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Abstract. Let Λ be an artin algebra. We are going to consider full subcategories of modΛ

closed under finite direct sums and under submodules with infinitely many isomorphism classes

of indecomposable modules. The main result asserts that such a subcategory contains a minimal

one and we exhibit some striking properties of these minimal subcategories. These results have

to be considered as essential finiteness conditions for such module categories.

Let Λ be an artin algebra, and modΛ the category of Λ-modules of finite length.
All the subcategories to be considered will be full subcategories of modΛ closed under
isomorphisms, finite direct sums and direct summands, but note that we also consider
individual Λ-modules which may not be of finite length. If the Λ module X has finite
length, we denote its length by |X |.

Let C be a subcategory of modΛ. We say that C is finite provided it contains only
finitely many isomorphism classes of indecomposable modules, otherwise C is said to be
infinite. Of course, C is said to be submodule-closed provided for any module C in C also
any submodule of C belongs to C.

The aim of this paper is to study infinite submodule-closed subcategories of modΛ. A
subcategory C of modΛ will be called minimal infinite submodule-closed, or (in this paper)
just minimal, provided it is infinite and submodule-closed, and no proper subcategory of
C is both infinite and submodule-closed. On a first thought, it is not at all clear whether
minimal subcategories do exist: the existence is in sharp contrast to the usual properties
of infinite structures (recall that in set theory, a set is infinite iff it contains proper subsets
of the same cardinality).

Theorem 1. Any infinite submodule-closed subcategory of modΛ contains a minimal
subcategory.

Of course, the assertion is of interest only in case Λ is representation-infinite. But al-
ready the special case of looking at the category modΛ itself, with Λ representation-infinite,
should be stressed: The module category of any representation-infinite artin algebra has
minimal subcategories.

Let M be a Λ-module, not necessarily of finite length. We write SM for the class of
finite length modules cogenerated by M . This is clearly a submodule-closed subcategory
of modΛ. (Conversely, any submodule-closed subcategory C of modΛ is of this form: take
for M the direct sum of all modules in C, one from each isomorphism class; or else, it is
sufficient to take just indecomposable modules in C.).

Theorem 2. Let C be a minimal subcategory of modΛ. Then
(a) For any natural number d, there are only finitely many isomorphism classes of inde-

composabe modules in C of length at most d and even only finitely many isomorphism

2000 Mathematics Subject Classification. Primary 16D90, 16G60. Secondary: 16G20. 16G70.

1



classes of indecomposabe modules which are submodules of a direct sum of modules Ci

in C with |Ci| ≤ d.
(b) Any module in C is isomorphic to a submodule of an indecomposable module in C.
(c) There is an infinite sequence of indecomposable modules Ci in C with proper inclusions

C1 ⊂ C2 ⊂ · · · ⊂ Ci ⊂ Ci+1 ⊂ · · ·

such that also the union M =
⋃

i Ci is indecomposable and then C = SM .

As we have mentioned, Theorem 1 asserts, in particular, that the module category
of any representation-infinite artin algebra has a minimal subcategory C, and the asser-
tion (c) of Theorem 2 yields arbitrarily large indecomposable modules in C. This shows
that we are in the realm of the first Brauer-Thrall conjecture (formulated by Brauer and
Thrall around 1940 and proved by Roiter in 1968): any representation-infinite artin al-
gebra has indecomposable modules of arbitrarily large length. The proof of Roiter and
its combinatorial interpretation by Gabriel are the basis of the Gabriel-Roiter measure
on modΛ, see [R1, R2]. Using it, we have shown in [R1] that the module category of a
representation-infinite artin algebras always has a so-called take-off part: this is an infinite
submodule-closed subcategory with property (a) of Theorem 2, and there is an infinite
inclusion chain of indecomposables such that also the union M is indecomposable, as in
property (c) of Theorem 2. However, SM usually will be a proper subcategory of the take-
off part, and then the take-off part cannot be minimal. Of course, we can apply Theorem
1 to the take-off part in order to obtain a minimal subcategory inside the take-off part.
The important feature of the minimal categories is the following: we deal with a count-
able set of indecomposable modules which are strongly interlaced as the assertions (b) and
(c) of Theorem 2 assert. Typical examples to have in mind are the infinite preprojective
components of hereditary algebras (see section 4).

