’J/ uzvl

M —t M’ —2 N —— 0
Since the vertical maps pas~ and pps are isomorphisms, also p, is an isomorphism.

The implications (iv) = (iii) and (iii) = (ii) are trivial.
UJ

Proposition 2. Let M be an indecomposable module such that I'(M) is a Nakayama
algebra. If N is an indecomposable M -static A-module, then there is a submodule U of M
such that N is isomorphic to M/U. If U is a submodule of M and p: M — M/U 1is the
canonical projection, then M /U is M-static if and only if p is a right M-approximation
and U 1is the image of an endomorphism of M.

Proof. First, assume that U is a submodule of M such that the canonical projection
M — M/U is a right M approximation. Then the implication (iii) = (i) in Proposition
1 shows that M /U is M-static.

Conversely, let us assume that N is indecomposable and M-static. We have to show
that N is of the form M /U where U is a submodule of M, and that for any submodule
U of M such that M/U is isomorphic to N, the projection map M — M/U is a right
M-approximation and that U is the image of an endomorphism of M. These assertions
are trivially true in case N = M, thus we will assume that N is not isomorphic to M.
According to Proposition 1, there exists an exact sequence

(%) ML LN o

with M’, M"" in add M, such that ¢ is a right M-approximation. Since M is indecompos-
able, M’ = M®, M"" = MP? for some natural numbers a,b. The map f: M? — M¢ is given
by an (a x b)-matrix C' with coefficients in I'(M). Since I'(M) is a Nakayama algebra,
there are invertible square matrices A, B such that ACB is a diagonal matrix (in order
to see this, one can use the usual matrix reduction as in the case of matrices with coef-
ficients in a field; of course, the assertion corresponds to the fact that all I'(A/)-modules
are direct sums of serial modules: the matrix C' describes a projective presentation of a
['(M)-module). We use the matrices A and B in order to define automorphisms of M*
and M?. Thus, without loss of generality we can assume that f: M? — M? is given by
a diagonal matrix. One of the diagonal coefficients of this matrix, say the coefficient ¢ at
the position (1,1) has to be non-invertible. Since N is indecomposable, it follows that ¢/
vanishes on 0@ M%~! and we denote by ¢ the restriction of ¢’ to M @ 0. Since ¢’ is a right
M-approximation of N, also q is a right M-approximation of N. Since N is not isomorphic
to M, we must have ¢ # 0. It follows that the sequence (x) splits off the exact sequence

() MSMLN O



This shows that N is isomorphic to M /U, where U is the image of ¢. Let U be a submodule
of M with an isomorphism g: M /U — N. Let p: M — M /U be the canonical projection.
Since ¢ is a right M-approximation, there is a map g: M — M such that qg’ = gp. Since
['(M) is a local Nakayama algebra, and ¢, g’ are endomorphisms of M, we have either
g (M) Ce(M) or ¢(M)C g'(M). Now ¢'(M) C ¢(M) is impossible, since gc = 0, whereas
the image of q¢’ = gp is equal to N, thus non-zero. This shows that ¢(M) C ¢'(M).
Since qg’ is surjective, we see that also ¢’ is surjective, thus ¢’ is an isomorphism. As a
consequence, the pair (¢’,¢g) is an isomorphism from p: M — M/U to q: M — N. This
shows that p is a right M-approximation of M/U. Also, ¢’ maps the kernel U of p onto
the kernel of ¢ and this is the image of the endomorphism ¢, thus U is the image of an
endomorphism of M. 0

3. The subcategories ab M.

Looking at a module M, the subcategory ab M should be seen as an important in-
variant. But it seems that a study of this invariant has been neglected up to now, thus we
want to provide at least some basic properties. In order to do so, let us first consider the
general setting of dealing with an arbitrary ring R and any (left) R-module M. Given a
ring R, let Mod R be the category of all R-modules.

