Lattice structure of torsion classes for hereditary artin algebras.

Claus Michael Ringel

Abstract: Let Λ be a connected hereditary artin algebra. We show that the set of functorially finite torsion classes of Λ -modules is a lattice if and only if Λ is either representation-finite (thus a Dynkin algebra) or Λ has only two simple modules. For the case of Λ being the path algebra of a quiver, this result has recently been established by Iyama-Reiten-Thomas-Todorov and our proof follows closely some of their considerations.

Let Λ be a connected hereditary artin algebra. The modules considered here are left Λ -modules of finite length, mod Λ denotes the corresponding category. The subcategories of mod Λ we deal with are always assumed to be closed under direct sums and direct summands (in particular closed under isomorphisms). In this setting, a subcategory is a *torsion class* (the class of torsion modules for what is called a torsion pair or a torsion theory) provided it is closed under factor modules and extensions. The torsion classes form a partially ordered set with respect to inclusion, it will be denoted by tors Λ . This poset clearly is a lattice (even a complete lattice). It is easy to see that a torsion class C in mod Λ is functorially finite if and only if it has a cover (a *cover* for C is a module C such that C is the set of modules generated by C), we denote by f-tors Λ the set of functorially finite torsion classes in mod Λ .

In a recent paper [IRTT], Iyama, Reiten, Thomas and Todorov have discussed the question whether also the poset f-tors Λ (with the inclusion order) is a lattice.

Theorem. The poset f-tors Λ is a lattice if and only if Λ is representation-finite or Λ has precisely two simple modules.

Iyama, Reiten, Thomas, Todorov have shown this in the special case when Λ is a k-algebra with k an algebraically closed field (so that Λ is Morita equivalent to the path algebra of a quiver). The aim of this note is to provide a proof in general.

Here is an outline of the essential steps of the proof. Recall that a module is called *exceptional* provided it is indecomposable and has no self-extensions. A pair of modules X, Y will be called an Ext-*pair* provided both X, Y are exceptional, Hom(X, Y) = Hom(Y, X) = 0 and $\text{Ext}^1(X, Y) \neq 0$, $\text{Ext}^1(Y, X) \neq 0$. We follow the strategy of [IRTT] by establishing the existence of Ext-pair for any connected hereditary artin algebra which is representation-infinite and has at least three simple modules (Proposition 5). On the other hand, we will show directly that the set of functorially finite torsion classes which contain an Ext-pair has no minimal elements (Proposition 4).

²⁰¹⁰ Mathematics Subject Classification. Primary 16G10, 18E40. Secondary: 05E10, 16D90, 16G70.

1. Normalization.

Let \mathcal{X} be a class of modules. We denote by $add(\mathcal{X})$ the modules which are direct summands of direct sums of modules in \mathcal{X} . A module M is generated by \mathcal{X} provided M is a factor module of a module in $add(\mathcal{X})$, and M is cogenerated by \mathcal{X} provided M is a submodule of a module in $add(\mathcal{X})$. The subcategory of all modules generated by \mathcal{X} is denoted by $\mathcal{G}(\mathcal{X})$. In case $\mathcal{X} = \{X\}$ or $\mathcal{X} = \operatorname{add} X$, we write $\mathcal{G}(X)$ instead of $\mathcal{G}(\mathcal{X})$, and use the same convention in similar situations. We write $\mathcal{T}(X)$ for the smallest torsion class containing the module X (it is the intersection of all torsion classes containing X, and it can be constructed as the closure of $\{X\}$ using factor modules and extensions).

Since Λ is assumed to be hereditary, we write Ext(X, Y) instead of $\text{Ext}^1(X, Y)$.

Following Roiter [Ro], we say that a module M is normal provided there is no proper direct decomposition $M = M' \oplus M''$ such that M' generates M'' (this means: if M = $M' \oplus M''$ and M' generates M'', then M'' = 0). Of course, given a module M, there is a direct decomposition $M = M' \oplus M''$ such that M' is normal and M' generates M''and one can show that M' is determined by M uniquely up to isomorphism, thus we call $M' = \nu(M)$ a normalization of M. This was shown already by Roiter [Ro], and later by Auslander-Smalø [AS]. It is also a consequence of the following Lemma which will be needed for our further considerations.