The proof of Theorem 1 will be given in section 2, the proof of Theorem 2 in section 3.
These proofs depend on the Gabriel-Roiter measure for Λ-modules, as discussed in [R1,R2].
The remaining section 4 provides examples. First, we will mention some procedures for
obtaining submodule-closed subcategories. Then, following Kerner-Takane, we will show
that the preprojective component of a representation-infinite connected hereditary algebra
Λ is always a minimal subcategory. In case Λ is tame, this is the only one, but for wild
hereditary algebras, there will be further ones.

Acknowledgment. The results have been announced at the Annual meeting of the
German Mathematical Society, Bonn 2006 and in further lectures at various occasions. In
particular, two of the Selected-Topics lectures [R3, R4] in Bielefeld were devoted to this
theme. The author is grateful to many mathematicians (including the referee) for com-
ments concerning the presentation, in particular he wants to thank Bo Chen for spotting
an error in an earlier presentation of example 2.
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2. Proof of Theorem 1.

Given a class X of modules of finite length (or of isomorphism classes of modules),
we denote by addX the smallest subcategory containing X . We denote by N = N1 the
natural numbers starting with 1.

The proof will be based on results concerning the Gabriel-Roiter measure for Λ-
modules, see [R1, R2]. For the benefit of the reader, let us recall the inductive definition
of the Gabriel-Roiter measure µ(M) of a Λ-module M : For the zero module M = 0, one
sets µ(0) = 0. If M 6= 0 is decomposable, then µ(M) is the maximum of µ(M ′) where M ′

is a proper submodule of M , whereas for an indecomposable module M , one sets

µ(M) = 2−|M| + max
M ′⊂M

µ(M ′).

If M is indecomposable and not simple, then there always exists an indecomposable sub-
module M ′ ⊂ M such that µ(M) − µ(M ′) = 2−|M|, such submodules are called Gabriel-
Roiter submodules of M . Inductively, we obtain for any indecomposable module M a chain
of indecomposable submodules

M1 ⊂ M2 ⊂ · · · ⊂ Mt−1 ⊂ Mt = M

such that M1 is simple and Mi−1 is a Gabriel-Roiter submodule of Mi, for 2 ≤ i ≤ t. Note
that

µ(M) =
∑t

j=1
2−|Mj |,

and it will sometimes be convenient to call also the set I = {|M1|, . . . , |Mt|} the Gabriel-
Roiter measure of M . Thus the Gabriel-Roiter measure µ(M) of a module M will be
considered either as a finite set I of natural numbers, or else as the rational number∑

i∈I 2
−i, whatever is more suitable.

Given a subcategory C of modΛ and a finite set I of natural numbers, let C(I) be the
set of isomorphism classes of indecomposable objects in C with Gabriel-Roiter measure I.
An obvious adaption of one of the main results of [R1] asserts:

There is an infinite sequence of Gabriel-Roiter measures I1 < I2 < · · · such that C(It)
is non-empty for any t ∈ N and such that for any J with C(J) 6= ∅, either J = It for some
t or else J > It for all t. Moreover, all the sets C(It) are finite. (Note that the sequence of
measures It depends on C, thus one should write ICt = It; the papers [R1,R2] were dealing
only with the case C = modΛ, but the proofs carry over to the more general case of dealing
with a submodule-closed subcategory C).

Since add
⋃

t∈N
C(It) is an infinite submodule-closed subcategory of C, we may assume

that C = add
⋃

t∈N
C(It). In order to construct a minimal subcategory C′, we will construct

a sequence of subcategories
C = C0 ⊇ C1 ⊇ C2 ⊇ · · ·

with the following properties:
(a) Any subcategory Ci is infinite and submodule-closed,

(b) Ci(It) = Ct(It) for t ≤ i.
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(c) If D ⊆ Ci is infinite and submodule-closed, then

D(It) = Ct(It) for t ≤ i.

