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Abstract. Let k be a field. A finite dimensional k-algebra is said to be minimal repre-
sentation-infinite provided it is representation-infinite and all its proper factor algebras
are representation-finite. Our aim is to classify the special biserial algebras which are
minimal representation-infinite. The second part describes the corresponding module
categories.
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1. Introduction

The study of minimal representation-infinite k-algebras with k an algebraically
closed field was one of the central themes of the representation theory around 1984
with contributions by Bautista, Gabriel, Roiter, Salmeron, Bongartz, Fischbacher
and many others. Recent investigations of Bongartz [5] provide a new impetus for
analyzing the module category of such an algebra and seem to yield a basis for
a classification of these algebras. Here is a short summery of this development.
First of all, there are algebras with a non-distributive ideal lattice, such algebras
have been studied already 1957 by Jans [13]. Second, there are algebras with
a good universal cover A and such tNhatNK has a convex subcategory which is a
tame concealed algebra of type D, ,Eg,[E7 or Eg; these were the algebras which
have been discussed by Bautista, Gabriel, Roiter and Salmeron in [2] (we say
that the universal cover is good provided it is a Galois cover with free Galois
group and is interval-finite). As Bongartz now has shown, the remaining minimal
representation-infinite algebras also have a good cover /~\, but all finite convex
subcategories of A are representation-finite. These are the algebras which will
be discussed here. We will show that such an algebra is special biserial and we
will provide a full classification of the special biserial algebras which are minimal
representation-infinite.

Let us recall the definition: A finite dimensional k-algebra is said to be special
biserial (see [24]) provided it is Morita equivalent to the path algebra of a quiver
@ with relations with the following properties:
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(1) Any vertex of @ is endpoint of at most two arrows, and also starting point
of at most two arrows.

(2) If two different arrows v and ¢ start in the endpoint of the arrow «, then
at least one of the paths ya, da is a relation.

(2") If two different arrows o and 3 end in the starting point of the arrow ~,
then at least one of the paths va, v is a relation.

Note that the composition of an arrow « with endpoint a and an arrow v with
starting point a is here denoted by vy, one should visualize the situation as follows:

4
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The definition of a special biserial algebra looks quite technical, but actually
there are a lot of natural examples of algebras which turn out to be of this kind.
Note that a special biserial algebra is hereditary if and only if it is Morita equivalent
to the path algebra of a quiver of type A, or A,, where the cyclic orientation of
A, has to be excluded in order to get a finite dimensional algebra.

Special biserial algebras were first studied by Gelfand and Ponomarev [11]: they
have provided the methods in order to classify all the indecomposable represen-
tations of such an algebra. This classification shows that special biserial algebras
are always tame (see also [26, 8]) and usually they are of non-polynomial growth.
For the structure of the Auslander-Reiten quiver of a special biserial algebra we
refer to [7]. The aim of the present paper is to describe the special biserial algebras
which are minimal representation-infinite and to exhibit the corresponding module
categories.

We can assume that the defining relations of the special biserial algebras to
be considered are monomials (since otherwise we will obtain an indecomposable
module which is both projective and injective, but minimal representation-infinite
algebras do not have indecomposable modules which are both projective and in-
jective).

If A is a finite dimensional algebra, a simple module S is said to be a node
provided S is neither projective nor injective, and such that S does not occur as
a composition factor of a module of the form rad M/ soc M, where M is indecom-
posable and not simple. If A is given by a quiver with relations, then the simple
module S(a) corresponding to a vertex a is a node if and only if a is neither a sink
nor a source and given an arrow « which ends in @ and an arrow  which starts in
a, then ya is a relation. There is a well-known procedure [15] to resolve nodes: For
any algebra A, there is an algebra nn(A) without nodes such that A and nn(A) are
stably equivalent: in case A is given by a quiver with relations, one just replaces
any vertex a with S(a) a node by two vertices ay,a_ such that ay is a sink and
a_ a source.

A vertex a of a quiver will be called an n-vertex provided a has n neighbors
(this means that there are n; arrows ending in a and ng arrows starting in a and
n = n1 + ng; observe that in this way, the loops at a are counted twice).

Theorem 1.1. Assume the k-algebra A is special biserial and minimal representation-
infinite. Then any 4-vertex of the quiver of A is a node.



The minimal representation-infinite algebras which are special biserial 3

If we want to classify algebras which are minimal representation-infinite, it
is sufficient to deal with algebras without a node, since an algebra A is mini-
mal representation-infinite if and only if the node-free algebra nn(A) is minimal
representation-infinite, see section 7. _

A finite dimensional hereditary algebra of type A will be said to be a cycle alge-
bra. The main task of the paper will be to define two classes of finite dimensional
algebras, the so-called barbell algebras and wind wheel algebras, see sections 5 and
6, respectively. These algebras are obtained from cycle algebras by a construction
which we call barification (see section 4) and adding, if necessary, suitable zero
relations.

Theorem 1.2. The special biserial algebras which are minimal representation-
infinite and have no nodes are the cycle algebras, the barbell algebras with non-
serial bars and the wind wheel algebras.

Theorem 1.3. A minimal representation-infinite algebra is special biserial if and
only if its universal cover C is good and any finite convex subcategory of C' is
representation-finite.

The first part of these notes is devoted to a proof of theorems 1.1, 1.2 and 1.3.

The second part provides information on the module categories of the minimal
representation-infinite special biserial algebras. As we have mentioned already, all
special biserial algebras are tame. Dealing with the minimal representation-infinite
ones, we encounter both algebras of non-polynomial growth (namely the barbell al-
gebras) as well as domestic ones (the hereditary algebras of type A as well as all the
wind wheel algebras), note that the domestic ones all are even 1-domestic. Here, an
algebra is said to be n-domestic in case there are precisely n primitive 1-parameter
family of indecomposable modules (and additional “isolated” indecomposables).

Not much is known about domestic algebras A in general, not even about 1-
domestic algebras! The wind wheel algebras W provide new examples of 1-domestic
algebras such that the Auslander-Reiten quiver has an arbitrary finite number of
non-regular components (12.5) as well as having non-regular components with
arbitrary ramification (12.6). Let us stress that the examples which we present all
have Loewy length 3.

Also, we will describe in detail the corresponding Auslander-Reiten quilt T' of
a wind wheel, it is obtained from the set of Auslander-Reiten components which
contain string modules by inserting suitable infinite dimensional algebraically com-
pact indecomposable modules. We will see that I' is a connected orientable surface
with boundary, its Euler characteristic is x(I') = —t, where t is the number of bars.

A further property of the wind wheels W with ¢ bars seems to be of interest:
Let M be a primitive homogeneous and absolutely indecomposable W-module, and
E the factor ring of End(M) modulo the ideal of endomorphisms with semisimple
image, then E is of dimension ¢ + 1, thus arbitrarily large.

In general, we will show: Let A be a k-algebra which is minimal representation-
infinite and special biserial. Then any complete sectional path is a mono ray, an
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epi coray or the concatenation of an epi coray with a mono ray. This implies in par-
ticular the following: If XY, Z are indecomposable A-modules with an irreducible
monomorphism X — Y and an irreducible epimorphism Y — Z, then X = 77.

Whereas we present in Part I full proofs for the main results, the discussion in
Part 1T is less complete, several of the (sometimes tedious) combinatorial verifica-
tions are left to the reader.

Acknowledgment. The classification of the minimal representation-infinite
special biserial algebras was first announced at the Trondheim conference 2007
and then presented in lectures at several places. The author is indebted to various
mathematicians for helpful comments. At the ICRA workshop Tokyo 2010, the
author gave a sequence of lectures dealing with minimal representation-infinite al-
gebras in general. The following text written for the workshop proceedings restricts
the attention again to the special biserial algebras.

Part I. The algebras

2. Preliminaries: Words

Given a quiver ) with vertex set ()9 and arrow set @)1 and a set p of monomial
relations (monomial relations are paths of length at least 2), we consider (usually
finite) words using as letters the arrows of the quivers and formal inverses of these
arrows, the set of such words will be denoted by 2(Q, p) (and just by Q(Q) if no
relations are given). In case the algebra A is given by the quiver @ with relations
p, we also dare to write Q(A) instead of Q(Q, p) (but this is an abuse of notation).

Here is the proper definition: Let @ be the quiver obtained from @ by adding
formal inverses of the arrows (given an arrow « with starting point s(«) and
terminal point ¢(c), we denote by a~! a formal inverse of a, with starting point
s(a™!) = t(a) and terminal point t(a™!) = s(a); given such a formal inverse
| = a~!, one writes [~! = a). We consider paths in the quiver Q, those of length
n > 1 are of the form

w=lly---1,, with S(lz) = t(li—i-l) forall 1<i<n

(one may consider w just as the sequence (I1,ls,...,1,), but it will be convenient,
to delete the brackets and the colons). In addition, there are the paths of length
zero corresponding to the vertices. By definition, the inverse of w =1y ...1, is
wl = l;l ... lfl; a subword of w is of the form [;l;41...1j_1l; (with1 <i<j<n
or else a vertex which is starting or terminal point for some ;. The elements of
Q(Q, p) are the paths w = ...l, in Q which satisfy the following conditions:

(W1) We have li_1 # iy, forall 1 <i <mn.

(W2) No subword of w or its inverse belongs to p.
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The elements of (@, p) will be called words for the quiver ¢ with the relations
p, the arrows and their formal inverses will be called the letters. A word w =
l1...1l, is said to be direct provided all the letters l; are arrows, and inverse provided
w™! is direct. A word which is either direct of inverse is said to be serial. Two
letters I, 1’ will be said to have the same direction, if both are direct or if both are
inverse letters.

We say that a word w is without repetition provided no letter appears twice in
w. Given a word without repetition and a letter [, then both [ and [~! may appear
in w; in this case we will say that the edge I* = {I,17'} occurs twice in w.

Given a word v = [y ---ls of length s > 1, we will write v; = I} and v, = .
Given words v, w such that the starting point of v, is the endpoint of w; and
vy, (w1)~! are different, but have the same direction, then we will say that the
pair (v,w) is attracting. Note that for an attracting pair (v, w), the composition
vw is a word again.

Finally, recall that a word w is called cyclic provided it contains both direct
and inverse letters and such that also w? = ww is a word. A cyclic word w is said
to be primitive provided it is not of the form v? with ¢ > 2.

An infinite sequence l1ls - - - using our letters will be called a N-word provided
all the finite subsequences [yls-- -1, are words. Similarly, a double infinite se-
quence ---1l_1lgly - -+ is said to be a Z-word provided all the finite subsequences
fon---lqloly -+ - 1, are words.

This report deals mainly with quivers @ with a set p of monomial relations
which yield a special biserial algebra A. In this case, the finite dimensional A-
modules are easy to construct and to characterize, this classification goes back to
Gelfand and Ponomarev [11]. There are two kinds of indecomposable modules,
the string modules and the band modules. Starting with any word w € Q(Q, p)
of length n, there is an indecomposable module M (w) of length n + 1, called a
string module. In addition, there are one-parameter families of indecomposable
A-modules which are constructed starting with a primitive cyclic word w as well
as a finite dimensional vector space V' with an automorphism ¢ such that the pair
(V, @) is indecomposable; the modules M (w, ¢) are called the band modules. If
V is one-dimensional and ¢ is the multiplication by A € k\ {0}, then we write
M (w, A\) instead of M (w, \). For an outline of these constructions we refer to [18].