Lemma 1. (a) Let $(f_1, \ldots, f_t, g) \colon X \to X^t \oplus Y$ be an injective map for some natural number t, with all the maps f_i in the radical of End(X). Then X is cogenerated by Y.

(b) Let $(f_1, \ldots, f_t, g): X^t \oplus Y \to X$ be a surjective map for some natural number t, with all the maps f_i in the radical of End(X), then Y generates X.

Proof. (a) Assume that the radical J of End(X) satisfies $J^m = 0$. Let W be the set of all compositions w of at most m-1 maps of the form f_i with $1 \leq i \leq t$ (including $w = 1_X$). We claim that $(gw)_{w \in W} \colon X \to Y^{|W|}$ is injective. Take a non-zero element x in X. Then there is $w \in W$ such that $w(x) \neq 0$ and $f_i w(x) = 0$ for $1 \leq i \leq t$. Since (f_1,\ldots,f_t,g) in injective and $w(x) \neq 0$, we have $(f_1,\ldots,f_t,g)(w(x)) \neq 0$. But $f_iw(x) = 0$ for $1 \le i \le t$, thus $g(w(x)) \ne 0$. This completes the proof.

(b) This follows by duality.

Corollary (Uniqueness of normalization). Let M be a module. Assume that $M = M_0 \oplus M_1 = M'_0 \oplus M'_1$ such that both M_0 and M'_0 generate M. Then there is a module N which is a direct summand of both M_0 and M'_0 which generates M.

Proof: We may assume that M is multiplicity free. Write $M_0 \simeq N \oplus C$, $M'_0 \simeq N \oplus C'$, such that C, C' have no indecomposable direct summand in common. Now, $N \oplus C$ generates $N \oplus C', N \oplus C'$ generates $N \oplus C$, and $N \oplus C$ generates C. We see that $N \oplus C$ generates C, such that the maps $C \to C$ used belong to the radical of $\operatorname{End}(C)$ (since they factor through $\operatorname{add}(N \oplus C')$ and no indecomposable direct summand of C belongs to $\operatorname{add}(N \oplus C')$. Lemma 1 asserts that N generates C, thus it generates M.

Proposition 1. If T has no self-extensions, then T is a cover for the torsion class $T = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{$ $\mathcal{T}(T)$. Conversely, if \mathcal{T} is a torsion class with cover C, then $\nu(C)$ has no self-extensions.

Proof. For the first assertion, one has to observe that $\mathcal{G}(T)$ is closed under extensions, thus equal to $\mathcal{T}(T)$. This is a standard result say in tilting theory. Here is the argument: let $g': T' \to M'$ and $g'': T'' \to M''$ be surjective maps with T', T'' in add T. Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence. The induced exact sequence with respect to g'' is of the form $0 \to M' \to Y_1 \to T'' \to 0$ with a surjective map $g_1: Y_1 \to M$. Since Λ is hereditary and g' is surjective, there is an exact sequence $0 \to T' \to Y_2 \to T'' \to 0$ with a surjective map $g_2: Y_2 \to Y_1$. Since $\operatorname{Ext}(T'', T') = 0$, we see that Y_2 is isomorphic to $T' \oplus T''$, thus in add T. And there is the surjective map $g_1g_2: Y_2 \to M$.

For the converse, we may assume that C is normal and have to show that C has no self-extension. Let C_1, C_2 be indecomposable direct summands of C and assume for the contrary that there is a non-split exact sequence

$$0 \to C_1 \to M \to C_2 \to 0.$$

Now M belongs to \mathcal{T} , thus it is generated by C, say there is a surjective map $C' \to M$ with $C' \in \operatorname{add} C$. Write $C' = C_2^t \oplus C''$ such that C_2 is not a direct summand of C''. Consider the surjective map $C_2^t \oplus C'' \to M \to C_2$. Since the last map $M \to C_2$ is not a split epimorphism, all the maps $C_2 \to C_2$ involved belong to the radical of $\operatorname{End}(C_2)$. According to Lemma 1, C'' generates C_2 . This contradicts the assumption that C is normal.