We start with C0 = C (the t in conditions (b) and (c) satisfies t ≥ 1, thus nothing has
to be verified). Assume, we have constructed Ci for some i ≥ 0, satisfying the conditions
(a), and the conditions (b), (c) for all pairs (i, t) with t ≤ i. We are going to construct
Ci+1.

Call a subset X of Ci(Ii+1) good, provided there is a subcategory DX of Ci which is
infinite and submodule-closed and such that DX (Ii+1) = X . For example Ci(Ii+1) itself
is good (with DX = Ci). Since Ci(Ii+1) is a finite set, we can choose a minimal good
subset X ′ ⊆ Ci(Ii+1). For X ′, there is an infinite and submodule-closed subcategory
DX ′ of Ci such that DX ′(Ii+1) = X ′. (Note that in general neither X ′ nor DX ′ will be
uniquely determined: usually, there may be several possible choices.) Let Ci+1 = DX ′ . By
assumption, Ci+1 is infinite and submodule-closed, thus (a) is satisfied. In order to show
(b) for all pairs (i + 1, t) with t ≤ i + 1, we first consider some t ≤ i. We can apply (c)
for D = Ci+1 ⊆ Ci and see that D(It) = Ct(It), as required. But for t = i+ 1, nothing has
to be shown. Finally, let us show (c). Thus let D ⊆ Ci+1 be an infinite submodule-closed
subcategory. Since D ⊆ Ci, we know by induction that D(It) = Ct(It) for t ≤ i. It remains
to show that D(Ii+1) = Ci+1(Ii+1). Since D ⊆ Ci+1, we have D(Ii+1) ⊆ Ci+1(Ii+1). But if
this would be a proper inclusion, then X = D(Ii+1) would be a good subset of Ci(Ii+1)
which is properly contained in Ci+1(Ii+1) = DX ′(Ii+1), a contradiction to the minimality
of X ′. This completes the inductive construction of the various Ci.

Now let
C′ =

⋂
i∈N

Ci.

Of course, C′ is submodule-closed. Also, we see immediately

(b′) C′(It) = Ct(It) for all t,

since C′(It) =
⋂

i≥t Ci(It) = Ci(It), according to (b).
First, we show that C′ is infinite. Of course, C′(I1) 6= ∅, since I1 = {1} and a good

subset of C0(I1) has to contain at least one simple module. Assume that C′(Is) 6= ∅ for
some s, we want to see that there is t > s with C′(It) 6= ∅. For every Gabriel-Roiter
measure I, let n(I) be the minimal number n with I ⊆ [1, n], thus n(I) is the length of the
modules in C(I). Let n(s) be the maximum of n(Ij) with j ≤ s, thus n(s) is the maximal
length of the modules in

⋃
j≤s C(Ij). Let s

′ be a natural number such that n(Ij) > n(s)pq
for all j > s′ (such a number exists, since the modules in C(Ij) with j large, have large
length); here p is the maximal length of an indecomposable projective module, q that of
an indecomposable injective module.

We claim that C′(Ij) 6= ∅ for some j with s < j ≤ s′. Assume for the contrary
that C′(Ij) = ∅ for all s < j ≤ s′. We consider Cs′ . Since Cs′ is infinite, there is some
t > s with Cs′(It) 6= ∅, and we choose t minimal. Now for s < j ≤ s′, we know that
Cs′(Ij) = Cj(Ij) = C′(Ij) = ∅, according to (b) and (b′). This shows that t > s′. Let Y be
an indecomposable module with isomorphism class in Cs′(It). Let X be a Gabriel-Roiter
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submodule of Y . Then X belongs to Cs′(Ij) with j < t. If j ≤ s, then the length of X
is bounded by n(s), and therefore Y is bounded by n(s)pq (see [R2], 3.1 Corollary), in
contrast to the fact that n(It) > n(s)pq. This is the required contradiction. Thus C′ is
infinite.

Now, let D be an infinite submodule-closed subcategory of C′. We show that D(It) =
C′(It) for all t. Consider some fixed t and choose an i with i ≥ t. Since C′ ⊆ Ci, we see
that D(It) = Ct(It) for the given t, according to (b) for Ci. But according to (b′), we also
know that C′(It) = Ct(It). This completes the proof.