3. The cycle algebras.

We first describe the hereditary algebras of type A. They also will be used in order
to construct the barbell as well as the wind wheel algebras.

We start with a function e : {1,...,n} — {1, —1}; if necessary, we call such a
function an orientation sequence of length n. In order to specify €, we usually will
write just the sequence €(1)e(2) - --e(n), or the corresponding sequence of signs +
and —. Note that this means that we consider € as a word of length n in the letters
+ and —. This interpretation explains also the following conventions: Assume
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there is given an orientation sequence € of length n. We say that e starts with e(1)
and ends with €(n). We write ¢! for the function with e 1(i) = —e(n + 1 — i)
for 1 < i < n. Given a further orientation sequence ¢ say of length n’, let e€
be the orientation sequence of length n +n’ with e€’(i) = €(4) for 1 < i < n and
ee’(i) =€(i—n)forn+1<i<n+n

The orientation sequences which we are interested in will be obtained by start-
ing withawordw =1y ---l5 € Q(Q, p), where @ is a quiver with monomial relations
p and looking at e(w) defined by e(w) (i) = 1 if [; is a direct letter and e(w)(i) = —1
otherwise.

Let € be an orientation sequence. We attach to e the hereditary algebra H (e)
with the following quiver: its vertices are a1, as, ..., a, = ag, and there is an arrow
a;:a; = a;—1 in case €(i) = 1 and «; : a;—1 — a; in case €(i) = —1. The algebra
H (e) is finite dimensional if and only if € is not constant. The algebras H (e) with
€) not constant, will be called the cycle algebras.

For example, if e = (+ + — + —+), then H(e) is the path algebra

a5
ar €«—— Qa4
TN
ag ag
aq a9 A

] «— a2

) e(n)

(1) e(2 . e e .
1 ‘0o .-y is a primitive cyclic word.

Always «a

4. Barification.

Starting from a hereditary algebra of type IN&, the further algebras will be obtained
by identifying some subquivers and adding zero relations. The essential part of
the construction will be described now.

Let @ be a quiver with relations. Let aq,...,as af, ..., a; be pairwise different
2-vertices such that a;, a; 41 as well es aj, aj, ; are neighbors, for all 1 < i < ¢. Thus
there are letters I;, 1} for 0 < ¢ < ¢ such that l;_1,1/_; end in a;, or a respectively,
and ;, I} start in a;, or @ respectively, for 1 < i < ¢. We assume that the letters l;, []
have the same direction, for any 1 < ¢ < t, wheres ly, [, have different direction,
and also ¢, 1} have different direction. We assume in addition that the letters I;,}
for 1 <7 < t are not involved in any relation.

Let v=1y---l;—1 and v =1} ---1;_; The barification of v and v’ is defined as
follows: We identify the vertex a; with a; for 1 <4 < ¢, and label the new vertex
again a;; also, we identify the arrow «; between a;,a;+1 with the arrow between
aj,ai,, and label it again o;. We add as new relation the compositions lo(lf) ™"
as well as (I;)7*;. If necessary, we will denote the new quiver with relations by
Q(v,v"). The subquiver of Q(v,v’) given by the identified vertices and arrows is
called a bar (at least if t > 2).

If t =1, then we just identify two 2-vertices of @) in order to form a 4-vertex.
If t > 2, then we identify sequences of 2-vertices and obtain from the identification
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of a; with a) a 3-vertex, then several 2-vertices, and finally as the identification of
a; with a; again a 3-vertex.

Note that in case we start with a quiver ) which is special biserial, the new
quiver Q(v,v") with relations again will be special biserial.

Here is a schematic example with ¢ = 5. We indicate the relevant parts v =
(a1 ¢ a2 < ag — a4 < as) and V' = (a} < ab, < a4 — a} < a}), but we do not
specify what happens further (we just draw a box)

ay <— al, < af —> a) <— al -

] €— (0 €— A3 —> (04 €— 05 =

The barification yields a quiver of the following form:

] -— 02 €— A3 —>» (04 €— (5

(the box is not changed).

5. The barbell algebras.

Definition: Consider orientation sequences €,n, € and assume that both € and ¢’
start and end with +. We start with the hereditary algebra H(ene’n~!), and
construct the barification using the two copies of 7, this will be the barbell algebra
B(e,n,€'). The subquiver given by (the identified copies of) n will be called its
bar.

Example 1: Start with ¢ = 7 = ¢ = (+). Then H(enen—!) has the following

shape:
gy

a) «—— ag

Oé:alT 1043:’7

Q] €— 02
a2

After the identification of as and oy, we write 3 for the identified arrow:
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Here, the bar is just one arrow (namely (), thus serial.

Proposition 5.1. A barbell algebra is minimal representation-infinite if and only
if the bar is not serial.

In case the bar n is direct, there are arrows «, v such that any is a word for the
barbell algebra. If we add this word as a relation, we obtain an algebra which still is
representation-infinite (it is a wind wheel algebras as discussed in the next section,
thus 1-domestic). In example 1, the bar was serial, thus this barbell algebra was
not minimal representation-infinite. Here is an example of a barbell with non-serial
bar:

Example 2. We start with

In order to construct this algebra, we can start with e = (4), n = (—+),¢ = (4).
Then H (enen™!) has the following shape:

a5 (673}
) ——> A5 «——— Q4

al( >a4

] —> 1) — a3
(65) Q3
Here the bar (given by the arrows 1 — 2 < 3) is not serial, thus the algebra is
minimal representation-infinite.

6. The wind wheel algebras.

A wind wheel algebra W is given by a cyclic word w without repetition which is of
the form
W = UV1 - -~ U2tV2t

with words w;,v; of length at least 1 and such that there is a (necessarily fixed
point free) involution o on the set {1,2,...2t} with the following properties:
(WW1) The words v; are serial and v; = ’U;é).
(WW2) The edges appearing in some u; occur only once in w, those occurring
in some v; occur twice in w (namely in v; and in v, ;).
(WW3) The pairs (v, u;+1) are attracting, the pairs (u;, v;) are not attracting
(here, ugry1 = uq).
Note that the factorization into the subwords u;, v; and the permutation ¢ are
uniquely determined by w, thus we can write W = W(w).
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The algebra W (w) is obtained from the A-algebra H(e(w)) by identifying the
path v; with v;(li) (”barification”), for all 4, and using additional zero relations as

follows: Let v; be direct, and v; = v; ' (thus j = o(i)). Then the barification

relations are
Uiwuirtn,  (wir1n)  (uj0) ™"

(recall that for any path w;, we denote by w; ; its first letter, by u,,w the last one).
And we take in addition also the paths
Ui w03 (Uj0) T

as relations. Thus, there are 2¢ monomial relations of length 2 as well as ¢ long
relations (of length at least 3).

As in the case of a barbell algebra, a subquiver given by (the identified copies
of) some v; will be called a bar.

Our example 1 yields the wind wheel algebra for the following word
afy 1Bl with wy=a, vy =06, us=7"", va =" and o=(1,2),

its quiver with relations is as follows:

7 witha?=+2=aBy=0

Further examples are presented at the end of part I.

There is a a canonical map 7 : Q(H (e(w))) — Q(W (w)) defined as follows: write
w =y -+ - I, with letters [; for the quiver of W (w), then I; may be considered as an
arrow of the quiver of H(e(w)). We set n(l;) = I; and extend this multiplicatively.

Given a bar v of W(w), there are uniquely defined letters Iy, l2 such that both
(I1,v) and (v,l2) are attracting pairs. We call T = [ vly the closure of the bar v.

Proposition 6.1. A word in Q(W(w)) does not belong to the image of n if and
only if it contains the closure of a bar as a subword.

Proposition 6.2. The wind wheel algebra W = W (w) is domestic with only one
primitive cyclic word, namely w. Ift is the number of bars, then there are precisely
t non-periodic (but biperiodic) Z-words: Write w = wivwav~!t, where v is a bar.
Then

©(w™ M wy o hwy fvwev T w™
is such a Z-word.

The Z-word (w1 )wy v~ w] 'vwev™ w™ determines uniquely the central
part © = ljvly where [; = (wfl)w and lo = (w2)1, thus it determines the bar v;
Indeed, this word is the only Z-word which contains a subword of the form [ vly
such that both (I1,v) and (v,ls) are attracting pairs.
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Proposition 6.3. Let W = W(w) be a wind wheel algebra with t bars. Let \ €
k\ {0}. Then the endomorphism ring of M = M(w, ) is a radical square zero
algebra with radical dimension t, and the only endomorphism of M with semisimple
image 1s the zero endomorphism.

Thus we see that the wind wheels provide examples of 1-domestic algebras A
with a primitive homogeneous and absolutely indecomposable A-module M such
that the factor ring of End (M) modulo the ideal of endomorphisms with semisimple
image is of arbitrarily large dimension.

Proof. Any bar b provides an endomorphism of M with image M (b), these endo-
morphisms form a basis of the radical of End(M). O

7. Proof of theorem 1.1

We want to present the proof of Theorem 1.1.

7.1. Resolving a node. The process of resolving a node a can be visualized as
follows:

We replace the vertex a by two vertices labeled a4 and a_ such that a4 becomes
a sink, a_ a source: all arrows of A will be kept, however, if an arrow of A ends in
a, then in A’ it ends in ay, whereas if an arrow of A starts in a, then in A’ it starts
in a_. Since all the paths ya with « ending in a (and therefore v starting in a)
are relations for A, there is a minimal set of relations consisting of these paths as
well as of a set p’ of relations which do not pass through a (a relation is a linear
combination of paths and we say that the relation passes through a provided at
least one of the paths contains a subpath ya with « ending in a). It is the set p’
which is used as set of relations for A’.

The important feature of this construction is the following: There is a canonical
functor mod A — mod A’ which yields a bijection between the indecomposable A-
modules and the indecomposable A’-modules different from the simple A’-module
S(a-).)

There is the following quite obvious assertion:

Lemma. Assume A is a finite dimensional algebra with a node a. Let A’ be
obtained from A by resolving the node. Then A is minimal representation-infinite
if and only if A’ is minimal representation-infinite.

Thus, if we want to classify algebras which are minimal representation-infinite,
it is sufficient to deal with algebras without a node.
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7.2. Cyclic words. Recall that a word w which is neither direct nor inverse is
called cyclic, provided w? is a word.

Lemma. Let w = auav be a cyclic word with o an arrow. Then at least one of
the words au, av is a cyclic word.

Proof. First, assume that neither u nor v is direct, write u = ujusus and v = v1v903
with wuy,us,v1,vs all being direct and of maximal possible length. Since w is a
cyclic word, noth vzau; and usav; are words. Assume that au is not a cyclic
word, then there is a zero relation which is a subword of ugawu;. Since no subword
of vsauy is a zero relation, we conclude that us = u4vs for some word us. With
usawy = uvzaw; also vsawy is a word. This implies that aw is a cyclic word.
Now assume u is direct. Since w is not direct, we know that v cannot be direct.
As above, write v = v1vavs With vy, v3 direct and of maximal possible length. Since
w is a cyclic word, there is no zero relation which is a subword of vsauawv,. But the
direct word vzaw; is a subword of vsauawv, thus we see that there is no subword
of vgaw is a zero relation, thus awv is a cyclic word. This completes the proof. [

As a consequence, we see: if w is a cyclic word of minimal length, then any
arrow can occur in w at most once as a direct letter, and at most once as an inverse
letter. In particular, the length of w is bounded by 2a, where a is the number of
arrows. (A typical example of a cyclic word of minimal length which contains both
an arrow as well as its inverse is given by example 1.)