If M is an R-module, we define ab M as the smallest exact abelian subcategory® of
the category Mod R of all R-modules which contains M, it is the intersection of all exact
abelian subcategories containing M. By definition, a subcategory C of an abelian category
A is an exact abelian subcategory provided C is closed under kernels, cokernels and direct
sums (and this is equivalent to say that C itself is an abelian category and the inclusion
functor C — A is exact).

Let us show that ab M s the closure of add M wusing kernels and cokernels. If C is a
subcategory of Mod R, define inductively subcategories ab,,(C) of Mod R as follows: Let
abg M = add M. If ab,,_1 M is already defined for some n > 1, then let ab,, M be the
subcategory of Mod R given by all R-modules which are kernels or cokernels of maps in
ab,,_1 M. Note that ab,,_1 M C ab,, M and that ab,, M is closed under direct sums. We
obtain an increasing chain of subcategories closed under direct sums

addM =abgM C..-Cab,-1M Cab, M C ---.

We denote by ab,, M = |J,, ab, M the union, this is a subcategory of Mod R which is closed
under kernels, cokernels and direct sums, thus an exact abelian subcategory of Mod R. Of

! Remark: We should stress that ab M refers to “smallest exact abelian subcategory
containing M”, not to “smallest abelian subcategory containing M”: note that the latter
formulation would not even make sense, since the intersection of abelian subcategories which
contain M is not necessarily abelian. Here is an example: Consider the quiver 1 «— 2 « 3,
and let My = S(1), My = I(1), M3 = I(2) and M} = S(3) (for any vertex x of a quiver
without loops, we denote by S(x) the simple module concentrated at x, and by I(x) the
injective envelope of S(x)). Let M = M; & M. Then both M, Ms, M3 and My, Mo, M}
are the indecomposable objects in abelian subcategories A and A’. Both A and A’ contain
M, and the intersection of A and A’ is add M, but add M is not abelian.
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course, if A is any exact abelian subcategory of Mod R which contains M, then ab, M C A.
This shows that ab M = ab,, M.

A length category is by definition an abelian category A such that every object in A
has a finite composition series (thus finite length). Given an object A in a length category
A, the Loewy length of A is the smallest number ¢ > 0 such that A has a filtration with ¢
semisimple factors.

Proposition 3. Let R be any ring. If M is an R-module of finite length t, then ab M
s a length category with at most t simple objects such that all objects in ab M have Loewy
length at most t.

If A is a finite-dimensional k-algebra and M a finite-dimensional A-module, then there
is a finite-dimensional k-algebra A’ such that ab M is equivalent to mod A’.

Proof: First, let R be any ring and M an R-module of finite length ¢. Consider
M as an object in the abelian subcategory ab M. Since any subobject of M is an R-
submodule, we see that M, considered as an object of ab M, has (relative) length at most
t, thus also (relative) Loewy length at most t. Let Si,...,Ss be the (relative) simple
objects of ab M which occur as factors in a (relative) composition series of M, then s < t.
Note that the objects S1,...,Ss are pairwise orthogonal bricks in mod A, the process of
simplification (see [R]) shows that the subcategory F(Si,...,Ss) of all A-modules with
a filtration with factors of the form Si,...,5Ss is an exact abelian subcategory of Mod R
whose (relative) simple objects are precisely the objects St,...,Ss. We also may consider
the subcategory F(S1,...,Ss;t) of R-modules N with a filtration with factors Si,...,Ss,
such that the (relative) Loewy length of N is at most t. Then F(S1,...,Ss;t) is an exact
abelian subcategory which contains M, thus abM C F(Sy,...,Ss;t). Since the modules
S1,..., 85 belong to ab M, we see that these are precisely the (relative) simple objects of
ab M and that any object of ab M has (relative) Loewy length at most .
Now assume that A is a finite-dimensional k-algebra, where k is a field. Let M be
a A-module of finite length. The category mod A is both Hom-finite and Ext-finite. If
N, N’ belong to ab M, then Extl, ,,(N’,N) is a subspace of Ext}(N’,N), thus finite-
dimensional. Thus ab M is a length k-category which is Hom-finite and Ext-finite, with
finitely many simple objects and bounded Loewy length. It is well-known that such a
category has a progenerator, say P. If A’ = End(P)°P, then ab M is equivalent to mod A’.
O

Examples to have in mind:

(1) If M is a brick, then abM = add M. More generally, if M is the direct sum of
pairwise orthogonal bricks, then ab M = add M.