3. Proof of Theorem 2.

We refer to [R1] for the proof of (a) and for the construction of an inclusion chain

C1 ⊂ C2 ⊂ · · · ⊂ Ci ⊂ Ci+1 ⊂ · · ·

with indecomposable union, as asserted in (c). In [R1] these assertions have been shown
for the take-off part of modΛ, but the same proof with only minor modifications, carries
over to minimal categories.

To complete the proof of (c), we only have to note the following: By construction, SM

contains all the modules Ci, thus SM is not finite. But of course, SM ⊆ C. Namely, if X
is a finite length module which is cogenerated by M , then there are finitely many maps
fi : X → M such that the intersection of the kernels is zero. But there is some j such that
the images of all the maps fi are contained in Cj , therefore X is cogenerated by Cj and
thus belongs to C. The minimality of C implies that SM = C.

It remains to proof part (b) of Theorem 2. We will need some general observations
which may be of independent interest. Recall that a module is said to be of finite type,
provided it is the direct sum of (may-be infinitely many) copies of a finite number of
modules of finite length).

(1) If SM is minimal, then M is not of finite type.

Proof: Assume that M is of finite type, let M1, . . . ,Mt be the indecomposable direct
summands of M , one from each isomorphism class. We may assume that they are indexed
with increasing Gabriel-Roiter measures, thus µ(Mi) ≤ µ(Mj) for i ≤ j. Let S′ be the
subcategory of modΛ such that N belongs to S′ if and only if any indecomposable direct
summand ofN belongs to SM and is not isomorphic toMt. Thus S

′ is a proper subcategory
of SM and infinite. We claim that S′ is submodule closed (this then contradicts the
minimality of SM ).

Let N be in S′. We want to show that any indecomposable submodule U of N belongs
to S′. Since S′ ⊂ SM , we know that U belongs to SM , thus we have to exclude that U is
isomorphic toMt. Thus, let us assume that U = Mt and let u : Mt → N , be the embedding.
Since N belongs to SM , there is an embedding u′ : N → M r for some r. Altogether, there
is the embedding u′u : Mt → M r. Now µ(Mt) = max1≤i≤t µ(Mi), and therefore u′u is a
split monomorphism. Consequently, also u : Mt → N is a split monomorphism. But since
N ∈ S′, no direct summand of N is isomorphic to Mt. This shows that S′ is submodule
closed.
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(2) If SM is minimal and M ′ ⊆ M is a cofinite submodule, then SM ′ = SM .

Proof: Of course, SM ′ ⊆ SM . Since we assume that SM is minimal, we only have
to show that SM ′ is infinite. Assume, for the contrary, that SM ′ is finite. This implies
that M ′ is of finite type (see [R5]), say M ′ =

⊕
i∈I M

′
i , so that the modules M ′

i belong
to only finitely many isomorphism classes. Let U be a submodule of M of finite length
such that M ′ + U = M. Now M ′ ∩ U is a submodule of M ′ of finite length, thus it is
contained in some M ′′ =

⊕
i∈J M ′

i , where J is a finite subset of I. Of course, M ′′+U is a
submodule of finite length. We claim that M = (M ′′+U)⊕M ′′′, where M ′′′ =

⊕
i∈I\J M ′

i .

Namely, on the one hand, M ′′ + U + M ′′′ = M ′ + U = M , whereas, on the other hand,
(M ′′ + U) ∩ M ′′′ ⊆ (M ′′ + U) ∩ M ′ = M ′′ + (U ∩ M ′) ⊆ M ′′, thus (M ′′ + U) ∩ M ′′′ is
contained both in M ′′ and M ′′′, therefore in M ′′ ∩M ′′′ = 0. Since both modules M ′′ + U
and M ′′′ are of finite type, also M = (M ′′ +U)⊕M ′′′ is a module of finite type. But this
contradicts (1).

(3) Assume that C = SM is minimal and let M0 be a submodule of M of finite length.
If X belongs to C, then there is an embedding u : X → M such that M0 ∩ u(X) = 0.

Proof. Let X be of finite length and cogenerated by M . We want to construct
inductively maps f : X → M such that M0 ∩ f(X) = 0 and such that the length of Ker(f)
decreases. As start, we take as f the zero map. The process will end when Ker(f) = 0.