7.3. The 4-vertices. Let a be a 4-vertex, with arrows «, ending in a and
arrows -, 0 starting in a such that the words v8 and d« are relations.

Let w be a cyclic word of smallest possible length. Assume w contains vy« as a
subword.

Up to rotation, we can assume that w starts with ya. Assume w also contains
871, say w = youB 'v, for some words u,v. Then aufB~! is a cyclic word of
shorter length, a contradiction. Similarly, if w = yaud~'v, for some words u, v,
then vd~!v is a cyclic word of shorter length.

Now assume that w contains 3 as a subword. Then w = yufv where u, v are
words such that u starts with « and ends with § (it may be that u = au'§, or else
a = u = §). Then we consider w’ = yu~!Bv. This is again a cyclic word, and
it contains neither 5 or its inverse as a subword. Namely, according to Lemma
1, 68 was contained just once as a subword of w, and this composition has been
destroyed when we built w’. Also no new composition has been created.

Finally, we have to consider the case that w does not contain §5. Since w has
to contain 3 and §, it must contain o' and §y~!. By Lemma 1, w contains ya
only once, and it cannot contain ="'y ™!, since otherwise we apply the previous
considerations to w™!'. Let w = ~youdy 'u', then the subword aud does not
contain yo or its inverse. Similarly, write w = yav'a~!Bv, then Bvy is a subword
of w? and does not contain ya or its inverse. We form the word aud(Bvy)~! =
audy~lv~'B~1. This is a cyclic word which does not contain ya or its inverse.
This shows that the factor algebra with the added relations ya and 63 is still
representation-infinite. This completes the proof.
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8. Proof of Theorem 1.2

We can assume that we deal with a special biserial algebra A with no 4-vertex.
Let w be a cyclic word of minimal length, thus no letter occurs twice. Given an
arrow a, we will say that the edge a* occurs once in w if precisely one of the
letters o, o1 occurs in w, and that it occurs twice if both occur; these are the
only possibilities, since we can assume that any arrow or its inverse occurs in w.

We can assume that all the vertices of @) are 2-vertices or 3-vertices (note that
the support of a cyclic word cannot contain a 1-vertex). In case all the vertices are
2-vertices, then we deal with a hereditary algebra of type A. Thus we can assume
that there is at least one 3-vertex.

If a is a 3-vertex, there can be only one zero-relation of length two passing
through a, since otherwise the word w could not pass through a. Thus, we deal
with the following local situation

Then n* occurs twice in w whereas ot and 6 occur just once. Proof: Since a*

as well as T both have to occur at least once, this yields two different subwords
of w involving n*. But if a® or §* would occur twice, we would obtain at least
three letters of the form n and n~!, impossible.

In this way, we see that there are edges which occur once, as well as edges
which occur twice.

This shows clearly the structure of the word w. Up to rotation, we can assume
that w starts in a 3-vertex, and that the inverse of the first letter does not occur
in w. Of course, then the last letter yields an edge which occurs twice. We cut w
into pieces

W = U101 * * * UmUm,

such that any wu; uses edges which occur only once, whereas the v; use edges which
occur twice. We obtain an involution o on the set {1,2,...,m} with v, = vi_l
(note that in case [ is a letter which occurs in some v;, and ™! occurs in v;, then
necessarily v; = ’U;l, thus we define o (i) = j). The involution o has no fixed point.
Namely, v~! # v for any word v: in case v has odd length, just consider the
middle letter, it cannot be both direct and inverse; in case v has even length, say
v =l -l with letters [;, then l;11 = lt_l, which is excluded. This shows that
m = 2n is even.

Let us look at the behavior of the compositions w;v; and v;u;+1 and compare
this with the compositions u,(;Vs(;) and vg(;)Ug(i)4+1, taking into account that
Vg(i) = v[l. The composition w;v; occurs at the same 3-vertex as vy(j)Ue(i)41,
thus precisely one of the pairs (u;, v;) and (Ve(;), Ue(i)+1) is attracting. Similarly,
precisely one of the pairs (v;, ;1) and (uq(;), Vo(;)) is attracting.
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Claim: If one of the words v; is not serial, then n = 1. Let us assume that
n > 2 and that one of the words v; is not serial, say v; = xy such that the pair
(z,y) is attracting.
Two different cases have to be considered. The first case is the following:
w v w2 W w3 Ty wy y ot

where all the w; start and end with edges which occur only once.

We can assume that the pair (wy,v) is not attracting. Otherwise, (v™1, w3) is
not attracting, and we replace the given word w first by w—! and then by a rotated
one in order to obtain a similar situation.

We claim that we can replace w; at the beginning by the word by w; 1 thus
dealing with

w;lvwgv_lngyww_lx_l.
This is a word. Namely, since the pair (w1, v) is not attracting, the pair (v=!,ws)
is attracting, thus the same is true for the inverse. Also, it is a cyclic word, since
the pair (wsx,y), thus also (y~—!, x~tws) is attracting.

It remains to observe that this new cyclic word uses less arrows: all the edges
of w1 which have multiplicity 1 in w have disappeared. This contradicts that @ is

minimal representation-infinite.

Let us now discuss the second case, where xy lies in between v and v—".

_ “1,.-1
wy v Wa Ty ws vl owy yTx
1 L L L L L 1 1
L] L} L] T L] T L] 1

where again all the w; start and end with edges which occur only once. Again, we
can assume that the pair (wy,v) is not attracting (otherwise, the pair (v=1, wy) is
not attracting and we invert and rotate w).
This time, we claim that
vwaz|yw; *

is a cyclic word. The first part is a subword of w, the inverse of the second part
is also a subword of w. Thus, both words vwsx and yw4_1 exist and they can be
composed, since (z,%) is an attracting pair. Also, it is a cyclic word, since (w;*,v)
is an attracting pair: By assumption, (wy,v) is not attracting, thus (v=!, wy) is an
attracting pair, and therefore the same is true for its inverse (w;*,v).

The case n = 1 with v = v; non-serial yields a barbell.

Thus, we now assume that all the words v; are serial.

Claim: (x) If (u1,v1) is not attracting, then also (uqs(1y, V(1)) s not attracting,
but (v1,us) is attracting.

Let s = o(1), and assume that (u1,v;) is not attracting, but (us,vs) is attract-
ing. Let wo = ugvg -+ vs_1us and w' = Us11Vs11 " * * UmVm, thus w = uyviwovsw’
and vs = vy '. We claim that

" —1 /
W = UIV1Wy VsW
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is a cyclic word. Of course, ujv; is a subword of w. Also, wy 'vs = wy 'v;! =

(v1we)~! is the inverse of a subword of w. Since we assume that (ws,vs) =
(wg,vy!) is attracting, also the inverse (vi,w;') is attracting, and thus also
(u1v1,wy tvs) is attracting. Since (up,v;) is not attracting, the pair (v, usy1) =
(7%, usy1) is attracting. This shows that the concatenation of v, with w’ or even
with w'uiv, provides no problem. Therefore we see that w” is a cyclic word.

Note that w has the serial word z = u1 ,v1u2 1 as a subword, whereas this is no
longer a subword of w”. This means that we can use z as an additional relation and
still have the cyclic word w”. This contradicts the assumption that we deal with a
minimal representation-infinite algebra. This contraction shows that (ug(l), Vo(1))
is not attracting, but then (v1,u2) has to be attracting.

Claim: If (u1,v1) is not attracting, then also (ug2,vs) is not attracting. Thus,
let us assume that (ug,vs) is attracting, whereas (u1,v1) is not. We already have
seen in (*) that (u,(1),v,(1)) is not attracting, thus o(1) # 2.

We know from (x) that (v1,us) is attracting. By assumption, also (ug,vs) is
attracting.

Consider the case that 0(2) < o(1).

U1 U1 U2 V2 Vo (2) Us(2)+1 Us(1) Vo(1)

Thus we may replace ug(2)41 " Us(1) bY u;l and obtain the cyclic word

-1
Uu1vy ~v0(2)|u2 |'UU(1) U

But here we use less arrows: all the arrows in uq ()41 have disappeared.
Finally, we have to deal with the case that o(1) < o(2).

U1 U1 U2 V2 Us(1) Vo(1) Vo (2) Us(2)+1

and take the cyclic word
Vo(1) * Vo (2)lly -

This exists, since the pairs (v, u2) = (v;(ll),uQ) and (ug,vg) = (uQ,v;é)) both are
attracting. In this case, we lose for example all the arrows which occur in u;.
Altogether we see that w defines a wind wheel algebra.

9. Proof of Theorem 1.3

Let A be special biserial, let Q) be its quiver. If A is minimal representation-infinite,
then the ideal of relations is generated by a set p of zero relations, thus the universal
cover A of A is given by the universal cover @ of the quiver @ and the set p of
lifted relations. It follows that A is special biserial with a quiver which is a tree,
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and the indecomposable A-modules are string modules with support a quiver of
type A,,. It follows that any finite convex subcategory is representation-finite.

Conversely, assume now that A is a finite dimensional basic k-algebra which is
minimal representation-infinite, that the universal cover A of A is good and that
any finite convex subcategory of A is representation-finite. We want to show that
A is special biserial.

Let @ be the quiver of A and @ the quiver of A. We denote by 7 : mod A —
mod A the covering functor (often called push-down functor, or forgetful functor).

For any finite dimensional k-algebra A, let s(A) be the number of (isomorphism
classes of) simple A-modules.

Note that A is not of bounded representation type, since otherwise also A
would be of bounded, thus finite, representation type. Thus we see that there are
indecomposable representations M of A of arbitrarily large length. Given such a
representation M say of length m, its support algebra C' is a representation-directed
algebra, thus s(C') > % . This shows that there are indecomposable representations
M of A whose support has with arbitrarily large cardinality.

The sincere representation-directed algebras with large support have been clas-
sified by Bongartz (see [4] or [17]). Such an algebra C' has a convex subalge-
bra B which is given by a quiver of type A, (without any relation), such that
s(B) > %S(C) Thus we see: A has convex subcategories B which are given by a
quiver of type A, without relations, where n is arbitrarily large. N

Let p(A) the Loewy length of A. Choose a convex subcategory B of A which
is of the form A,, and without relations, where n > 4p(A)s(A) and let M the the
(unique) since representation of B. Note that the indecomposable B-modules are
string modules, they are given by words using as letters the arrows of the quiver
of B. Since n > 4I(A)s(A), it follows easily that there is a simple A-module S
such that [socw(M : S)] > 3. But this implies that there is an indecomposable
B-module N which is given by a word of the form w = 315 - - - l;, with arrows /3
and [;! such that 7(l;) and 7(l; ') are different arrows of  and end in the same
vertex of @ (namely the support vertex of S).

We denote by A the support algebra of N, it is given by a quiver of type Ay
without any relation, and (V) has a one-parameter family of simple submodules U
such that the A-modules 7(N) /U are indecomposable and pairwise non-isomorphic.
Since A is minimal representation-infinite, it follows that m(N) is faithful, thus we
obtain all the vertices and all the arrows of @ by applying 7 to the vertices and
arrows of A, respectively.

