Lattice structure of torsion classes for hereditary artin algebras.

Claus Michael Ringel

Abstract

Let Λ be a connected hereditary artin algebra. We show that the set of functorially finite torsion classes of Λ-modules is a lattice if and only if Λ is either representation-finite (thus a Dynkin algebra) or Λ has only two simple modules. For the case of Λ being the path algebra of a quiver, this result has recently been established by Iyama-Reiten-Thomas-Todorov and our proof follows closely some of their considerations.

Let Λ be a connected hereditary artin algebra. The modules considered here are left Λ-modules of finite length, $\bmod \Lambda$ denotes the corresponding category. The subcategories of $\bmod \Lambda$ we deal with are always assumed to be closed under direct sums and direct summands (in particular closed under isomorphisms). In this setting, a subcategory is a torsion class (the class of torsion modules for what is called a torsion pair or a torsion theory) provided it is closed under factor modules and extensions. The torsion classes form a partially ordered set with respect to inclusion, it will be denoted by tors Λ. This poset clearly is a lattice (even a complete lattice). It is easy to see that a torsion class \mathcal{C} in $\bmod \Lambda$ is functorially finite if and only if it has a cover (a cover for \mathcal{C} is a module C such that \mathcal{C} is the set of modules generated by C), we denote by f-tors Λ the set of functorially finite torsion classes in $\bmod \Lambda$.

In a recent paper [IRTT], Iyama, Reiten, Thomas and Todorov have discussed the question whether also the poset f-tors Λ (with the inclusion order) is a lattice.

Theorem. The poset f-tors Λ is a lattice if and only if Λ is representation-finite or Λ has precisely two simple modules.

Iyama, Reiten, Thomas, Todorov have shown this in the special case when Λ is a k-algebra with k an algebraically closed field (so that Λ is Morita equivalent to the path algebra of a quiver). The aim of this note is to provide a proof in general.

Here is an outline of the essential steps of the proof. Recall that a module is called exceptional provided it is indecomposable and has no self-extensions. A pair of modules X, Y will be called an Ext-pair provided both X, Y are exceptional, $\operatorname{Hom}(X, Y)=$ $\operatorname{Hom}(Y, X)=0$ and $\operatorname{Ext}^{1}(X, Y) \neq 0, \operatorname{Ext}^{1}(Y, X) \neq 0$. We follow the strategy of [IRTT] by establishing the existence of Ext-pair for any connected hereditary artin algebra which is representation-infinite and has at least three simple modules (Proposition 5). On the other hand, we will show directly that the set of functorially finite torsion classes which contain an Ext-pair has no minimal elements (Proposition 4).

2010 Mathematics Subject Classification. Primary 16G10, 18E40. Secondary: 05E10, 16D90, 16G70.

1. Normalization.

Let \mathcal{X} be a class of modules. We denote by $\operatorname{add}(\mathcal{X})$ the modules which are direct summands of direct sums of modules in \mathcal{X}. A module M is generated by \mathcal{X} provided M is a factor module of a module in $\operatorname{add}(\mathcal{X})$, and M is cogenerated by \mathcal{X} provided M is a submodule of a module in $\operatorname{add}(\mathcal{X})$. The subcategory of all modules generated by \mathcal{X} is denoted by $\mathcal{G}(\mathcal{X})$. In case $\mathcal{X}=\{X\}$ or $\mathcal{X}=\operatorname{add} X$, we write $\mathcal{G}(X)$ instead of $\mathcal{G}(\mathcal{X})$, and use the same convention in similar situations. We write $\mathcal{T}(X)$ for the smallest torsion class containing the module X (it is the intersection of all torsion classes containing X, and it can be constructed as the closure of $\{X\}$ using factor modules and extensions).