(2) Let A be the Kronecker algebra, this is the path algebra of the quiver with two
vertices 1,2 and two arrows 1 — 2, see for example [ARS], section VIII.7. The A-modules
are usually called Kronecker modules. A Kronecker module is said to be regular provided it
is the direct sum of indecomposable modules with even dimension. The regular Kronecker
modules form an exact abelian subcategory R of mod A which has infinitely many (relative)
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simple objects. Also, note that the (relative) Loewy length of the objects in R is not
bounded.

Let M be an indecomposable Kronecker module. If M is not regular, then M belongs
to the preprojective or the preinjective component, and this implies that M is a brick,
thus ab M = add M. Thus, assume that M is regular. Then there exists a (relative) simple
regular object X such that M has a filtration with all factors isomorphic to X. Assume
that this filtration (it is unique) has length e. Then the indecomposable regular modules
with a filtration with at most e factors of the form X form an exact abelian subcategory,
and this is just ab M.

(3) Assume that A is a finite-dimensional algebra and that M is a faithful A module.
If ab M contains all simple A-modules, then ab M = mod A. Namely, if ab M contains all
simple A-modules, then clearly ab A is closed under submodules. On the other hand, if
M is faithful, then there is an embedding AA C M? for some natural number ¢. Thus, it
follows that A A is contained in ab M. Since any A-module N has a free presentation, we
see that N belongs to ab M.

(4) Whereas for a brick M, the abelian category ab M has a unique simple object
(and no other indecomposable objects), already for dim End(M) = 2, the category ab M
may have arbitrarily many simple objects. Here is an example: We consider the algebra
A given by the following quiver

o1
O
o

with all paths of length 2 as relations. Let M = I(0). Then dimEnd(M) = 2. If f is
a non-zero nilpotent endomorphism of M, then the cokernel of f is the direct sum of all

simple modules. Thus ab M contains all simple A-modules. (Since M is faithful, it follows
that ab M = mod A.)

4. ab-projective modules.

Recall that M is called ab-projective provided M is projective in ab M. Clearly, this
is equivalent to saying that there exists an exact abelian subcategory C of mod A which
contains M such that M is projective inside C.

Proposition 4. Let M be an ab-projective A-module and I'(M) = End(M)°P. Then

stat M = cok M and adstat M = modI'(M).

Proof. In general, stat M C cok M. In order to show the equality, assume there is
given an exact sequence
M- M — N—0



with M’, M € add M. The sequence shows that N belongs to ab M, thus we deal with an
exact sequence in ab M. By assumption, M is ab-projective, thus the functor Hom(M, —)
is right exact on ab M. According to the implication (iv) = (i) in Proposition 1 we see
that N belongs to stat M. This shows the first assertion.

In order to show the second assertion, let X be in mod I'(M). Let

PE5pPLX -0

be an exact sequence with finite-dimensional projective I'(M)-modules Py, Py. Since the
the functor M ® — is right exact, we obtain an exact sequence

MoP, M2 Mepr, M2 Mo X — 0.

The two modules M ® P; belong to add M, therefore the exact sequence lies in ab M. Let
us apply the functor Hom(M, —). Since M is ab-projective, the functor Hom (M, —) sends
exact sequences in ab M to exact sequences, thus the sequence

Hom(M, M ® P;) — Hom(M, M ® Py) — Hom(M,M @ X) — 0.
is exact. Altogether, there is the following commutative diagram with exact rows:

Py _r Py 4 X -0

Vpll luﬂj lux

Hom(M,M ® P;) —— Hom(M,M ® Py) —— Hom(M,M @ X) —— 0.