Since we now know that the vertices and the arrows of () are images under 7 of
vertices and arrows in the support of A, it follows that the support of A contains
a fundamental domain for the action of the Galois group on @. In particular, we
see that we can compose the word w with a word w’ such that 7(w) = m(w’) and
SO on.

Now assume there is a vertex x of @ with 3 arrows ending in z, say «, 3,7.
Looking at the universal cover, we obtain arrows &, B, 4 ending in the same vertex
Z. But the arrow & is the first letter of a word w’ = {151} of length 3 which yields a
string module for A. Similarly, the arrow J is the first letter of a word w” = 151414
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of length 3 which also yields a string module for A. But the union of the support of
the words w’, w” and + is a subquiver (without any relation) of @ of type E7. This
contradicts the assumption that any finite subcategory of Ais representation-finite.

The dual argument shows that any vertex of ) is starting point of at most two
arrows.

Now assume that the vertex x of @) is endpoint of the arrows « # 5 and starting
point of the arrow ~ and that neither ya nor v8 is a zero relation. We looking
again at the universal cover, and obtain arrows a, B ending in a vertex T, as well
as 7 starting in the vertex Z. Since vy« is not a zero relation, we see that & must
be a subword of w or w™!, in particular we can prolong it to a word w’ = I{I5141)
of length 4 so that we have a corresponding string module M (w') Similarly, we
prolong 75 to a word w” = I¥14141} of length 4 with string module M (w”). We
consider the union of the support of the words w’, w”; it is a subquiver (without
any relation) of @, again of type IEq, thus again we obtain a contradiction to the
assumption that any finite subcategory of A is representation-finite.

10. Further examples.

First, we present a second example of a barbell algebras with non-serial bar.

Example 3. Start with ¢ = (+), n = (+—),¢ = (+ — +). Then H(ene'n~!)
has the following shape:

a7 % s
a) €—— a7 ——> Ug —_ as

o S

a.
a1<——-a2-——>a34{ 4
Qo a3 4

and B(e,n,€) will be

as

':'_j:al — 0y —> a3

; .

Again, the bar (given by the arrows a; < as — a3) is not serial.
The next examples are wind wheel algebras.

Example 4. The wind wheel algebra for the word w

U fupiup vy us3 PU3 ULy

The permutation is o = (13)(24). The short zero relations are
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Uy ,uz411 =6—-2—-4
U yUst1,1 =1—3—6
Uz, U411 =95—1-3

Ug U411 =2—4—5

The long zero relations are

—1 _
ULwV1Ug o =06 —2—1—5
—1 _
U2, V2Uyg ypo =1 —3—4 =2
-1 _ -1 -1
u?’awvgul,wto - (ulawvlu&wto)

—1 —1 —1
u4qu4u2,wto = (u21wv2 u4,wto)

The corresponding wind wheel algebra W = W (w) is:

~

with the further relations 6 —+ 2 — 1 — 5 and 2 —+ 4 — 3 — 1. There are two
bars, they are given by the arrows « and e.

/

In order to construct W, one starts with the following orientation sequence:

A S L
o imieimi o imiain

and constructs the hereditary algebra H(e1m; -+ - €4m4

):
2—>1—>5
!
4
|
3

ag =

—_—o—

/

Thus, we start with a quiver which can be drawn either as a zigzag (with arrows
pointing downwards), where the left end and the right end have to be identified,

a; = g—>2—>1
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or else as a proper cycle:

o—1>0—>0 :

and we barify on the one hand the two subquivers which are enclosed it rectangular
boxes, on the other hand also the two subquivers with shaded background.

In both cases, the barification yields an identification of a projective serial
module of length 2 with an injective serial module of length 2.

Example 5. We start with the following orientation sequence:
IR I IS I
D€L il €2 M2 €3 P N3 €q Mgl

and construct the hereditary algebra H(e1my - - €4m4):

3<—14

The quiver which we obtain is

with the additional relations: 4 — 2 — 1 — 1 and 2 —+ 4 — 3 — 3. The bars are
given by the arrows 2 — 1 and 4 — 3.

Example 6. As in example 4, consider again
S I A I
€ i ie imi €3 imziegimgl

But now we take o = (12)(34)

> W

—2—>1
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Here is the quiver:

with the additional relations 6 —+ 2 — 1 — 1 and 5 < 3 < 4 < 4. The bars are
again the arrows 2 — 1 and 4 — 3.

Part II. The module categories

11. The cycle algebras

We consider the algebras H = H(e) where € is not constant, so that H is finite
dimensional.

11.1. The Auslander-Reiten quiver. The structure of the Auslander-Reiten
quiver of H is well-known: there is the preprojective and the preinjective compo-
nent, the remaining components are regular tubes.

The string modules form four components of the Auslander-Reiten quiver,
namely the preprojective component, the preinjective component, and two tubes
(we call them string tubes); the remaining components (the band tubes) are homo-
geneous. Note that the string tubes may be homogeneous or exceptional!

The Auslander-Reiten quiver of H looks as follows:

> ‘RoHRwl B o

string l band
tubes tubes
I |
preprojectives the regular modules preinjectives

(tubes indexed by P;(k))

One should stress that in this case all the Auslander-Reiten components are
(considered as simplicial complexes, thus as topological spaces) surfaces with bound-
ary; all are homeomorphic to [0, co[xS*.
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11.2. An example. We consider ¢ = (+ + + + — — ——) and depict here, for
later reference, the four components which contain string modules, always we draw
two fundamental domains inside the universal cover of the component, they are
separated by dashed lines (horizontal ones for the preprojective and the preinjective
component, vertical ones for the regular components). Note that instead of arrows,
we show edges, the orientation is from left to right.

the preinjective
component Q

the preprojective
component P

11.3. The serial modules for a cycle algebra. Recall that a module is called
serial provided it has a unique composition series. We consider the serial H-
modules, where H is a cycle algebra. The following assertions are easy to verify:

Lemma. Any serial H-module M is projective or regular or injective.

If M is a serial H-module of length at least two, and M is projective, then
M/ soc belongs to Ry or Reo-

If M is a serial H-module of length at least two, and M 1is injective, then rad M
belongs to Ry or Reo-

In the barification process, we barify a projective serial module M (b) of length
at least 2 with M (b)/soc say in Ry and an injective serial module M (b") of the
same length with rad M (b') in Rec.

Our convention for distinguishing Ry and R will be the following: given an
indecomposable projective H-module P with radical rad P = X & X', where X
and X' are serial modules, we fix the order X, X’ and assume that the module
P/X' as well as the composition factors of X’/soc are simple regular objects of
Ro, whereas the module P/X as well as the composition factors of X/soc are
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simple regular objects of Roo:

RO Q 7?roo O
®) ®

12. The wind wheel algebras.

Let H be hereditary of type 7&, and W C H a corresponding wind wheel algebra.
Let us look at the restriction functor n : mod H — mod W.
First, let us recall the shape of the category mod H.

preprojectives the regular modules preinjectives
| )
string
tubes
| [ ]
1 11
} 11
P RO Roo

We have shaded the homogeneous tubes: they remain untouched; whereas the
other four components are cut (between rays or corays) into pieces and these pieces
are embedded (with some overlap) into a component which contain in addition so-
called quarters. This cut-and-paste process will now be explained.

12.1. Example. We consider the wind wheel algebra W (w) for the word

w = af1 BBy By By B
thus we start with the quiver H = H (e(w))

O/ \O
0 ™ 4
a O<€¢— O <€«— O g5
1 2 3

and barify the subquivers 1 <~ 2+ 3+« 4 and 0+« 1’ + 2/ + 3'.
We obtain in this way the wind wheel algebra W = W (w)
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with o2 = 4% = a1 82837 = 0.
Recall that we know: There is precisely one non-periodic (but biperiodic) Z-
word, namely

r(d) = *(w")-a 'B1BaBsy T (W)

where w' = B3 ' By ' By aB1BaBsy Y, and w" = a7 B1B2B3vBy By B!

w" W b W' W'
with b = B13203 and b = 7718132830~ (the word w’ is obtained from w by
rotation, the word w” by rotation and inversion).

Here we see the reason why we call these algebras the wind wheels: We consider
the word r(b) as a pair of opposite "rotor blades”.

12.2. Proposition. The restriction functor
n :mod H — mod W

has the following properties:

(1) Indecomposable modules are sent to indecomposable modules.

(2) Corresponding modules on the two Ay-quivers which yield the bar becomne
isomorphic, otherwise non-isomorphy is preserved.

(3) The indecomposable W-modules which are not in the image of the functor
are the string modules for words which contain o' B1 82837~ as a subword.

Note that b = a3 2837~ ! is the closure of the bar b = 3,233, as defined
in section 6.

In order to outline the cut-and-paste process, we start with the Auslander-
Reiten components containing string modules, as shown above. We assume that
Ry is the tube which contains at the boundary the simple H-modules 1,2,3 as
well as the serial module with composition factors 0,1’,2’, 3, 4, whereas R is the
tube which contains at the boundary the simple H-modules 1’,2’, 3" and the serial
module with composition factors 0,1, 2, 3, 4.

Let us look at the full subcategories of mod H with modules with support in
{0,1,2,3} on the one hand (see the left picture) as well as those with support
in {1/,2',3’,4} on the other hand (the right picture) and describe the role of the
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various modules inside mod H:

1 2/ 3 4

In the left picture, the shaded area marks those modules which belong to Ry,
whereas the remaining modules (those which form the left boundary) are projec-
tive, thus in P. In the right picture, the shaded area marks those modules which
belong to R, the remaining ones are injective, thus in Q. According to property
(2), any module of the left triangle is identified under n with the corresponding
module of the right triangle.

Let us look at the various components of mod H which contain string modules.
We will add bullets e in order to mark the position of the indecomposables with
support contained either in {0,1,2,3} or else in {1’,2/,3',4}. We are going to
cut these components into suitable pieces: these are the dashed areas seen in the
pictures.

First, we exhibit the preprojective component (left) and the preinjective com-
ponent (right):

Next, the two regular components (the boundary of any of the two components
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contains three simple modules; they are labeled):

o .
.
OSSN

SESRRIERAIK
(% s oe%

As we have mentioned, under the restriction functor 7 : mod H — mod W, some
serial H-modules become isomorphic, namely, the ten H-modules with support in
in the subquiver with vertices {0, 1, 2,3} are identified with the corresponding ten
H-modules with support in in the subquiver with vertices {1’,2/,3’,4}. In a first
step, we make the identification of the nine pairs consisting of modules of length
at most 3. We obtain the following partial translation quiver:

Here we denote by P’ the rays coming from P, and so on. Note that we did not
yet identify the points labeled M (b) and M (V'), these are H-modules of length 4
which are identified under the restriction functor.

Now let us make this last identification, and insert the W-modules which are
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not in the image of n : mod H — mod W.

II1

What are the additional modules? These are the string modules for words
which contain a completed bar as a subword. These modules form quarters (as
introduced in [19]), namely the four shaded areas in the picture above. The four
quarters can be rearranged in order to be parts of a tile, similar to those exhibited
in [19], p 54f, this will be explained in the next section. Of special interest seem
to be the four encircled module, the corner modules for the quarters.