Since Λ is assumed to be hereditary, we write $\operatorname{Ext}(X, Y)$ instead of $\operatorname{Ext}^{1}(X, Y)$.
Following Roiter [Ro], we say that a module M is normal provided there is no proper direct decomposition $M=M^{\prime} \oplus M^{\prime \prime}$ such that M^{\prime} generates $M^{\prime \prime}$ (this means: if $M=$ $M^{\prime} \oplus M^{\prime \prime}$ and M^{\prime} generates $M^{\prime \prime}$, then $M^{\prime \prime}=0$). Of course, given a module M, there is a direct decomposition $M=M^{\prime} \oplus M^{\prime \prime}$ such that M^{\prime} is normal and M^{\prime} generates $M^{\prime \prime}$ and one can show that M^{\prime} is determined by M uniquely up to isomorphism, thus we call $M^{\prime}=\nu(M)$ a normalization of M. This was shown already by Roiter [Ro], and later by Auslander-Smalø [AS]. It is also a consequence of the following Lemma which will be needed for our further considerations.

Lemma 1. (a) Let $\left(f_{1}, \ldots, f_{t}, g\right): X \rightarrow X^{t} \oplus Y$ be an injective map for some natural number t, with all the maps f_{i} in the radical of $\operatorname{End}(X)$. Then X is cogenerated by Y.
(b) Let $\left(f_{1}, \ldots, f_{t}, g\right): X^{t} \oplus Y \rightarrow X$ be a surjective map for some natural number t, with all the maps f_{i} in the radical of $\operatorname{End}(X)$, then Y generates X.

Proof. (a) Assume that the radical J of $\operatorname{End}(X)$ satisfies $J^{m}=0$. Let W be the set of all compositions w of at most $m-1$ maps of the form f_{i} with $1 \leq i \leq t$ (including $w=1_{X}$. We claim that $(g w)_{w \in W}: X \rightarrow Y^{|W|}$ is injective. Take a non-zero element x in X. Then there is $w \in W$ such that $w(x) \neq 0$ and $f_{i} w(x)=0$ for $1 \leq i \leq t$. Since $\left(f_{1}, \ldots, f_{t}, g\right)$ in injective and $w(x) \neq 0$, we have $\left(f_{1}, \ldots, f_{t}, g\right)(w(x)) \neq 0$. But $f_{i} w(x)=0$ for $1 \leq i \leq t$, thus $g(w(x)) \neq 0$. This completes the proof.
(b) This follows by duality.

Corollary (Uniqueness of normalization). Let M be a module. Assume that $M=M_{0} \oplus M_{1}=M_{0}^{\prime} \oplus M_{1}^{\prime}$ such that both M_{0} and M_{0}^{\prime} generate M. Then there is a module N which is a direct summand of both M_{0} and M_{0}^{\prime} which generates M.

Proof: We may assume that M is multiplicity free. Write $M_{0} \simeq N \oplus C, M_{0}^{\prime} \simeq N \oplus C^{\prime}$, such that C, C^{\prime} have no indecomposable direct summand in common. Now, $N \oplus C$ generates $N \oplus C^{\prime}, N \oplus C^{\prime}$ generates $N \oplus C$, and $N \oplus C$ generates C. We see that $N \oplus C$ generates C, such that the maps $C \rightarrow C$ used belong to the radical of $\operatorname{End}(C)$ (since they factor through $\operatorname{add}\left(N \oplus C^{\prime}\right)$ and no indecomposable direct summand of C belongs to $\left.\operatorname{add}\left(N \oplus C^{\prime}\right)\right)$. Lemma 1 asserts that N generates C, thus it generates M.

Proposition 1. If T has no self-extensions, then T is a cover for the torsion class $\mathcal{T}(T)$. Conversely, if \mathcal{T} is a torsion class with cover C, then $\nu(C)$ has no self-extensions.

Proof. For the first assertion, one has to observe that $\mathcal{G}(T)$ is closed under extensions, thus equal to $\mathcal{T}(T)$. This is a standard result say in tilting theory. Here is the argument:
let $g^{\prime}: T^{\prime} \rightarrow M^{\prime}$ and $g^{\prime \prime}: T^{\prime \prime} \rightarrow M^{\prime \prime}$ be surjective maps with $T^{\prime}, T^{\prime \prime}$ in add T. Let $0 \rightarrow$ $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be an exact sequence. The induced exact sequence with respect to $g^{\prime \prime}$ is of the form $0 \rightarrow M^{\prime} \rightarrow Y_{1} \rightarrow T^{\prime \prime} \rightarrow 0$ with a surjective map $g_{1}: Y_{1} \rightarrow M$. Since Λ is hereditary and g^{\prime} is surjective, there is an exact sequence $0 \rightarrow T^{\prime} \rightarrow Y_{2} \rightarrow T^{\prime \prime} \rightarrow 0$ with a surjective map $g_{2}: Y_{2} \rightarrow Y_{1}$. Since $\operatorname{Ext}\left(T^{\prime \prime}, T^{\prime}\right)=0$, we see that Y_{2} is isomorphic to $T^{\prime} \oplus T^{\prime \prime}$, thus in add T. And there is the surjective map $g_{1} g_{2}: Y_{2} \rightarrow M$.