Thus, assume that we have given some map f : X → M with M0 ∩ f(X) = 0 and
Ker(f) 6= 0. We are going to construct a map g : X → M such that first M0 ∩ g(X) = 0
and second, Ker(g) is a proper submodule of Ker(f). Let M1 = M0 + f(X), this is a
submodule of finite length of M . Choose a submodule M ′ of M with M1 ∩M ′ = 0, and
maximal with this property. Note that M ′ is a cofinite submodule of M (namely, M/M ′

embeds into the injective hull of M1, and with M1 also its injective hull has finite length).
According to (2), we know that SM ′ = SM = C, thus X belongs to SM ′ . This means that
X is cogenerated by M ′. In particular, since Ker(f) 6= 0, there is a map f ′ : X → M ′

such that Ker(f) is not contained in Ker(f ′). Let g = (f, f ′) : X → M1 ⊕ M ′ ⊆ M .
Then Ker(g) = Ker(f) ∩ Ker(f ′) is a proper submodule of Ker(f). Also, the image g(X)
is contained in f(X) + f ′(X) ⊆ f(X) +M ′. Since M1 +M ′ = M0 ⊕ f(X)⊕M ′, we see
that M0 ∩ g(X) = 0.

This completes the induction step. After finitely many steps, we obtain in this way an
embedding u of X into M such that u(X) ∩M0 = 0.

(3′) Assume that C = SM is minimal. If X, Y are submodules of M of finite length,
then also X ⊕ Y is isomorphic to a submodule of M .

Proof: If X, Y are submodules of M , then X ⊕ Y is cogenerated by M .

(3′′) Assume that C = SM is minimal. If C belongs to C, then the direct sum of
countably many copies of C can be embedded into M .

Proof: Assume, there is given an embedding ut : C
t → M , where t ≥ 0 is a natural

number. Let M0 = ut(C
t). According to (3), we find an embedding u : C → M such that

M0 ∩ u(C) = 0. Thus, let ut+1 = ut ⊕ u : Ct+1 = Ct ⊕ C → M.

Proof of part (b) of Theorem 2. Let C be a module in C. Let M =
⋃

i Ci be as
constructed in (c), thus all the Ci are indecomposable and SM = C. According to (3),
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there is an embedding u : C → M . Now the image of u lies in some Ci, thus u embeds C
into the indecomposable module Ci.

Some consequences of Theorem 2 (b) should be mentioned. If S is a simple Λ-module,
write [X : S] for the Jordan-Hölder multiplicity of S in the Λ-module X .

Corollary 1. Let C be a minimal subcategory. For any natural number d, there is an
indecomposable module C in C with the following property: if S is a simple Λ-module with
[Y : S] 6= 0 for some Y in C, then [C : S] ≥ d.

Proof: We consider the simple Λ-modules S such that there exists a module Y (S)
in C with [Y (S) : S] 6= 0, and let Y =

⊕
Y (S) where the summation extends over all

isomorphism classes of such simple modules S. Given a natural numer d, let us consider Y d.
According to assertion (b) of Theorem 2, there is an indecomposable Λ-module C such that
Y d embeds into C. But this implies that [C : S] ≥ [Y d : S] = d[Y : S] ≥ d[Y (S) : S] ≥ d.

Note that the corollary provides a strengthening of the assertion of the first Brauer-
Thrall conjecture:

Corollary 2. Let Λ be representation-infinite. Let P = Λe be indecomposable projec-
tive (e an idempotent in Λ) and S = P/ radP . If [M : S] is bounded for the indecomposable
modules M , then Λ/〈e〉 is representation-infinite.

Proof: Take a minimal subcategory C of modΛ and let I be its annihilator. Let
Λ′ = Λ/I, thus C is a minimal subcategory of modΛ′ and for every simple Λ′-module
S, there is a Λ′-module Y with [Y : S] 6= 0. By Corllary 1, the numbers [C : S] with
C indecomposable in C is unbounded. If e /∈ I, then S is a simple Λ′-module and then
[C : S] with C indecomposable in C is unbounded. But this contradicts the assumption
on S. Thus we see that e ∈ I, therefore Λ′ is a factor algebra of Λ/〈e〉. Since Λ′ is
representation-infinite, also Λ/〈e〉 is representation-infinite.