12.3. The corner modules. It may be worthwhile to identify explicitly the
four corner modules (in the presentation of this component given above, we have
encircled these modules):

quarter I quarter IT quarter ITT quarter IV

77 (rad M (b)) N 7(M(b)/ soc) M (b)

In our example both the socle and the top of all corner modules are of length 2. In
general, the corner modules for the quarters I and IV may have a socle of length
3, and dually, the corner modules for the quarter IIT and IV may have a top of
length 3, as the following description shows:

For the quarter I, the corner module 7~ (rad M (b)) is obtained from rad M (b)
by adding hooks on the left and on the right.
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Dually, for the quarter III, the corner module 7(M (b)/soc) is obtained from
M (b)/ soc by adding cohooks on the left and on the right.

For the quarter IV we obtain the corner module M (b) by adding to M (b) a
hook on the left, a cohook on the right. In our case we have M (b) = M (b), where
b is the completion of b.

The corner module for the quarter IT has been denoted here by N = N(b), in
our example, we start with rad M (b)/ soc and add a cohook on the left and a hook
on the right, in order to obtain N — however, this rule makes sense only in case
rad M (b)/ soc is non-zero, thus in case the bar module M (b) is of length at least
3. In general, let Ny be the boundary module in Ry which has the same socle
as M(b) and Ny the boundary module in R which has the same top as M (b).
Then N has a filtration 0 ¢ N C N’ C N with

N" = n(Ny), N'/Ng =rad M(b)/soc, N/N' =n(Ny).

In case M(b) is of length 2, say b = 8 where 8 is an arrow, then we deal with an
exact sequence
0— n(Ng) > N = n(Ny) — 0.

This is one of the Auslander-Reiten sequences involving string modules and having
an indecomposable middle term, namely that corresponding to the arrow/3, see [7].

This description of the corner modules shows that all of them are related to
the following Auslander-Reiten sequence
0 — rad M (b) — M(b) ®rad M (b)/soc — M (b)/soc — 0

for W/I, where I is the annihilator of M (b). Recall that we have used the
Auslander-Reiten quiver of W/I as our gluing device, let us mark the Auslander-
Reiten sequence in question:

In case M (b) is of length at least 3 we deal with a square, if it is of length 2, then
with a triangle. In section 13.2 we will see in which way this square or triangle is
enlarged in mod W.
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12.4. Wind wheels with several bars. Now we consider the general case of ¢
bars. Any of the components P, Rg, Reo, @ will be cut into ¢ pieces, and always
the pieces will be indexed the the set B of the direct bars.

Write w = wy - - - w; where all the words w; start with a direct letter and end
with an inverse letter, and such that any w; ends with an inverse bar, say (b;)~!.
We denote by A : B — B the cyclic permutation with A(b;) = biy1.

Similar to the case t = 1, we remove arrows from the preprojective component,
but now we want to retain ¢ connected pieces P(b) with b € B. The piece P(b)
is supposed to contain the projective modules starting with rad M (b) and ending
with M (A\b). Here is a picture of P(b):

Next, consider the regular component Rg; according to our convention, this is
the component which contains the simple modules T'(b) = top M (b). Again, we
remove arrows in order to obtain ¢ pieces counsisting of full corays; the piece R(b)
with index b shall contain the modules T'(\b), 7= T (Ab), 7=2T(A\b), ... up to 7T(b).

QLS
(E05ERKS
L RRRKS

o200 %
2%
0. %%

T(\b) T(b)

CS
K8

Similarly, we consider a word w’ obtained from w by cyclic rotation, such that
w' = wj---w, where any w), starts with an inverse letter and ends with a direct
letter, and ends in a (direct) bar, say the bar b,(;) and we denote by p : B — B
the permutation which sends b, (;) t0 bg(i41)-
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Now we cut the preinjective component in order to get pieces made up of corays.
the piece Q(b) has to contain M (b)/soc up to M (pb). Here is a picture of Q(b).

Finally, we consider the regular component which contains the simple modules
S(b) = soc M (b). Again, we remove arrows in order to obtain ¢ pieces consisting
now of full rays. The piece R (b) indexed by b contains the rays starting at
771S(b),7725(b), ..., up to S(pb).

5(b) S(pb)

Altogether we have cut the four string components of mod H into flat pieces:
any such component yields ¢ pieces. The gluing of these pieces is done by identifying
H-modules which become isomorphic under the restriction functor

mod H — mod W

(and finally we will have to add various quarters).

As in the case t = 1, we first will look at the proper subfactors of the bars.
Identifying the corresponding H-modules, we obtain partial translation quivers
which are planar: Any of the components P, Q, Rg, R« has been cut into ¢ pieces,
and the identification process will use one piece of each kind, in order to obtain ¢
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planar partial translation quivers of the following form (#x):

It is important to observe that in contrast to the case t = 1, the modules labeled
M) and M (b") (corresponding to bars b’ and ") now may be different!

We obtain in this way a permutation 7 of the bars such that b” = 7(b’). But we
know that b’ = pA(b) and b = A\p(b). Now b’ = pA(b) means that b = A\"Lp=1(¥'),
thus

m(0') =" = Ap(b) = ApA"Tp (') = [, p)(B).

This shows:
m=[Apl.

Of course, as we have mentioned already, we still have to add the indecompos-
able W-modules which do not belong to the image of . We know that there are
precisely ¢ non-periodic (but biperiodic) Z-words; they give rise to 4 - ¢ quarters
which have to be inserted as in the case t = 1. Before making the final identifca-
tions, let us attach the quarters of type IV to the pieces of the form Q(b). In this
way, we obtain ¢ partial translation quivers of the form
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(The visualization on the right hand side takes into account the embedding of these
Auslander-Reiten components into the corresponding “Auslander-Reiten quilt”
which we will discuss in the next section.)

The partial translation quivers are sewn together in the same way as one con-
structs the Riemann surfaces of the n-the root functions in complex analysis (tak-
ing into account the permutation 7). For example, we may obtain a 3-ramified
component which roughly will have the following shape:

We will call such a component with r leaves an r-ramified component of type A.

Proposition. Let W be a wind wheel with t bars. Then: Any non-regular Auslander-
Reiten component is an r-ramified component of type AL with 1 < r < t. If
Ci,...,Cc are the non-reqular Auslander-Reiten components of W and C; is r;-
ramified, for 1 <i<ec, then Y ;_ r; =t.

We may assume that r1 > ry > --- > r., thus we deal with a partition and we
call this partition (ry,rs,---,7.) the ramification sequence of W.

12.5. Wind wheels with arbitrarily many non-regular components. We
are going to present a wind wheel with ¢ bars which has ¢ non-regular Auslander-
Reiten components (all being necessarily 1-ramified: the ramification sequence is
(1,1,...,1)). Here is the quiver:
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All the non-regular Auslander-Reiten components of this algebra look similar,
here is one of these components:

Va3

The inserted quarters are labeled I, II, ITI, IV, with a bar b as an index: all the
modules in such a quarter are of the form M (v), where v is a word which contains
b as a subword (such a quarter will later be seen as part of the tile 7(b)).

12.6. Wind wheels with non-regular Auslander-Reiten components with
arbitrary ramification. First, let us present an example with a 3-ramified com-
ponent. Here is the quiver with the zero relations of length 2 (in addition all paths
of length 3 are zero relations):

Let us exhibit one part of the 3-ramified Auslander-Reiten component (as before,
the inserted quarters are labeled I, I1, II1, IV, with a bar b as an index):
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Va3
This concerns the part of the component containing the module I(0) = 11023.
The leaves containing the modules I(6) and I(2) look similar. These three leaves
together form a component, namely a 3-ramified component of type AZ.




The minimal representation-infinite algebras which are special biserial 33

In addition there is a second non-regular Auslander-Reiten component, namely

the component containing the module I(4); it is 1-ramified. The boundary looks
as follows:

We use Galois coverings of this wind wheel in order to exhibit wind wheels
with arbitrary ramification. Let us consider the Galois covering obtained by an
s-covering of the cycle of length 2, thus we deal with a wind wheel of the following
shape (for s = 3, we have to identify the upper left hand arrow with the upper
right hand arrow in order to have an arrow 7/ — ’5):

The corresponding primitive cyclic word is

/5 /7 1 3 5 7 1/ 3/ 5/
4 't '6¢ 5 0 1 2 3 4 7 6 5 0o 1V 2 3 4 7
12 16 4 0 2 6 4/ 0/ 2/

Let us show the leaves which contain the modules I(0), I(6), I(2), they are quite
similar to those seen above — the only difference occurs on the right hand side of
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the upper leaf and in the upper row of the middle leaf:

As before, the upper leaf and the middle leaf are sewn together (both contain
the module M (23)), similarly, the middle leaf and the lower leaf are sewn together
(both contain the module M (67)). But the change of the right hand side of the
upper leaf is important, since it means that the upper leave and the lower leave
no longer are sewn together (the lower leaf contains the module M (45), the upper
one the shifted module M (4'5)). Tt follows that for the s-fold covering 3s leaves
are sewn together and form a 3s-ramified component (this is the Auslander-Reiten
component which contains the modules I(0), 1(6),1(4) and their shifts under the
Galois group).

What happens with the remaining non-regular component (the 1-ramified one)?
Thus, let us start to calculate the Auslander-Reiten component which contains the
module P(1). Here is the relevant part of the boundary:

It follows that the Galois shifts of the module P(1) all lie in one component,
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and this is a component of type A which is s-ramified. This shows that any
ramification does occur.

12.7. The ramification sequence of a wind wheel. We have seen above, that
the sewing of the leaves is accomplished via the permutation m = [A, p].

Thus, we see: All the non-regular components are 1-ramified if and only if
the permutations X\ and p commute (in particular, this will be the case if these
permutations coincide, as in example 12.5).

In general, we see that we do not get all the possible permutations for 7. The
mathematics behind it, is as follows: In the symmetric group ¥;, we fix one t-
cycle as p and form for any t-cycle A the commutator 7 = [\, p|: these are the
permutations which arise for the sewing procedure.

Proposition. A partition of t is the ramifcation sequence of a wind wheel if and
only if it is the cycle partition for the commutator of two t-cycles.

(By definition, the cycle partition of a permutation has as parts the lengths of
the cycles when written as a product of disjoint cycles.)

For ¢t = 2, the group X; is commutative, thus we get as 7 only the identity.
This means: For ¢t = 2, we always get two non-regular components, both being
1-ramified.

For ¢t = 3, the group X; is no longer commutative, however the 3-cycles com-
mute, thus again the only commutator m = [0, p] is the identity, thus again we see
that we only get 1-ramified components.

The first case where one can obtain an r-ramified component with » > 1 is
t = 4; an explicit example has been discussed in 12.6.

For t = 4 one checks easily that the possible ramification sequences are (3, 1)
and (1,1,1,1).. For ¢t = 5, they are (5), (3,1,1) and (1,1,1,1,1) (for example,
the commutator of the permutations (12345) and (12354) has the cycle partition
(3,1,1), that of (12345) and (12453) has the cycle partition (5)). In particular, we
see that for ¢ < 5, there are no 2-ramified components. For ¢ = 6, the commutator
of (123456) and (124653) has the cycle partition (4, 2).

It seems that a description of the structure of the commutators [\, p|, where A
and p are t-cycles in X is not known (but see the related investigations [12, 3]).