For the converse, we may assume that C is normal and have to show that C has no self-extension. Let C_{1}, C_{2} be indecomposable direct summands of C and assume for the contrary that there is a non-split exact sequence

$$
0 \rightarrow C_{1} \rightarrow M \rightarrow C_{2} \rightarrow 0
$$

Now M belongs to \mathcal{T}, thus it is generated by C, say there is a surjective map $C^{\prime} \rightarrow M$ with $C^{\prime} \in \operatorname{add} C$. Write $C^{\prime}=C_{2}^{t} \oplus C^{\prime \prime}$ such that C_{2} is not a direct summand of $C^{\prime \prime}$. Consider the surjective map $C_{2}^{t} \oplus C^{\prime \prime} \rightarrow M \rightarrow C_{2}$. Since the last map $M \rightarrow C_{2}$ is not a split epimorphism, all the maps $C_{2} \rightarrow C_{2}$ involved belong to the radical of $\operatorname{End}\left(C_{2}\right)$. According to Lemma 1, $C^{\prime \prime}$ generates C_{2}. This contradicts the assumption that C is normal.

Remark. Proposition 1 provides a bijection between the isomorphism classes of normal modules without self-extensions and torsion classes with covers. This is one of the famous Ingalls-Thomas bijections, see for example [ONFR] or also [R3].

We recall that a torsion class is functorially finite if and only if it has a cover. Of course, if C is a cover of the torsion class \mathcal{T}, then $\mu(C)$ is a minimal cover of \mathcal{T}.

Proposition 2. Let \mathcal{T} be a non-zero functorially finite torsion class. Then there is an indecomposable module U in \mathcal{T} such that any non-zero map $V \rightarrow U$ with $V \in \mathcal{T}$ is a split epimorphism.

Proof. Let C be a minimal cover of \mathcal{T}. Since C has no self-extensions, it is a direct summand of a tilting module. In particular, the quiver of $\operatorname{End}(C)$ is directed. It follows that C has an indecomposable direct summand U such that any non-zero map $C \rightarrow U$ is a split epimorphism. Assume now that V belongs to \mathcal{T} and $f: V \rightarrow U$ is a non-zero map. There is a surjective map $g: C^{t} \rightarrow V$ for some t. Since the composition $f g: C^{t} \rightarrow U$ is non-zero, it is split epi, thus also f is split epi.

Remark. As we have mentioned, normal modules have been considered by Roiter, but actually, he used a slightly deviating name, calling them "normally indecomposable".

2. Inclusions of functorially finite torsion classes.

If \mathcal{X} is a class of modules and U is an indecomposable module, we denote by \mathcal{X}_{U} the class of modules in \mathcal{X} which have no direct summand isomorphic to U.

Proposition 3. Assume that \mathcal{T} is a torsion class and that U is an indecomposable module in \mathcal{T}. The following assertions are equivalent:
(i) The class \mathcal{T}_{U} is a torsion class.
(ii) Any non-zero map $V \rightarrow U$ with $V \in \mathcal{T}$ is split epi.

Proof. (i) \Longrightarrow (ii). We assume that \mathcal{T}_{U} is a torsion class. Let $f: V \rightarrow U$ be a non-zero map with $V \in \mathcal{T}$. We claim that f is surjective. Note that $f(V)$ and $U / f(V)$ both belong to \mathcal{T}, since \mathcal{T} is closed under factor modules. If f is not surjective, then $f(V)$ is a factor module of V and a proper non-zero submodule of U, whereas $U / f(V)$ is a proper non-zero factor module of U. It follows that both $f(V)$ and $U / f(V)$ belong to \mathcal{T}_{U}. Since we assume that \mathcal{T}_{U} is a torsion class, it is closed under extensions, and therefore U belongs to \mathcal{T}_{U}, a contradiction.