The first two vertical maps are bijective, thus also vx is bijective. ([l

Proposition 5. Let C be an exact abelian subcategory of mod A, let C be a progener-
ator of C. Then C' is an ab-projective module and

C=statC =ab(C.

Proof: First, let us show that ab C' = C. Since C is an exact abelian subcategory which
contains C, we have ab(C' C C. On the other hand, let N be a module in C. Since C is a
progenerator in C, there is an exact sequence C” — C’ — N — 0 with C’,C" in add C,
thus N is the cokernel of the map C” — C’ in addC. Since addC C abC and ab(C is
closed under cokernels, we see that N belongs to ab C.

By assumption, C' is projective in C, thus C' is ab-projective. O

5. Triple modules.



We consider indecomposable A-modules M such that I'(M) is a Nakayama algebra of
length 2. If f is a non-zero nilpotent endomorphism of M, then f? = 0, thus Im(f) C
Ker(f) and these submodules Im(f), Ker(f) are uniquely determined. Thus, M has a
uniquely determined filtration

OZM()CMlgMQCMg:M,

such that M /M, is isomorphic to M; (such an isomorphism is provided by f). The module
M, has to be a brick, since otherwise we obtain further endomorphisms of M. We say that
M is a triple module provided also My /M; is isomorphic to M.

Proposition 6. If M is a triple module, then stat M = add M and this is not an
abelian category.

Proof. Since I'(M) is a Nakayama algebra of length 2, there are precisely 2 indecom-
posable I'( M )-modules, thus, there are at most two isomorphism classes of indecomposable
M-static modules. Assume that there is an indecomposable M-static module N which is
not isomorphic to M. According to Proposition 2, we can assume that N = M /U, where U
is the image of an endomorphism of M and such that the canonical projection M — M /U
is a right M-approximation. Since M is a triple module, it follows that U = M;.

Now N = M/M; has the submodule Ms/M;. Since M /My and My /M, are isomor-
phic, there is a homomorphism f: M — N = M/M; with image Ms/M;j. Since the
projection p: M — M /M is a right M-approximation, there is a map f' M — M with
f =pf’. Since I'(M) is of length 2, either f’ is an automorphism or else (f')? = 0. But f
cannot be an automorphism, since the kernel of p is M;, whereas the kernel of f is Ms.
Also, (f')? = 0 is impossible, since in this case the image of f’ would be M; and then
pf’ =0, whereas f # 0. This contradiction shows that the only indecomposable M-static
module is M.

It remains to show that add M is not an abelian subcategory. Namely, consider a
non-zero nilpotent endomorphism f of M. If add M is abelian, then it has to be a length
category, in particular, there has to exist a simple object in add M, thus a brick. But

add M has a unique indecomposable object, namely M, and by assumption, M is not a
brick. ]

6. Nakayama algebras.
Proposition 7. Any indecomposable module of a Nakayama algebra is ab-projective.

Proof. Let A be a Nakayama algebra and M an indecomposable A-module say of
length ¢t. Let J be the radical of A and A’ = A/J!. Since J'M = 0, we see that M is
a A’-module. The A’-modules form an exact abelian subcategory and as we have seen,
M belongs to mod A’ thus abM C modA’. Let P = Py/(M) be a projective cover
of M considered as a A’-module. Then P is an indecomposable A’-module. Since any
indecomposable A’-module has length at most ¢, the module P has length at most ¢. But
M is a factor module of P and has length ¢. This shows that M = P is projective in
mod A’ and therefore in ab M. O
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Let us provide more details about the categories stat M and ab M for M an inde-
composable A-module of length ¢, and A a Nakayama algebra. Let us assume that the
number of simple A-modules is s. We may assume that ¢ > s (note that for t < s, the
module M is a brick, thus add M = stat M = ab M). Since A is a Nakayama algebra, the
indecomposable A-modules are uniquely determined by the length and the top (this is the
isomorphism class of a simple A-module). If S is a simple module, we denote by [i]S the
indecomposable A-module of length i with top S.