13. The Auslander-Reiten quilt of a wind wheel

Auslander-Reiten quilts have been considered until now only for suitable special
biserial algebras A. A general definition can be given in case A is a 1-domestic
special biserial algebra, see [19]: The vertices are (finite or infinite) words, and there
are arrows, meshes, but also a convergence relation. The Auslander-Reiten quilt
considers not only the indecomposable A-modules of finite length, but also related
indecomposable A-modules of infinite length which are algebraically compact. The
main objective is to sew together Auslander-Reiten components which contain
string modules, using N-words and Z-words, the Z-words yield ”tiles”.



36 Claus Michael Ringel

13.1. Tiles and quarters. We recall from [19] some considerations concerning
the Auslander-Reiten quilt of a special biserial algebra.

The poset X is the ordered sum of N and —N; inserting a limit point w in the
middle, we obtain the completion ¥

by

» ®
w

We may consider ¥ as a topological space, namely as a closed interval; corre-
spondingly, we will consider 7 = ¥ x X as a square or better as a lozenge. The
center W is the vertex (w,w), the vertices on the diagonals (some are marked by
o) are the pairs (z,w) and (w,z) with z € 3. In a rather obvious way, we can
consider T also as a translation quiver and as in [19] we will call it a tile, see the
following picture on the left:

The middle picture presents the translation subquiver ¥ x ¥ obtained from the
left picture by deleting the diagonals through the center. It may be considered as
the disjoint union of four parts, the quarters I, I1, ITI, IV, see the right picture.
Here, we also have marked the four corners using circles.

Given any bar b, we obtain such a tile by considering all the (finite or infinite)
words containing the completed bar b, thus by considering all the (finite or infinite)
subwords of r(b). The word r(b) itself will be the center of the tile, the infinite
words form the diagonals through the center. If we look only at the finite words,
we obtain in this way the four quarters.

As we have seen in [19], tiles can occur as hammocks (the bridges in [19] yield
such a hammock). Here we encounter a different situation where tiles appear. The
tiles which occur when dealing with minimal representation-finite special biserial
algebras have the special property that all the irreducible maps in the quarter I
are monomorphisms, whereas those in the quarter IIT are epimorphisms.

13.2. Return to the example 12.1. There is one bar b, thus one tile 7(b). The
finite-dimensional modules in the tile are those which do not lie in the image of
the restriction functor n : mod H — mod W, thus the string modules M (v) where
v is a finite word which contains the completed bar b.

Any tile yields four quarters, and we have seen above that the corresponfing
corner modules are related to the following Auslander-Reiten sequence of W/I,
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where I is the annihilator of M (b) (in case M (b) is of length 2 we deal with a
triangle, otherwise with a square):

We are going to outline in which way this square or triangle is enlarged in mod W.
It is the tile 7 which may be considered as being inserted into this square —
alternatively, we may say that we add a border to the tile:

M (b)
v
rad M (b) <I III>) M (b)/ soc \I III/
11 \ @/
NN
rad M (b)/ soc

As we have noted above, dealing with the corner of the quarter II we have to
distinguish whether rad M (b)/ soc is non-zero (as in the left picture) or zero (the
right picture shows the changes); in the zero case we have marked the modules Ny
and N, where Ny is the boundary module in Ry which has the same socle as
M(b), and N is the boundary module in R, which has the same top as M (b).
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13.3. One tile in detail. We have exhibited in 12.5 a wind wheel with 5 bars,
thus there are 5 tiles. Let us present at least one of the tiles, say 7(45) in more
detail:

]
w
\v]

N\

2
N AN
@53 3%%3033@
2
st SN

%% 2/33 ® 10\33

4° 72 ’ @
A

3
42 3

@ §3 5% ’3 3
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.'-' '--- ’

adding hooks ‘ 1145 -.o,_. ’ deleting cohooks
on the left ’ ‘ on the right

deleting cohooks 4 adding hooks
on the left on the right

NS

The vertices of such a tile T(b), with b a bar, are all the (finite or infinite)
words which contain the completed bar b as a subword. Thus, in our case we deal
with the words which contain the word as a subword. There is precisely one
Z-word of this form, namely r(b), it lies in the center and is marked by the black
square B. There are many N-words, they lie on the two diagonals through the
center. Note that the Z-word as well as all the N-words are not periodic, since any
word in 7(b) contains b only once as a subword. There are two kinds of N-words:
On the northwest-southeast diagonal they are marked by a circle o, these are the
words of the form

x = vb(w')>®

with v a finite word. The maximal periodic subword of x starts with the bar b; one
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easily checks that x is contracting in the sense of [18] . Those on the northeast-
southwest diagonal are marked by a bullet e, these are the words of the form

y= vl_fl(w”)*oo

again with v a finite word. Here the maximal periodic subword starts with b~!
and y turns out to be expanding.
As we know, the corner modules for the quarters are related to the exact se-

quence
0 — rad M (b) — M(b) @ rad M (b)/soc — M (b)/soc — 0,

we obtain a border for T (b):

rad 45 = S(4)

Ny =432 455 = N

Here, Ny is the boundary module in Ry which has the same socle as M (45) and
Noo is the boundary module in R, which has the same top as M (45).

We can further enlarge the picture by adding rays from P and R, as well
as corays from Ry and Q. In the case t = 1, we obtain in this way the complete
module category (of course, opposite edges have to be identified):
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In particular, we get the following neighboring relation for tiles:

According to [18], for any almost periodic N-word or biperiodic Z-word « there
exists an indecomposable algebraically compact module C(z). In case z is a con-
tracting N-word, the module C(x) is the usual string module for z, whereas for x
an expanding N-word, one needs to complete the string module in order to obtain
the module C(z). The Z-words r(b) are mixed words (the right hand side is con-
tracting, the left hand side expanding), thus the module C(r(b)) is obtained from
the corresponding string module by a partial completion: the left hand side has to
be completed, the right hand side not.

Let us observe that for our enlargement by adding rays from P, R and corays
from R, Q, we also have to invoke the adic modules for the component Ry and
the Priifer modules for the component R .
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13.4. Example of a quilt. In our example 12.5 with ¢ = 5, five non-regular
Auslander-Reiten components have been obtained. Using infinite words, thus infi-
nite dimensional representations, we see that these Auslander-Reiten components
have to be arranged as follows:

Here, the left boundary has to be identified with the right boundary, and the lower
dashed line with the (slightly rotated) upper dashed line. The quilt which we
obtain in this way is a torus with 5 holes.

Let us summarize: The picture above presents the quilt of our wind wheel, it
exhibits on a surface (finite and infinite) words which give rise to relevant inde-
composable algebraically compact modules. The black squares B mark the non-
periodic Z-words, the circles o and the bullets ® mark the N-words. If we delete
the infinite words, we obtain the 5 Auslander-Reiten components which contain
string modules, all being shown here as squares with a hole in the middle. On
the other hand, for any bar b, we also spot easily the tile 7(b), it is a square with
center r(b).

13.5. The indecomposable algebraically compact modules. Let us stress
that almost all, but not all indecomposable algebraically compact modules are
used in the construction of the Auslander-Reiten quilt of a wind wheel. Here is
the list of the additional modules:
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(1) The generic module,
(2) the Priifer modules for the tube Rg, and
(3) the adic modules for the tube R.

13.6. The Euler characteristic. There is the following general observation:

Proposition. Let A be a wind wheel with t bars. The Auslander-Reiten quilt T of
A is a connected surface with boundary, its Euler characteristic is x(I') = —t.

This result can be interpreted as follows: Let h be the number of non-regular
Auslander-Reiten components of A, thus h is the number of components of the
boundary of I' and we have h < t. There is a (connected) compact Riemann
surface IV without boundary and with Euler characteristic x(I') = —t + h such
that T is obtained from I by inserting h holes. For h = ¢ (as in the examples
12.8), the surface I has Euler characteristic 0, thus it is a torus.

Proof. Our cut-and-paste procedure presents I' as being obtained from 4t pieces
of the following form

where the edge b will be part of the boundary, whereas the remaining edges have
to be identified in pairs. Looking at the vertices, we have to distinguish the end-
points A and C' of the boundary edge b and the remaining ones: the endpoints
of the boundary edges are identified pairwise, whereas always four of the remain-
ing ones yield a vertex of I'. Let v,e, f be the number of vertices, edges and
faces respectively. There are f = 4t faces, there are e = 4¢ 4 4¢ - 4/2 edges and
v=4t-2/2+ 4t - 3/4 vertices, thus f —e+ v = —t. O

13.7. Orientability.

Proposition. The Auslander-Reiten quilt T' of any wind wheel is connected and
orientable.

Proof. Compact surfaces are often presented by a polygon with an even number
of edges and an identification rule for pairs of the edges, this rule is shown by a
word using the edges (and their inverses) as letters, this takes into account the
orientation in which the edges are identified.

Let Gamma be obtained from T by filling the holes. Clearly, we obtain T' by
taking t squares (corresponding to the tiles) and identifying pairs of edges. The
neighboring relation for the tiles shows in which way we have to identify the edges.
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First, we use the permutation A in order to obtain the following rectangle:

Tt

y p(x1)

This already shows the connectedness. But we also see that the further identifica-
tions are achieved by the word

yplas) - - plaz)pler )y~ a7 a5 o,
It is well-known (and easy to see) that we can change the word to a product of

commutators, but this means that I is orientable.
O

13.8. Warning concerning the orientability. As we have seen, the Auslander-
Reiten quilt of any wind wheel is orientable. For example, in section 13.4, we have
exhibited a the quilt of a wind wheel W which is a torus with holes.

But the category mod W contains as a full subcategory the module category
mod L of the following algebra L, and the Auslander-Reiten quiver of L is obviously
(homeomorphic to) a Mébius strip:

Here, the vertical dashes lines mark a fundamental domain.

Instead of looking at the wind wheel considered in section 12.5, let W now be the
smallest possible wind wheel, with two vertices 0, 1, a loop « at the vertex 0, a loop
7 at the vertex 1 and an arrow 3: 1 — 0 (and the relations a? = 42 = a8y = 0).
We want to analyze the embedding of mod L into mod W.
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Some parts of the Auslander-Reiten quiver of L can be identified in the quilt
of W without problems:

All the maps in the shaded part of mod L (see the left picture) are nicely factorized
in mod W, see the right picture, note that on the right we see the bordered tile for
w.

Of course, this concerns also the following shaded part on the left (actually, we
deal with the same part of mod L):

It is the following square in mod L which is difficult to recover in the Auslander-
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Reiten quilt of W:

To be more precise: we should distinguish between the maps pointing upwards and
those pointing downwards, the maps pointing upwards have already been discussed
since they are part of the bordered tile, thus let us concentrate on the maps pointing
downwards, they are labeled f and g in the picture. We want to see in which way
these maps can be factorized in the category mod W.

First, consider the map f : 1 — 0110 = 0110. We can factor is as follows
(always additions or deletions on the right):

ho [ f f3 fa 3f 2f VAR

1 g To 1% e e o1} I
0 > 10 > Lot > 10, 05— > L0 10— 10,1 >0

Similarly, we look at the map g : 1 — (1} = 11, and factor it (again always
additions or deletions on the right):

g1 92 g3 94 39 29 19

! L1 11 . .. 11 11 1
1 > 10, > 101 >0 10— >10,10 > 10,1 > 1y

Now if i is odd, then the maps f; and g; both are obtained by the addition of a
hook, thus they are irreducible, and both ; f and ;g are obtained by the deletion of
a cohook, thus they also are irreducible. But for i even, all the maps f;, i f, 9, 9
belong to the infinite radical rad” (and actually not to (rad”)?). By definition
(see for example [23]), the infinite radical rad® is the intersection of the powers
rad? with d € N. It follows that the maps f, ¢ belong to all powers of the infinite
radical, thus to rad“?.