Write $V=V^{\prime} \oplus U^{t}$ for some t with V^{\prime} in \mathcal{T}_{U}. If f is not split epi, then Lemma 1 (b) asserts that V^{\prime} generates U. But we assume that \mathcal{T}_{U} is a torsion class, thus closed under direct sums and factor modules. Therefore, if V^{\prime} generates U, then U has to belong to \mathcal{T}_{U}, again a contradiction. Altogether we have shown that f is split epi.
(ii) \Longrightarrow (i). We assume now that any non-zero map $V \rightarrow U$ with $V \in \mathcal{T}$ is a split epimorphism, and we have to show that \mathcal{T}_{U} is a torsion class. In order to see that \mathcal{T}_{U} is closed under factor modules, let V belong to \mathcal{T}_{U} and let W be a factor module of V. Assume that U is a direct summand of W, thus U is a factor module of V. The projection $p: V \rightarrow U$ is a non-zero map, thus by assumption p is a split epimorphism. But this implies that U is a direct summand of V, whereas V belongs to \mathcal{T}_{U}. This shows that W belongs to \mathcal{T}_{U}.

In order to show that \mathcal{T}_{U} is closed under extensions, consider a module M with a submodule V such that both V and M / V belong to \mathcal{T}_{U}. Since \mathcal{T} is closed under extension, M belongs to \mathcal{T}. Assume that U is a direct summand of M, say $M=U \oplus M^{\prime}$. If $V \subseteq M^{\prime}$, then $M / V=U \oplus M^{\prime} / V$ shows that U is a direct summand of M / V in contrast to our assumption that M / U belongs to \mathcal{T}_{U}. Thus $V \nsubseteq M^{\prime}$. It follows that V is not contained in the kernel of the canonical projection $q: M \rightarrow M / M^{\prime} \simeq U$, thus the restriction of q to V is a non-zero map $V \rightarrow U$. The condition (ii) asserts that this map $V \rightarrow U$ is split epi, therefore V does not belong to \mathcal{T}_{U}, a contradiction. This shows that M belongs to \mathcal{T}_{U}.

Proposition 4. Let \mathcal{E} be a class of indecomposable modules with the following property: If E belongs to \mathcal{E}, there is E^{\prime} in \mathcal{E} with $\operatorname{Ext}\left(E, E^{\prime}\right) \neq 0$. Then the set of functorially finite torsion classes \mathcal{T} which contain \mathcal{E} has no minimal elements.

Proof. Let \mathcal{T} be a functorially finite torsion class which contains \mathcal{E}. According to Proposition 2, there is an indecomposable module U in \mathcal{T} such that any non-zero map $V \rightarrow U$ with $V \in \mathcal{T}$ is a split epimorphism. According to Proposition 3, the class \mathcal{T}_{U} is a torsion class. Since \mathcal{T} is functorially finite, also \mathcal{T}_{U} is functorially finite.

We claim that \mathcal{E} is contained in \mathcal{T}_{U}. Thus, let E belong to \mathcal{E}. Since E is indecomposable, we have to show that E is not isomorphic to U. By assumption, there is E^{\prime} in \mathcal{E} with $\operatorname{Ext}\left(E, E^{\prime}\right) \neq 0$. Thus, there is a non-split exact sequence $0 \rightarrow E^{\prime} \rightarrow M \rightarrow E \rightarrow 0$. Since E, E^{\prime} both belong to $\mathcal{E} \subseteq \mathcal{T}$ and \mathcal{T} is closed under extensions, M belongs to \mathcal{T}. Since the given map $M \rightarrow E$ is not split epi, it follows that E is not isomorphic to U. Thus $\mathcal{E} \subseteq \mathcal{T}_{U}$. Since \mathcal{T}_{U} is properly contained in \mathcal{T}, we see that \mathcal{T} is not minimal in the set of functorially finite torsion classes which contain \mathcal{E}.

3. Construction of Ext-pairs.

The aim of this section is to show the following proposition.
Proposition 5. A connected hereditary artin algebra which is representation-infinite and has at least three simple modules has Ext-pairs.