Corollary 3. A representation-infinite artin algebra has indecomposable representa-
tions X such that all non-zero Jordan-Hölder multiplicities of X are arbitrarily large.

4. Examples.

First, let us mention some ways for obtaining submodule-closed subcategories.

• Of course, we can consider the module category modΛ itself.
• If I is a two-sided ideal of Λ, then the Λ-modules annihilated by I form a submodule-
closed subcategory (this subcategory is just the category of all Λ/I-modules).

• As we have mentioned in section 3, we may start with an arbitrary (not necessarily
finitely generated) module M , and consider the subcategory SM of all finite length
modules cogenerated by M . This subcategory SM is submodule-closed, and any
submodule-closed subcategory of modΛ is obtained in this way.

• The special case of dealing with M = ΛΛ has been studied often in representation
theory; the modules in S

ΛΛ are called the torsionless Λ-modules. Artin algebras with
S

ΛΛ finite have quite specific properties, for example their representation dimension is
bounded by 3.
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• The categories A(<γ) and A(≤γ) of all modules X in A = modΛ with Gabriel-Roiter
measure µ(X) < γ, or µ(X) ≤ γ, respectively; here γ ∈ R and µ is the Gabriel-Roiter
measure (or a weighted Gabriel-Roiter measure).

• In particular, the take-off subcategory of modΛ (as introduced in [R1]) is submodule-
closed (and it is infinite iff Λ is representation-infinite).

• If Λ has global dimension n, then the subcategory C of all modules of projective
dimension at most n−1 is closed under cogeneration (and extensions) (this is mentioned
for example in [HRS], Lemma II.1.2.).

Given such a submodule-closed subcategory C, one may ask whether it is finite or not,
and in case it is infinite, it should be of interest to look at the corresponding minimal
subcategories.

Example 1 (Kerner-Takane). Let Λ be a connected hereditary artin algebra of infi-
nite representation type. The preprojective component of modΛ is a minimal subcategory.

Proof. Kerner-Takane ([KT], Lemma 6.3.) have shown: For every b ∈ N, there is
n = n(b) ∈ N with the following property: If P, P ′ are indecomposable projective modules,
then τ−iP ′ is cogenerated by τ−jP , for all 0 ≤ i ≤ b and n ≤ j. Assume that C is the
additive subcategory given by an infinite set of indecomposable preprojective modules. We
claim that the cogeneration closure of C contains all the preprojective modules X . Indeed,
let X = τ−bP ′ with P ′ indecomposable projective. Choose a corresponding n(b). Since
C contains infinitely many isomorphism classes of indecomposable preprojective modules,
there is some C = τ−jP in C with n ≤ j and P indecomposable projective. According to
Kerner-Takane, X is cogenerated by C.

Recall that an algebra Λ is said to be tame concealed provided it is the endomorphism
ring of a preprojective tilting module of a tame hereditary algebra.

Example 2. Any tame concealed algebra Λ has a unique minimal subcategory C,
namely the subcategory of all preprojective modules.

Proof: Let k be a field and Λ a finite-dimensional k-algebra which is tame concealed.
Let C be an infinite submodule-closed subcategory of modΛ. We want to show that C
contains infinitely many isomorphism classes of indecomposable preprojective modules.

According to Theorem 2 (b) and (c), for any indecomposable module C ∈ C, there
exists an infinite inclusion sequence of indecomposable modules in C which starts with C.
This shows that C cannot be preinjective, since an indecomposable preinjective module
for a tame concealed algebra has only finitely many successors. Thus, all the modules in
C are preprojective or regular.

Next, assume that C contains infinitely many indecomposable regular modules. If
they are of bounded length, then the proof of Brauer-Thrall 1 presented in Appendix A
of [R1] yields arbitrarily large indecomposable modules M cogenerated by these regular
modules, and the modules M constructed in this way have to be preprojective. It remains
to consider the case that C contains arbitrarily large indecomposable regular modules.