Proposition 8. Let A be a Nakayama algebra with s simple modules. Let M be an
indecomposable A-module of length t > s with top S. Let e = []. Let T'(M) = End(M)°P.
Then T'(M) is a local Nakayama algebra of length e.

(a) If s|t, then stat M = ab M 1is equivalent to modI'(M) and the indecomposable
modules in ab M are the modules of the form [i|S where 1 < i <ee.

If s>t andt = (e —1)s + s1 with 1 < s1 < s, then ab M is equivalent to the module
category of a Nakayama algebra with two simple modules; the modules in ab M have a
filtration with factors of the form [s1]S and [s]S/[s1]S, and an indecomposable module in
ab M belongs to stat M if and only if it is either isomorphic to M or of the form [is]S with
1<i<e.

(b) Always, ab M is equivalent to the module category of a Nakayama algebra T with
at most two simple modules and a unique indecomposable module which is both projective
and injective (namely the T'-module n(M), where n: ab M — modT" is an equivalence).

(¢) The category stat M is always an abelian subcategory, the embedding stat M —
mod A is right exact, but usually not left exact. This embedding is exact if and only if s|t.

Proof. First, assume that s|¢, thus ¢ = es. Consider the module B = [s].S, this is a
brick and M has a filtration whose factors are all of the form B. Let C be the subcategory
of mod A whose objects are direct sums of modules of the form [i]S with 1 < i < e.
Then this is an exact abelian subcategory, and M belongs to C, thus abM C C. On
the other hand, every indecomposable module in C is the cokernel of an endomorphism
of M, thus C C cokM C ab M. It follows that abM = C. According to Proposition
7, M is ab-projective and according to Proposition 4, stat M = cok M and adstat M =
mod I'(M). It follows that ab M is equivalent to the category mod I'(M), the algebra I'(M)
is a local Nakayama algebra, thus it has a unique simple module, and the equivalence n =
Hom(M,—): abM — modT'(M) sends M to n(M), the only indecomposable projective
(and also injective) I'(M)-module.

Second, let s > t and t = (e — 1)s 4+ s1 for some 1 < s; < s; note that e > 2. We
consider By = [s1]9, this is a brick of length s1, and By = [s]S/[s1]S, this is a brick of
length so = s — s;. We consider the subcategory F = F(Bj, Bz) of all A-modules with
a filtration with factors of the form B;, Bs. This is an exact abelian subcategory. The
module M has a filtration with e factors B; and e — 1 factors Bs, thus it belongs to F;
and therefore ab M C F. Of course, F is equivalent to the module category of a Nakayama
algebra with precisely two simple modules, and we denote by C its subcategory of all direct
sums of indecomposable objects which have a filtration with factors By, B2, such that there
are at most e — 1 factors of the form By. We have ab M C C.

Let us show that ab M = C. The modules N in C with Hom(B;, N) # 0 # Hom(N, B;)
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are images of endomorphisms of M, those with Hom(B1, N) # 0 # Hom(N, Bz) are kernels
of endomorphisms of M, those with Hom(Bs2, N) # 0 # Hom(V, B;) are cokernels of
endomorphisms of M. Finally, the modules N in C with Hom(B3, N) # 0 # Hom(N, Bs)
are obtained as kernels of maps M/B; — M.

Let us denote by M’ the kernel of a non-zero map M — B;. Then M & M’ is a
progenerator of C. If IV = End(M @ M’)°P, then C is equivalent to modI” under the
functor n = Hom(M & M’,—) : C — modI’. The algebra I'" is a Nakayama algebra
with precisely two simple modules and 7(M) is indecomposable and both projective and
injective as a I'-module.