Given a finite dimensional artin algebra R, we denote by $Q(R)$ its Ext-quiver: its vertices are the isomorphism classes [S] of the simple R-modules S, and given two simple R-modules S, S^{\prime}, there is an arrow $[S] \rightarrow\left[S^{\prime}\right]$ provided $\operatorname{Ext}\left(S, S^{\prime}\right) \neq 0$. If R is hereditary, then clearly $Q(R)$ is directed. If necessary, we endow $Q(R)$ with a valuation as follows: Given an arrow $S \rightarrow S^{\prime}$, consider $\operatorname{Ext}\left(S, S^{\prime}\right)$ as a left $\operatorname{End}(S)^{\text {op }}$-module or as a left $\operatorname{End}\left(S^{\prime}\right)$ module and put

$$
v\left([S],\left[S^{\prime}\right]\right)=\left(\operatorname{dim}_{\operatorname{End}(S)^{\text {op }}} \operatorname{Ext}\left(S, S^{\prime}\right)\right)\left(\operatorname{dim}_{\operatorname{End}\left(S^{\prime}\right)} \operatorname{Ext}\left(S, S^{\prime}\right)\right)
$$

(note that in contrast to [DR], we only will need the product of the two dimensions, not the pair). Given a vertex i of $Q(R)$, we denote by $S(i), P(i), I(i)$ a simple, projective or injective module corresponding to the vertex i, respectively.

The valuation of any arrow can be interpreted as follows (τ is the Auslander-Reiten translation).

Lemma 2. If $Q(\Lambda)=(1 \rightarrow 2)$, then the arrow $1 \rightarrow 2$ has valuation at least 2 if and only if $I(2)$ is not projective if and only if $P(1)$ is not injective. If the arrow $1 \rightarrow 2$ has valuation at least 3, then $\tau S(1)$ is neither projective, nor a neighbor of $P(1)$ in the Auslander-Reiten quiver, consequently $\operatorname{Hom}\left(P(1), \tau^{2} S(1)\right) \neq 0$, thus $\operatorname{Ext}(\tau S(1), P(1)) \neq 0$.

In the proof of Proposition 5, we will have to construct some exceptional modules. Two general results will be needed.

Lemma 3. Let e be an idempotent of the artin algebra Λ and $\langle e\rangle$ the twosided ideal generated by e. Let M be a Λ-module with e $M=0$. Then M is exceptional as a Λ-module if and only if M is exceptional when considered as a $\Lambda /\langle e\rangle$-module.

Proof. Of course, if $0 \rightarrow M \rightarrow M^{\prime} \rightarrow M \rightarrow 0$ is an exact sequence in $\bmod \Lambda$, then $e M^{\prime}=0$, thus it is an exact sequence in $\bmod \Lambda /\langle e\rangle$.

A Λ-module M is said to be sincere provided there is no non-zero idempotent $e \in \Lambda$ with $e M=0$.

Lemma 4. Any connected artin algebra Λ has sincere exceptional modules.
(Let us add that sincere exceptional modules are even faithful, see for example Corollary 2.3 of [R2].)

Proof, using induction on the number n of vertices of $Q(\Lambda)$. If $n=1$, then any simple Λ-module is a sincere exceptional module.

Now assume that $n \geq 2$. Up to duality, we can assume that there exists a simple injective module S such that the full subquiver Q^{\prime} of $Q(\Lambda)$ whose vertices are the isomorphism classes $\left[S^{\prime}\right]$ of the simple modules S^{\prime} which are not isomorphic to S is connected. Let Λ^{\prime}
be the restriction of Λ to Q^{\prime}. By induction, there is a sincere exceptional Λ^{\prime}-module M^{\prime}. We form the universal extension M of M^{\prime} by S, thus there is an exact sequence

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow S^{t} \rightarrow 0
$$

such that S is not a direct summand of M and $\operatorname{Ext}(S, M)=0$. It is well-known (and easy to see) that M is indecomposable and has no self-extensions.

The proof of Proposition 5 requires to look at four special cases.

Case 1. The algebra Λ is tame.