Recall that an indecomposable Λ-module H is said to be homogeneous provided its
Auslander-Reiten translate τH is isomorphic to H. Note that if H is a homogeneous inde-
composable module, then Hom(P,H) 6= 0 for all indecomposable preprojective modules P .
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We choose two indecomposable homogeneous Λ-modules H,H ′ which belong to different
Auslander-Reiten components. Let b be an upper bound for the k-dimension of all the
vector spaces Ext1(Q,H) and Ext1(Q,H ′), where Q is a submodule of an indecomposable
injective Λ-module (clearly, such a bound exists).

Now, let R be an indecomposable regular module in C of length r, and let R′ be its
regular socle. Let f ′ : R′ → Q′ be a non-zero map with Q′ indecomposable injective and
let f : R → Q′ be an extension of f ′. Let Q be the image of f . By construction, R′ is
not contained in the kernel X of f , and therefore X has no non-zero regular submodule.
It follows that X is a direct sum of say t indecomposable preprojective modules Xi. At
least one of H,H ′, say H, will belong to a different Auslander-Reiten component than
R, and thus Hom(R,H) = 0 = Ext1(R,H). We apply Hom(−, H) to the exact sequence
0 → X → R → Q → 0, and obtain

Hom(R,H) → Hom(X,H) → Ext1(Q,H) → Ext1(R,H)

with first and last term being zero, thus the k-spaces Hom(X,H) and Ext1(Q,H) are
isomorphic. In particular, we see that the k-dimension of Hom(X,H) is bounded by b.
Since X is the direct sum of t indecomposable preprojective modules, and Hom(P,H) 6= 0
for any indecomposable preprojective module P , it follows that t ≤ b. Let q be the maximal
length of an indecomposable injective Λ-module, then |X | ≥ r − q. Assume that all
indecomposable direct summands Xi have length |Xi| <

1

b
(r − q). Then |X | = |

⊕
i Xi| <

b · 1

b
(r − q) = r − q, a contradiction. This shows that at least one of the modules Xi has

length |Xi| ≥
1

b
(r−q). Since by assumption r is not bounded, also 1

b
(r−q) is not bounded.

Thus, we have shown that C contains infinitely many isomorphism classes of indecom-
posable preprojective modules, and therefore the intersection C′′ of C with the preprojective
component is infinite. The minimality of C implies that C contains only preprojective mod-
ules. On the other hand, as in example 1, the subcategory of all preprojective modules
can be shown to be minimal.

Remark. Preprojective components are always submodule-closed, but in general an
infinite preprojective component P does not have to be minimal. First of all, P may
contain indecomposable injective modules, whereas this cannot happen for a minimal sub-
category, as part (b) of Theorem 2 shows. But also preprojective components without
indecomposable injective modules may not be minimal. For example, consider the algebra
with quiver

◦ ◦ ◦............................................................................................................................
............................................................................................................................
............................................................................................................................

a b c.
..

..
..

....
. .. .. . .. . . .

with one zero relation (thus, the indecomposable projective module Pa corresponding to
the vertex a is simple, the radical of Pb is equal to Pa and the radical of Pc is the direct
sum of Pb and the simple factor module of Pb). Then the preprojective component P
contains indecomposables which are faithful, but also countable many indecomposables X
with Xa = 0. Clearly, the subcategory of P ′ of all modules P in P with Pa = 0 is a proper
subcategory which is both infinite and submodule-closed (and actually, P ′ is minimal).

Example 3. Let I be a twosided ideal in Λ. The category of Λ-modules annihilated
by I is obviously submodule-closed and of course equivalent (or even equal) to the category
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of all Λ/I-modules. If Λ/I is representation-infinite, then modΛ/I will contain a minimal
subcategory. Consider for example the generalized Kronecker-algebra K(3) with three ar-
rows α, β, γ. The one-dimensional ideals of K(3) correspond bijectively to the elements of
the projective plane P2, say a = (a0 : a1 : a2) ∈ P

2 yields the ideal Ia = 〈a0α+a1β+a2γ〉.
Let Ca be the additive subcategory of modK(3) of all preprojective K(3)/Ia-modules.
Then these are pairwise different subcategories (the intersection of any two of these sub-
categories is the subcategory of semisimple projective modules). In particular, if the base
field is infinite, there are infinitely many subcategories in modK(3) which are minimal.
(Note that the preprojective K(3)-modules provide a further minimal subcategory.)