The modules in stat M are precisely the cokernels of endomorphisms of M, see Propo-
sition 4. The indecomposable modules N which belong to stat M and are not isomorphic
to M are precisely the cokernels of non-zero endomorphisms of M, thus the modules N in
C with Hom(Bzg, N) # 0 # Hom(N, By), or, equivalently, those of the form N = [is]S for
some 1 <i<e—1.

Finally, always stat M is equivalent to the abelian category adstat M = mod I'(M),
thus it is an abelian subcategory of mod A. The equivalence is given by the functor
M ® —: modI'(M) — mod A, this is a right exact (but usually not left exact) functor. In
case s|t, the equality stat M = ab M shows that stat M is an exact abelian subcategory.
If s does not divide t, say let t = (e — 1)s + s1, there is a non-zero map f: [s]S — M,
its kernel in mod A is By, thus does not belong to stat M. This shows that stat M is not
closed under kernels. O

Let us exhibit an example. We consider the path algebra of the quiver

2 e
©)

K_\ with relations
o1
J pBayBayBa = 0= vyBayLay.

O
3 Y

It is a Nakayama algebra A with Kupisch series (8, 8,7) (the Kupisch series of a Nakayama
algebra records the numbers (pi,...,ps), where p; is the length of the projective cover
P(i) of the simple module S(i), see for example [ARS], section IV.2). The following
picture shows the Auslander-Reiten quiver of A. We choose M = P(1).
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Let By = S(1) and By be the indecomposable module of length 2 with socle S (2) and top
S(1). Then
stat M C ab M C F(Bq, Bs).

The modules in stat M are marked by a solid frame, those belonging to ab M, but not
to stat M have a dashed frame. There is one additional indecomposable module which
belongs to F(B1, Bz), but not to ab M, it has a dotted frame.
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7. Proof of Theorem 1 and Theorem 2.

Let A be a finite-dimensional hereditary k-algebra. We may assume in addition that
A is connected (this means that 0 and 1 are the only central idempotents). Let us recall
relevant properties of mod A.

Let Ko(A) be the Grothendieck group of mod A, this is the free abelian group with
basis the isomorphism classes of all the finite-dimensional A-modules and with relations of
the form [X] — [Y] + [Z] provided there exists an exact sequence of the form 0 — X —
Y — Z — 0. Given a A-module X, the residue class of its isomorphism class is denoted by
dim X. Note that Ky(A) is the free abelian group with basis the elements dim S, where S
runs through the simple A-modules. Since A is hereditary, there is a (uniquely determined)
bilinear form (—, —) on Ky(A) such that

(dim X, dimY) = dim Hom(X,Y) — dim Ext'(X,Y).

The corresponding quadratic form gx defined by ga(z) = (z,y) for x € Ky(A) it is called
the Euler form for A.

The algebra A is said to be tame provided the form g, is positive semidefinite, oth-
erwise wild. One may attach to A a valued quiver Q(A) as follows: it has as vertices the
isomorphism classes [S] of the simple A-modules and there is an arrow [S] — [S’] provided
Ext(S,S’) # 0. Since we assume that A is finite-dimensional, the quiver Q(A) is finite
and directed (the latter means that the simple modules can be labeled S(i) such that the
existence of an arrow [S(i)] — [S(j)] implies that ¢ > j). We endow Q(A) with a valuation
as follows: Given an arrow [S] — [S’], consider Ext(S,S’) as a left End(S)°P-module and
also as a left End(S’)-module and put

v([8),[S"]) = dim gpa(syer Ext(S, S") x dim ppags) Ext(S, 5)

provided v([S],[S’]) > 1. The algebra A is tame if and only if the underlying valued
graph (obtained by forgetting the orientation of the edges) is either a Dynkin diagram
Ay, B, ..., Go or a Euclidean diagram 1&”, el @21, @22.