We use the structure of the Auslander-Reiten quiver of Λ as presented in [DR]. Since we assume that Λ has at least 3 vertices, there is a tube of rank $r \geq 2$. The simple regular modules in this component form an Ext-cycle of cardinality r, say X_{1}, \ldots, X_{r}. There is a unique indecomposable module Y with a filtration $Y=Y_{0} \supset Y_{1} \supset \cdots \supset Y_{r-1}=0$ such that $Y_{i-1} / Y_{i}=X_{i}$ for $1 \leq i \leq r-1$. Clearly, the pair Y, X_{r} is an Ext-pair.

Case 2. The quiver $Q=Q(\Lambda)$ is not a tree.
Deleting, if necessary, vertices, we may assume that the underlying graph of Q is a cycle. Let w be a path from a source i to a sink j of smallest length, let Q^{\prime} be the subquiver of Q given by the vertices and the arrows which occur in w. Not every vertex of Q belongs to Q^{\prime}, since otherwise Q is obtained from Q^{\prime} by adding just arrows, thus by adding a unique arrow, namely an arrow $i \rightarrow j$. But then this arrow is also a path from a sink to a source, and it has length 1 . By the minimality of w, we see that also w has length 1 and therefore Q has just the two vertices i, j. But then Q can have only one arrow, thus is a tree. This is a contradiction.

Let $Q^{\prime \prime}$ be the full subquiver given by all vertices of Q which do not belong to Q^{\prime}. Of course, $Q^{\prime \prime}$ is connected (it is a quiver of type \mathbb{A}). According to Lemma 4, there is an exceptional module X with support Q^{\prime} and an exceptional module Y with support $Q^{\prime \prime}$. Since $Q^{\prime}, Q^{\prime \prime}$ have no vertex in common, we see that $\operatorname{Hom}(X, Y)=0=\operatorname{Hom}(Y, X)$.

There is an arrow $i \rightarrow j^{\prime \prime}$ with $j^{\prime \prime}$ a vertex of $Q^{\prime \prime}$. This arrow shows that $\operatorname{Ext}(X, Y) \neq 0$. Similarly, there is an arrow $i^{\prime \prime} \rightarrow j$ with $i^{\prime \prime}$ a vertex of $Q^{\prime \prime}$. This arrow shows that $\operatorname{Ext}(Y, X) \neq 0$.

We consider now algebras Λ with Ext-quiver $1 \rightarrow 2 \rightarrow 3$. We denote by Λ^{\prime} the restriction of Λ to the subquiver with vertices 1,2 , and by $\Lambda^{\prime \prime}$ the restriction of Λ to the subquiver with vertices 2,3 . Given a representation M, let M_{3} be the sum of all submodules of M which are isomorphic to $S(3)$, then M / M_{3} is a Λ^{\prime}-module.

Lemma 5. Let X, Y be Λ-modules. If $X_{3}=0$ and $\operatorname{Ext}\left(Y / Y_{3}, X\right) \neq 0$, then also $\operatorname{Ext}(Y, X) \neq 0$.

Proof: The exact sequence $0 \rightarrow Y_{3} \rightarrow Y \rightarrow Y / Y_{3} \rightarrow 0$ yields an exact sequence

$$
\operatorname{Hom}\left(Y_{3}, X\right) \rightarrow \operatorname{Ext}\left(Y / Y_{3}, X\right) \rightarrow \operatorname{Ext}(Y, X)
$$

The first term is zero, since Y_{3} is a sum of copies of $S(3)$ and $X_{3}=0$. Thus, the map $\operatorname{Ext}\left(Y / Y_{3}, X\right) \rightarrow \operatorname{Ext}(Y, X)$ is injective.

Case 3. $Q(\Lambda)=(1 \rightarrow 2 \rightarrow 3)$, and $v(1,2) \geq 2, v(2,3) \geq 2$.

Let $X=S(2)$ and let Y be the universal extension of X using the modules (1) and $S(3)$ (thus, we form the universal extension from above using copies of $S(1)$ and the universal extension from below using copies of $S(3)$. Clearly, Y is exceptional. Since the socle of Y consists of copies of $S(3)$, we have $\operatorname{Hom}(S(2), Y)=0$. Since the top of Y consists of copies of $S(1)$, we have $\operatorname{Hom}(Y, S(2))=0$.