The sequences of maps displayed here show that f factors through the adic
module given by the (expanding) word (B8y3~'a~1)°°, whereas g factors through
the Priifer module given by the word (contracting) word y3~1a~1(3)°°. Note that
both these modules are indecomposable algebraically compact modules which are
not used in the quilt.

Let us try to following the factorization in the quilt. First, we consider again
f. Looking at the maps f; we have noted already that those with odd index are
irreducible, they belong to P’, whereas those with even index factor through an
upwards path in the tile 7. Similarly, the maps ; f with odd index are irreducible
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maps inside R'0, whereas those with even index factor throgh a downwards path
in the tile T

What is of importance is the change of the direction which we encounter: as long
as we deal with the maps f; we work with maps pointing upwards, but after we
have passed the adic module (which is hidden) we deal with the maps ; f and they
point downwards.

There is the similar feature for the map g:

Here we deal first with the maps g; pointing wards, and after we have passed the
hidden Priifer module we deal with the maps ;¢ and they point again downwards.

Altogether we may say that the maps f and g are embedded into the quilt of
W with a kind of crossing, so that the shaded parts are connected by a square
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which is folded over:

14. The Auslander-Reiten quiver of a barbell.

Proposition 14.1. Barbell algebras are of non-polynomial growth.

Proof. Given an arrow a, we denote by N () the set of cyclic words starting with
a and ending in an inverse letter (for all the words in M («), the last letter is
a fixed one, namely the inverse of the only arrow different from « which has the
same end point as «). Clearly, N'(«) is a semigroup. Note that the given algebra is
non-domestic (and then even of non-polynomial growth) if and only if there exists
an arrow « such that M () is non-empty and not cyclic ([R1], Proposition 2 and
its proof).

Here we take oo = 1. We assume that the length of €, 7, ¢ is r, s, t, respectively.
Let v = 05005, v = alrH) . afrH) and w = a0HEY . alrEer)
Then both uvwv~! and uvw—1v~! are elements of N'(«). This shows that B(e, 7, €')
is of non-polynomial growth. O

We consider the algebra given in Example 2. The non-regular component looks
as follows:
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The component contains 10 of the 12 string modules which are boundary mod-
ules; the remaining two string modules which are boundary modules are the serial
string modules of length 3 (with composition factors going up 2,1,1 and 2,3, 3,
respectively). They form the boundary of a stable tube of rank 2; the boundary
meshes are those provided by the arrows 1 — 2 and 3 — 2 respectively:

i
]
'
a
l
]
]
]
'
1

Let us have another look at the non-regular component. The picture shows
nicely a phenomenon which has attracted a lot of attention lately, in some other
context, namely when dealing with cluster tilted algebras. Let us recall the relevant
facts: Given a cluster tilted algebra A, the category mod A is obtained from the
corresponding cluster category by factoring out a cluster tilting object [6]. Looking
at a vertex a of the quiver of A, the corresponding indecomposable projective
A-module P(a) and the corresponding indecomposable injective A-module I(a)
satisty

72P(a) = I(a),

where 7 is the Auslander-Reiten translation in the cluster category (if we denote
by 7 the Auslander-Reiten translation in the category mod A, then T\ M = 7 M
for any indecomposable non-projective A-module, whereas, of course, 7 M = 0 for
M indecomposable projective).

As we see in the picture, the non-regular component is a translation quiver
which can be considered as part of a regular translation quiver = obtained by
adding a new vertex p’ for every projective vertex p, such that the translate of p is
p’ and the translate of p’ is an injective vertex. Let us define a function f on the
set of vertices of Z as follows: if z is an old vertex, let f(z) be the length of the
corresponding module, if x = p’ is a new vertex, let f(x) = —1. Then f satisfies
the following property:

f&) + f(r2) = Zf(y), where we sum over all arrows y — z with f(y) > 0,

for all vertices z of Z (one may say that such a function with values in Z is ” cluster-
additive”, see [22]).

Other similarities with cluster tilted algebras (see [14]) should be mentioned:

Proposition 14.2. The barbell algebras are Gorenstein algebras of Gorenstein
dimension 1 und the stable category of Cohen-Macaulay modules is Calabi-Yau of
CY-dimension 3.



The minimal representation-infinite algebras which are special biserial 49

For our example 2, here are the minimal injective resolutions of the indecom-
posable projective modules:

0— P(1)— 1) I(2) — I(1) & IB3)&I(3) — 0
0— P2)—I(2) —I1)®I3)—0
0—PQ3B)—I2)pI2) —I1)aeIl)®I(3) —0

Let £ be the full subcategory of all torsionless modules (by definition, a mod-
ule is torsionless if it can be embedded into a projective module) and P the full
subcategory of all projective modules. We have to calculate the factor category
L = L/P. Since we deal with a 1-Gorenstein algebra, L is a triangulated category
with Auslander-Reiten translation.

It is not difficult to check that the only indecomposable modules which are
torsionless and not projective are the two serial modules of length 2 with socle
P(2), we denote them by L(1) = } and L(3) = 3. Thus, £ has the following
Auslander-Reiten quiver:

) |

[} ]
L(3) L(3)

l i
The dashed line indicate that we have to identify vertices of the triangles exhibited:
Note that both serial modules L(1) and L(3) are shown twice, these are the vertices
which have to be identified.

It follows that the (triangulated) category £ has just two indecomposable ob-
jects, both being fixed under the suspension functor as well as under the Auslander-
Reiten translation functor (so that £ is the product of two copies of the stable
module category of the algebra k[e] = k[T]/(T?) of dual numbers), the Auslander-
Reiten quiver of £ looks as follows:

Thus, we deal with a triangulated category for which both the suspension
functor as well as the Auslander-Reiten translation functor are the identity functor.
This means that £ is 3-Calabi-Yau, and indeed n-Calabi-Yau for any n.

Since the module category of a barbell algebra shares so many properties with
the module category of a cluster tilted algebra, one may wonder whether also for
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a barbell algebra A the module category mod A is obtained from a triangulated
category C by forming C/(T') for some object T'in C. As Idun Reiten has pointed
out, this is indeed the case if we deal with a barbell algebra A with two loops
(as in our running example 2) provided we assume that the characteristic of k is
different from 3: such an algebra is 2-CY-tilted (this means: the endomorphism
ring of some cluster tilting object of a 2-Calabi-Yau category, [16]). Namely, if A
is a barbell algebra with two loops «,d in its quiver @@ and if the characteristic
of k is different from 3, then A is the Jacobian algebra J(Q, W) = kQ/(3a2,352),
where W is the potential W = o + 6%, see [9], thus one can apply theorem 3.6 of
Amiot [1].

15. Sectional paths

Recall that a (finite or infinite) path (--- — X; — X, 41 — --+) in the Auslander-
Reiten quiver of a finite dimensional algebra is called sectional provided 7X;1
is not isomorphic to X;_1 for all possible i. Such a path will be called mazimal
provided it is not a proper subpath of some sectional path. An infinite sectional
path involving only monomorphisms will be called a mono ray, an infinite path
involving only epimorphisms will be called an epi coray; of course, mono rays start
with some module, epi corays end in a module.

Note that for Auslander-Reiten components of the form ZA . as well as for
stable tubes, all maximal sectional paths are mono rays and epi corays.

Theorem 15.1. Let A be a k-algebra which is minimal representation-infinite and
special biserial. Then any mazximal sectional path is a mono ray, an ept coray or
the concatenation of an epi coray with a mono ray.

Corollary. Assume that A is minimal representation-infinite and special biserial.
Let XY, Z be indecomposable A-modules with an irreducible monomorphism X —
Y and an irreducible epimorphism Y — Z. Then X = 7Z.

Proof. We may assume that there are no nodes: Namely, if all the sectional paths of
nn(A) are as mentioned, the same has to be true for A: the only maximal sectional
paths for A to be looked at are those passing through the node. Resolving the
node we will obtain sectional paths which are not double infinite paths, thus by
the assumption on nn(A), we will deal with an epi coray ending in the node and a
mono ray starting in the node, thus with a concatenation as listed.

If A is hereditary of type A,,, thus a cycle algebra, then any maximal sectional
path is a mono ray, an epi coray. We only have to look at the preprojective
component and the preinjective component. But if f : X — Y is a non-zero
map between indecomposable preprojective modules, then f has to be always a
monomorphism: otherwise, the kernel of f would have negative defect, and since
the defect of X is —1, it would follow that the image of f is a non-zero submodule
of Y with non-negative defect, a contradiction. The dual argument shows that the
maximal sectional paths in the preinjective component are epi corays.
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Next, let us look at the wind wheels: again, only the non-regular components
have to be considered. But we know how to construct these components: we use
mono rays from the preprojective component and the tube R, as well as epi corays
from the tube Rg and from the preinjective component, and in addition rays and
corays in the tiles. But all the maximal sectional paths in the four quarters of a
tile are mono rays and epi corays (in the quarter I we have only mono rays, in ITI
only epi corays, whereas IT and IV have both mono rays and epi corays.

Finally, let us look at the barbells. There is only one non-regular component
which has to be treated separately. The band modules lie in homogeneous tubes
and there will be an additional regular tube containing string modules. What
really is of interest are the remaining components C, they are of the form ZAZ.
Let us look at the example 2 (the general case is similar). Let M = M (v) be the
Geifl module ([10]) for C (it is the unique module in C of minimal length) and one
easily observes that v is a word of the form 1 — 2---2 « 3. It is easy to see
that all the modules 7=¢=*M for ¢t > 0 are obtained from 7=¢M by adding hooks
both on the left and on the right; similarly, all the modules 7#+'M for ¢t > 0 are
obtained from 7¢M by adding cohooks both on the left and on the right. But this
implies that all the maximal sectional paths in C are concatenation of an epi coray
with a mono ray. O

It may be helpful to call an indecomposable A-module a wvalley module if it is
the concatenation vertex for a sectional path which is the concatenation of an epi
coray with a mono ray, and to exhibit corresponding pictures: always we encircle
the "valleys”. First, we present a non-regular component of a wind wheel:

AN AN S

5 .......... 45 ........... 77 ........... fe)

The valleys may be considered as the natural places where to cut such a component
into pieces. Of course, in our cut-and-paste process, we followed this rule.
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The second example is the non-regular component of the barbell given as ex-
ample 2:

VN N U AR VA

7N/ \S( )/' NSNS
o o 1)-eeeeeeeeens o
N /SN S N /N
o (1) P(1)
7N/ 7N/
o 1(2) P(2) o
NN N /N
o 1(3) P(3)
7NN 7N/
o o 5(3) ............ 3 o

NANSAN AN N

Of course, when dealing with a barbell and look at a regular component C of
string modules, say with Geifl-module M, then the valley modules are precisely
those which lie on the sectional paths which contain M.

In all these components, the ”valleys” provide a clear division into regions with
common growth pattern. For example, in the regions on the left, all irreducible
maps are epimorphisms, whereas in the regions on the right, all are monomor-
phisms.