The minimal subcategories exhibited here can be distinguished by looking at the cor-
responding annihilators (the annihilator of a subcategory C is the ideal of all the elements
λ ∈ Λ which annihilate all the modules in C). The next example will show that usually
there are also different minimal subcategories which have the same annihilator. Note that
a submodule-closed subcategory C has zero annihilator if and only if all the projective
modules belong to C.

Example 4. Here is an artin algebra Λ with different minimal categories containing
all indecomposable projective modules. Consider the hereditary algebra Λ with quiver Q

◦ ◦ ◦............................................................................................................................
............................................................................................................................

............................................................................................................................

............................................................................................................................

a b cα

α′

β

β′

We denote by Q(ab) the full subquiver of Q with vertices a, b, by Q(bc) that with vertices
b, c.

As we know, the preprojective component C of modΛ is a minimal subcategory. Of
course, it contains all the projective Λ-modules, but it contains also, for example, the
indecomposable Λ-module X with dimension vector (3, 2, 0); note that the restriction of
X to Q(ab) is indecomposable and neither projective nor semisimple.

Second, let D be the full subcategory of modΛ consisting of all the Λ-modules such
that the restriction to Q(ab) is projective and the restriction to Q(bc) is preprojective.
Clearly, D is submodule-closed, and it is obviously infinite: If Y is a Λ-module with
Ya = 0, define Y as follows: the restrictions of Y and Y to Q(bc) should coincide, whereas
the restriction of Y to Q(ab) should be a direct sum of indecomposable projectives of
length 3; in particular, Y a = Y 2

b . By Y 7→ Y we obtain an embedding of the category of
preprojective Kronecker modules into D, which yields all the indecomposable modules in
D but the simple projective one. It follows easily that D is minimal. Of course, D 6= C,
and note that also D contains all the projective Λ-modules.

We can exhibit even a third minimal subcategory which contains all the projective
Λ-modules, by looking at the full subcategory E of Λ-modules such that the restriction to
Q(ab) is the direct sum of a projective and a semisimple module, whereas the restriction to
Q(bc) is projective. Again, clearly E is submodule-closed. In order to construct an infinite
family of indecomposable modules in E , we use covering theory: The following quiver is
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part of the universal cover Q̂ of Q

1 1 1 1 1 1 1 1

1 1 1

1 12 2
.....................................

.....

.
.........
...

........................................
...
......
.....
.

.....................................
.....
.
.........
...

........................................
...
......
.....
.

.....................................
.....
.
.........
...

........................................
...
......
.....
.

.....................................
.....
.
.........
...

........................................
...
......
.....
.

................................................
......
............

...................................................... ......
......

................................................
......
............

...................................................... ......
......

................................................
......
............

...................................................... ......
......

β β ββ′ β′ β′

α α α αα′ α′ α′ α′

and the numbers inserted form the dimension vector for a two-parameter family of inde-
composable modules M . If we require in addition that the maps α and α′ starting at the
same vertex have equal kernels, then there is a unique isomorphism class M = Y3 with
this dimension vector. In a similar way, we can construct for any natural number n an
indecomposable representation Yn of Q̂ of length 2+5n (with top of length n). The kernel
condition assures that the Λ-module which is covered by M = Y3, or more generally, by
Yn, belongs to E (note that the kernel condition means that the restriction of M to any

subquiver of type D̃4 has socle of length 3). If E ′ is a minimal subcategory inside E , then
E ′ is different from C and D.

Remark: The Λ-module covered by Y1 is indecomposable projective and has Gabriel-
Roiter measure (1, 3, 7), this is the measure I3 for Λ. One may show that the Λ-module
covered by Y2 has Gabriel-Roiter measure (1, 3, 7, 12) and that this is the measure I4. For
t ≥ 5, the measures It are not yet known; it would be interesting to decide whether the
intersection of the take-off part of modΛ and E is infinite or not.
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