Since $v(1,2) \geq 2$, the module Y / Y_{3} is not a projective Λ^{\prime}-module. As a consequence, $\operatorname{Ext}\left(Y / Y_{3}, S(2)\right) \neq 0$. Lemma 5 shows that also $\operatorname{Ext}(Y, S(2)) \neq 0$. By duality, we similarly see that $\operatorname{Ext}(S(2), Y) \neq 0$.

Case 4. $Q(\Lambda)=(1 \rightarrow 2 \rightarrow 3)$, and $v(1,2) \geq 3, v(2,3)=1$.
Let $X=P(1) / P(1)_{3}\left(\right.$ thus X is the projective Λ^{\prime}-module with top $\left.S(1)\right)$. Let $Y=\tau X$, where $\tau=D \mathrm{Tr}$ is the Auslander-Reiten translation in $\bmod \Lambda$. Of course, both modules X, Y are exceptional. Since $Y=\tau X$, we know already that $\operatorname{Ext}(X, Y) \neq 0$.

We claim that $Y / Y_{3}=\tau^{\prime} S(1)$, where τ^{\prime} is the Auslander-Reiten translation of Λ^{\prime}. Since $P(1)_{3}=S(3)^{a}$ for some $a \geq 1$, a minimal projective presentation of X has the form

$$
\begin{equation*}
0 \rightarrow S(3)^{a} \rightarrow P(1) \rightarrow X \rightarrow 0 \tag{*}
\end{equation*}
$$

thus the defining exact sequences for $Y=\tau X$ is of the form

$$
0 \rightarrow Y \rightarrow I(3)^{a} \rightarrow S(1) \rightarrow 0
$$

In order to obtain $\tau^{\prime} S(1)$, we start with a minimal projective presentation

$$
\begin{equation*}
0 \rightarrow S(2)^{a} \rightarrow P^{\prime}(1) \rightarrow S(1) \rightarrow 0 \tag{**}
\end{equation*}
$$

where $P^{\prime}(1)$ is the projective cover of $S(1)$ as a Λ^{\prime}-module (actually, $P^{\prime}(1)=X$). Since $\nu(2,3)=1$, the number a in $(*)$ and $(* *)$ is the same. The defining exact sequences for $Y=\tau X$ and $\tau^{\prime} S(1)$ are part of the following commutative diagram with exact rows and columns:

The left column shows that $Y / Y_{3}=\tau^{\prime} S(1)$.
As we have mentioned in Lemma $2, v(1,2) \geq 3$ implies that $\operatorname{Ext}\left(\tau^{\prime} S(1), P^{\prime}(1)\right) \neq 0$. According to Lemma 5, we see that $\operatorname{Ext}(Y, X) \neq 0$.

Finally, let us show that X, Y are orthogonal. Since $Y=\tau X$ and X is exceptional, we see that $\operatorname{Hom}(X, Y)=0$. On the other hand, any homomorphism $Y \rightarrow X$ vanishes on Y_{3}, since X has no composition factor $S(3)$. Now Y / Y_{3} is indecomposable and not projective as a Λ^{\prime}-module, whereas X is a projective Λ^{\prime}-module, thus $\operatorname{Hom}(Y, X)=\operatorname{Hom}\left(Y / Y_{3}, X\right)=0$.

Remark. Concerning the cases 3 and 4, there is an alternative proof which uses dimension vectors and the Euler form on the Grothendieck group $K_{0}(\Lambda)$. But for this approach, one needs to deal with the valuation of $Q(\Lambda)$ as in [DR], attaching to any arrow $i \rightarrow j$ a pair (a, b) of positive numbers instead of the single number $v(i, j)=a b$.

Proof of Proposition 5. Let Λ be connected, hereditary, representation-infinite, with at least 3 simple modules. Case 2 shows that we can assume that $Q(\Lambda)$ is a tree.