If A is tame, the structure of the category is completely known: the category mod A
consists of two directed components and a family of separating tubes. This implies: If M
is any indecomposable A-module, then I'(M) is a (local) Nakayama algebra say of length
e(M).

If e(M) =1, then add M is an abelian subcategory, thus add M = ab M, and this is
a semisimple abelian category. In particular, M is ab-projective.

Assume now that e(M) > 2. Then M belongs to an Auslander-Reiten component
C which is a tube (i.e. of the form ZA.,/n for some n). The modules which are direct
sums of indecomposables in C form an exact abelian subcategory which we also denote
by C. For any natural number b, the subcategory C, of C given by all objects in C with
(relative) Loewy length at most b is an exact abelian subcategory which is equivalent to
the module category of a Nakayama algebra. This shows that ab M can be considered as
an exact abelian subcategory of the module category of a Nakayama algebra. It follows
from Proposition 7 that M is ab-projective.
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This completes the proof of the implication (i) = (ii) in Theorem 1. The implication
(i) == (iii) has been shown in Proposition 5, the implication (iii) = (iv) is trivial
since stat M is equivalent as a category to adstat M. According to Proposition 4, we have
stat M = cok M, thus condition (v) is satisfied.

Now assume that A is wild. According to [R], A is strictly wild (a k-algebra is strictly
wild provided there is a finite extension field k&’ of k such that for any finite-dimensional
k'-algebra T', there is a full and exact embedding modT" — mod A).

It remains to show the implications (iv) = (i) and (v) = (i) in Theorem 1, and
the implications (ii) = (i) and (iii) = (i) in Theorem 2.

Assume that A satisfies one of the conditions (iv) or (v) of Theorem 1. We claim that
A cannot be wild. Namely, if A is wild, then according to the implication (i) = (ii)
of Theorem 2, there exists an indecomposable module M with I'(M) not a division ring,
such that stat M = add M. But add M cannot be an abelian category, this contradicts
(iv). Also, since I'(M) is not a division ring, add M is a proper subcategory of cok M, a
contradiction to (v).

Assume now there exists an indecomposable A-module M such that M is not a division
ring and stat M = add M. We claim that A has to be wild. Namely, if A is tame, then
the implication (i) = (iv) of Theorem 1 asserts that stat M is abelian. But if M
is indecomposable and not a brick, then add M is not abelian. Similarly, assume that
there is a finite extension field ¥’ of k such that for any finite-dimensional k-algebra I,
there is a A-module M such that stat M is equivalent to modI'. In particular, take any
representation-finite k’-algebra I' and a A-module M such that stat M is equivalent to
modI'. Then A has to be wild. Namely, if A would be tame, then the implication (i)
— (iii) of Theorem 1 asserts that stat M is equivalent to the module category of a
Nakayama algebra, in particular, that stat M has only finitely many isomorphism classes
of indecomposable objects. O

Remark. Assume again that A is a tame hereditary algebra. We have seen that
for M indecomposable, there is a full embedding of mod I'(M) into mod A. If M is not
indecomposable, then usually mod I'(M) will not be equivalent to a subcategory of mod A.

Example. Consider the diagram D4 with subspace orientation and let M = S(0) &
7718(0), where 7 is the Auslander-Reiten translation. Then I'(M) is the Kronecker alge-
bra, in particular, representation-infinite. This shows that mod I'(M) cannot be a subcat-
egory of mod A.

Let us exhibit a A-module N which is not M-static. Take a map S(0) — 7715(0) in
general position, thus the cokernel N is the injective hull of S(0). But the minimal right
M-approximation of N is of the form M? — N with kernel Q5;(N) being the direct sum
of the indecomposable projective modules of length 2. Of course, 2,(N) is not generated
by M. Thus, N is not M-static.
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