Part III. Appendix

The appendix collects some remarks related to the investigations presented
above. First, we show an example of an algebra which may be considered as a
twisted version of a barbell.

16. Further minimal representation-infinite algebras

Consider the following algebra:

T3

(or, more generally, the corresponding algebras where « and § are replaced by
longer paths). Note that the universal covering are the “dancing girls” of Brenner-
Butler.

3
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This is a Gorenstein algebra of Gorenstein dimension 1, the minimal injective
resolutions of the indecomposable projective modules are as follows:

0— P(1)—I(1)—I2)®I(2) —0
0— P2)—I11) —I2)®I3)d3 —0
0— P(3) — I(1) — I(2) @ I(3) — 0
0— P(3) — I(1) — I(2) & I(3) — 0

and here is the central part of the non-regular component:

M

17. Barification may change the representation type.

Consider the path algebra of the quiver
o a v By ple § o3
O e O e O e O i O e O
and barify the arrows as and ay4. The we obtain the quiver
0 o 1 B 2 5 3

........

Here, starting with a representation-finite algebra, we obtain a tame one. Similarly,
if we start with the following tame quiver, the barification of b and b” yields a
wild algebra:

0o o 1/ ﬂ/ o Y 1 6// o (S 3 /

O e O e O v O e O sl O
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18. Accessible representations

We have mentioned in the introduction that the recent paper [5] of Bongartz has
drawn the attention to the minimal representation-infinite algebras which have a
good cover A, such that all finite convex subcategories of A are representation-
finite. As we show above, these algebras are special biserial and can be completely
classified. The title of the Bongartz paper [5] indicates that his main concern was
to proof the following theorem: Let A be a finite dimensional k-algebra where k is
an algebraically closed field. If there exists an indecomposable A-module of length
n > 1, then there exists an indecomposable A-module of length n—1. Unfortunately,
the statement does not assert any relationship between the modules of length
n and those of length n — 1. There is the following open problem: Given an
indecomposable A-module M of lengthn > 2. Is there an indecomposable submodule
or factor module of length n — 17 The three subspace quiver shows that this may
not be true in case the field k is not algebraically closed, say if it is finite field with
few elements.

In [21] we slightly modified the arguments of Bongartz in order to strengthen
his assertion. Using induction, one may define accessible modules: First, the simple
modules are accessible. Second, a module of length n > 2 is accessible provided it is
indecomposable and there is a submodule or a factor module of length n—1 which is
accessible. The open problem mentioned above can be reformulated as follows: Are
all indecomposable representations of a k-algebra A, where k is algebraically closed,
accessible? This is known to hold in case A is representation-finite and the aim
of [21] was to show that any representation-infinite algebra over an algebraically
closed field has at least accessible modules of arbitrarily large length.

In dealing with special biserial algebras, we do not have to worry about the
size of the base field k. The following assertion is vaild for k-algebras with k an
arbitrary field.

Proposition 18.1. Any indecomposable representation of a special biserial algebra
s accesstble.

Proof. Tt is obvious that string modules are accessible, thus we only have to con-
sider band modules. It will be sufficient to show the following: any band module
has a mazximal submodule which is a string module. Thus, let M be a band module.

First, let us consider the special case of dealing with the Kronecker algebra,
thus M = (M, Ms; «, B) with vector spaces My, My and invertible linear maps
a,B : My — Ms. Let M’ be a submodule of M which is a band module and of
smallest possible dimension. Note that M’ is uniquely determined and is contained
in any non-zero regular submodule of M. Let 0 # x € M/ and choose a direct
complement U C M; for kx. Then N = (U, Ma;a|U, S|U) is a submodule of
M, and of course a maximal one. We claim that N is a string module. As a
submodule of a regular Kronecker module, we can write N = N’ & N” with N’
preprojective and N regular. But N” has to be zero, since otherwise M’ C N”|
thus & € Ny C U, a contradiction. This shows that N is a direct sum of say ¢
indecomposable preprojective Kronecker modules. Since dim N7 —dim No = —1, it
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follows that ¢t = 1. This shows that N is an indecomposable preprojective Kronecker
module and thus a string module.

Now consider an arbitrary special biserial algebra A with quiver Q). There is a
primitive cyclic word w € Q(A) and an indecomposable vector space automorphism
¢V — V such that M = M (w, ¢). Let w =1 - - - I,, with letters [;; we can assume
that [,_1 is a direct letter, whereas [,, is an inverse letter. Denote by x;_1 the
terminal point of [;, for 1 <4 < n. Then M is given by t copies V; of V, indexed
by 0 <4 < n—1, such that the arrows of () operate as follows: if [; = « is a direct
letter (thus an arrow), then « is the identity map V; — V;_1, if [; is an inverse
letter, say I; = o~ ! for some arrow «, then « is the identity map V;_1 — V; for
i # n and the map ¢ : V,,_1 — Vp for i = n. Note that (V,V;1,¢) is a band
module for the Kronecker quiver, thus, as we have seen already, it has a maximal
submodule (U, V;1|U, ¢|U) which is a string module. We obtain a submodule N
of M = @?:_01 V; by taking the subspace N = @?:_02 V; ® U, where U is considered
as a subspace of V,,_1. Since (U, V; 1|U, ¢|U) is a string module for the Kronecker
algebra, it follows that NV is a string A-module. O

19. Semigroup algebras

It should be mentioned that algebras defined by a quiver, commutativity relations
and zero relations can be considered as factor algebras of a semigroup algebra
k[S] modulo a one-dimensional ideal generated by a central idempotent e, thus
the paper may be seen as dealing with a class of minimal representation-infinite
semigroups.

Let S be a semigroup (a set with an associative binary operation). An element
z of S is called a zero element provided sz = z = zs for all s € S. Of course, if
there is a zero element, then it is uniquely determined. Let S be a semigroup with
zero element z, we want to consider the semigroup algebra k[S]. Obviously, the
element z considered as an element of k[S] is a central idempotent and the ideal
(s) generated by z is one-dimensional, thus z is a primitive idempotent. With z
also 1 — z is a central idempotent, and we obtain a direct decomposition of k[S] as
a product of k-algebras

E[S] = (z) x (1 — z) = kz x E[S](1 — 2).

One may call k[S](1 — z) = k[S]/(z) the reduced semigroup algebra of S. It follows
that the modules for the reduced semigroup algebra of S are precisely the k[S]
modules M with zM = 0.

The product decomposition of the semigroup algebra k[S] shows that there is
a unique simple (one-dimensional) k[S]-module which is not annihilated by z, all
other indecomposable k[S]-modules are annihilated by z and thus are modules over
the reduced semigroup-algebra.

Given a quiver @, let S(Q) be obtained from the set of all paths (including
the paths of length 0) by adding an element z (it will become the zero element).
As in the definition of the path algebra kQ of a quiver, define the product of two
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paths to be the concatenation, if it exist, and to be z otherwise. In this way, S(Q)
becomes a semigroup with zero element z, and the reduced semigroup algebra of
S(Q) can be identified with the path algebra k[Q] of the quiver Q.

Of course, if we deal with a set p of commutativity relations and zero relations,
then we may consider the factor semigroup S(Q,p) = S(Q)/{p), this is again a
semigroup with zero, and its reduced semigroup algebra is just the algebra defined
by the quiver @) and the relations p.

References

[1] Amiot, C.: Cluster categories for algebras of global dimension 2 and quivers with
potential. arXiv:0805.1035, to appear in Annales de I'Institut Fourier.

[2] Bautista, R., Gabriel, P., Roiter, A.V., Sameron, L.: Representation-finite algebras
and multiplicative bases. Inventiones mathematicae 81 (1985), 217-285.

[3] Bertram, E.: Even permutations as a product of two conjugate cycles. J. of Combi-
natorial Theory (A) 12 (1972), 368-380.

[4] Bongartz, K.: Treue einfach zusammenhingende Algebren I. Commentarii mathe-
matici Helvetici 57 (1982), 282-330.

[5] Bongartz, K.: Indecomposables live in all smaller lengths. Preprint. arXiv:0904.4609

[6] Buan,A., Marsh, R., Reiten, I.: Cluster-tilted algebras. Transactions Amer. Math.
Soc. 359 (2007), 323-332.

[7] Butler, M.C.R., Ringel, C.M.: Auslander-Reiten sequences with few middle terms and
applications to string algebras. Comm.Alg. 15 (1987), 145-179.

[8] Dowbor, P. Skowroriski, A.: Galois coverings of representation-infinite algebras, Com-
ment. Math. Helv. 62 (1987), 311-337.

[9] Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their represen-
tations I: Mutations. arXiv:0704.0649v4, to appear in Selecta Math.

[10] GeiB, Chr.: On components of type ZAZ for string algebras. Comm. Alg. 26 (1998),
749- 758.

[11] Gelfand, .M., Ponomarev, V.A.: Indecomposable representations of the Lorentz
group. Russian Math. Surveys 23 (1968), 1-58.

[12] Husemoller, D. H.: Ramified coverings of Riemann surfaces. Duke Math. J. 29 (1962),
167-174.

[13] Jans, J. P.: On the indecomposable representations of algebras. Annals of Mathe-
matics 66 (1957), 418-429.

[14] Keller, B., Reiten, I.: Cluster-tilted algebras are Gorenstein and stably Calabi-Yau.
Advances in Mathematics 213 (2007), 140-164.

[15] Martinez-Villa, R.: Algebras stably equivalent to l-hereditary.In: Representation the-
ory II, Springer LNM 832 (1980), 396-431.

[16] Reiten, I.: Homological properties of cluster tilted algebras. Talk at the workshop:
Cluster Algebras and Cluster Tilted Algebras. Bielefeld 2006.

[17] Ringel, C.M.: Tame algebras and integral quadratic forms. Springer LNM 1099
(1984).



The minimal representation-infinite algebras which are special biserial 57

[18] Ringel, C.M.: Some algebraically compact modules I. In: Abelian Groups and Mod-
ules (ed. A. Facchini and C. Menini). Kluwer (1995), 419-439.

[19] Ringel, C.M.: Infinite length modules. Some examples as introduction. In: Infinite
Length Modules (ed. Krause, Ringel), Birkhduser Verlag. Basel (2000), p.1-73.

[20] Ringel, C.M.: On generic modules for string algebras. Bol. Soc. Mat. Mexicana (3)
7 (2001), 85-97.

[21] Ringel, C.M.: Indecomposables live in all smaller lengths. Bull. London Math. Soc
(to appear).

[22] Ringel, C.M.: Cluster-additive functions on stable translation quivers. In prepara-
tion.

[23] Schréer, J.: On the infinite radical of a module category. Proc. London Math. Soc.
(3) 81 (2000), 651-674.

[24] Skowronski, A., Waschbiisch, J.: Representation-finite biserial algebras, J. Reine
Angew. Math. 345 (1983), 172-181.

[25] Thiele, C.: The topological structure of Auslander-Reiten quivers of special string
algebras. Comm. Algebra 21 (1993), 2507.2526.

[26] Wald, B, Waschbiisch, J., Tame biserial algebras, J.Algebra 95 (1985), 480-500

Claus Michael Ringel

Fakultat fiir Mathematik, Universitéat Bielefeld
PO Box 100 131

D-33501 Bielefeld, Germany

E-mail: ringel@math.uni-bielefeld.de