Assume that there is a subquiver Q^{\prime} such that at least two of the arrows have valuation at least 2, choose such a Q^{\prime} of minimal length. We want to construct an Ext-pair for the restriction of Λ to Q^{\prime}. Using reflection functors (see [DR]), we can assume that Q^{\prime} has orientation $1 \rightarrow 2 \rightarrow \cdots \rightarrow n-1 \rightarrow n$. If $n=3$, then this is case 3 . Thus assume $n \geq 4$. The minimality of Q^{\prime} asserts that $\nu(i, i+1)=1$ for $2 \leq i \leq n-2$. If we denote by Λ^{\prime} the restriction of Λ to Q^{\prime}, then Λ^{\prime} has a full exact abelian subcategory \mathcal{U} which is equivalent to the module category of an algebra as discussed in case 3 (namely the subcategory of all Λ^{\prime}-modules which do not have submodules of the form $S(i)$ with $2 \leq i \leq n-2$ and no factor modules of the form $S(i)$ with $3 \leq i \leq n-1)$. Since \mathcal{U} has Ext-pairs, also $\bmod \Lambda$ has Ext-pairs.

Thus, we can assume that at most one arrow $i \rightarrow j$ has valuation greater than 2 . If $v(i, j) \geq 3$, then we take a connected subquiver Q^{\prime} with 3 vertices containing this arrow $i \rightarrow j$. If necessary, we use again reflection functors in order to change the orientation so that we are in case 4.

Thus we are left with the representation-infinite algebras Λ with the following properties: $Q(\Lambda)$ is a tree, there is no arrow with valuation greater than 2 and at most one arrow with valuation equal to 2 . It is easy to see that $Q(\Lambda)$ contains a subquiver Q^{\prime} such that the restriction of Λ to Q^{\prime} is tame, thus we can use case 1 .

Proof of Theorem.

Let Λ be connected and hereditary. If Λ is representation-finite, then tors $\Lambda=\mathrm{f}$-tors Λ, thus f-tors Λ is a lattice. If Λ has precisely two simple modules, then f-tors Λ can be described easily (see the proof of Proposition 2.2 in [IRTT] which works in general), it obviously is a lattice.

On the other hand, if Λ is representation-infinite and has at least three simple modules, then Proposition 5 asserts that Λ has an Ext-pair, say X, Y. Since X, Y are exceptional modules, Proposition 1 shows that $\mathcal{T}(X)=\mathcal{G}(X)$ and $\mathcal{T}(Y)=\mathcal{G}(Y)$ both belong to f -tors Λ. The join of $\mathcal{T}(X)$ and $\mathcal{T}(Y)$ in tors Λ is $\mathcal{T}(X, Y)$. According to Proposition 4, $\mathcal{T}(X, Y)$ cannot belong to f-tors Λ.

4. References

[AS] M. Auslander, S. O. Smalø: Preprojective modules over artin algebras, J. Algebra 66 (1980) 61-122.
[DR] V. Dlab, C. M. Ringel: Indecomposable representations of graphs and algebras. Mem. Amer. Math. Soc. 173 (1976).
[IRTT] O. Iyama, I. Reiten, H. Thomas, G. Todorov: Lattice structure of torsion classes for path algebras of quivers. Bull. London Math. Soc. 47 (2015) 4, 639-650.
[ONFR] M. A. A. Obaid, S. K. Nauman, W. M. Fakieh and C. M. Ringel: The Ingalls-Thomas bijections. IEJA 20 (2016), 28-44.
[R1] C. M. Ringel: Representations of k-species and bimodules. J. Algebra 41 (1976), 269-302.
[R2] C. M. Ringel: Exceptional objects in hereditary categories. Proceedings Constantza Conference. An. St. Univ. Ovidius Constantza Vol. 4 (1996), f. 2, 150-158.
[R3] C. M. Ringel: The Catalan combinatorics of the hereditary artin algebras. to appear in: Recent Developments in Representation Theory, Contemp. Math., 673, Amer. Math. Soc., Providence, RI, 2016.
[Ro] A. V. Roiter: Unboundedness of the dimension of the indecomposable representations of an algebra which has infinitely many indecomposable representations. Izv. Akad. Nauk SSSR. Ser. Mat. 32 (1968), 1275-1282

C. M. Ringel
Department of Mathematics, Shanghai Jiao Tong University
Shanghai 200240, P. R. China.
e-mail: ringel@math.uni-bielefeld.de