Remark. Proposition 1 provides a bijection between the isomorphism classes of normal modules without self-extensions and torsion classes with covers. This is one of the famous Ingalls-Thomas bijections, see for example [ONFR] or also [R3].

We recall that a torsion class is functorially finite if and only if it has a cover. Of course, if C is a cover of the torsion class \mathcal{T} , then $\mu(C)$ is a minimal cover of \mathcal{T} .

Proposition 2. Let \mathcal{T} be a non-zero functorially finite torsion class. Then there is an indecomposable module U in \mathcal{T} such that any non-zero map $V \to U$ with $V \in \mathcal{T}$ is a split epimorphism.

Proof. Let C be a minimal cover of \mathcal{T} . Since C has no self-extensions, it is a direct summand of a tilting module. In particular, the quiver of $\operatorname{End}(C)$ is directed. It follows that C has an indecomposable direct summand U such that any non-zero map $C \to U$ is a split epimorphism. Assume now that V belongs to \mathcal{T} and $f: V \to U$ is a non-zero map. There is a surjective map $g: C^t \to V$ for some t. Since the composition $fg: C^t \to U$ is non-zero, it is split epi, thus also f is split epi. \Box

Remark. As we have mentioned, normal modules have been considered by Roiter, but actually, he used a slightly deviating name, calling them "normally indecomposable".

2. Inclusions of functorially finite torsion classes.

If \mathcal{X} is a class of modules and U is an indecomposable module, we denote by \mathcal{X}_U the class of modules in \mathcal{X} which have no direct summand isomorphic to U.

Proposition 3. Assume that \mathcal{T} is a torsion class and that U is an indecomposable module in \mathcal{T} . The following assertions are equivalent:

(i) The class \mathcal{T}_U is a torsion class.

(ii) Any non-zero map $V \to U$ with $V \in \mathcal{T}$ is split epi.

Proof. (i) \implies (ii). We assume that \mathcal{T}_U is a torsion class. Let $f: V \to U$ be a non-zero map with $V \in \mathcal{T}$. We claim that f is surjective. Note that f(V) and U/f(V)both belong to \mathcal{T} , since \mathcal{T} is closed under factor modules. If f is not surjective, then f(V) is a factor module of V and a proper non-zero submodule of U, whereas U/f(V) is a proper non-zero factor module of U. It follows that both f(V) and U/f(V) belong to \mathcal{T}_U . Since we assume that \mathcal{T}_U is a torsion class, it is closed under extensions, and therefore Ubelongs to \mathcal{T}_U , a contradiction.

Write $V = V' \oplus U^t$ for some t with V' in \mathcal{T}_U . If f is not split epi, then Lemma 1 (b) asserts that V' generates U. But we assume that \mathcal{T}_U is a torsion class, thus closed under direct sums and factor modules. Therefore, if V' generates U, then U has to belong to \mathcal{T}_U , again a contradiction. Altogether we have shown that f is split epi.

(ii) \implies (i). We assume now that any non-zero map $V \to U$ with $V \in \mathcal{T}$ is a split epimorphism, and we have to show that \mathcal{T}_U is a torsion class. In order to see that \mathcal{T}_U is closed under factor modules, let V belong to \mathcal{T}_U and let W be a factor module of V. Assume that U is a direct summand of W, thus U is a factor module of V. The projection $p: V \to U$ is a non-zero map, thus by assumption p is a split epimorphism. But this implies that U is a direct summand of V, whereas V belongs to \mathcal{T}_U . This shows that W belongs to \mathcal{T}_U .

In order to show that \mathcal{T}_U is closed under extensions, consider a module M with a submodule V such that both V and M/V belong to \mathcal{T}_U . Since \mathcal{T} is closed under extension, M belongs to \mathcal{T} . Assume that U is a direct summand of M, say $M = U \oplus M'$. If $V \subseteq M'$, then $M/V = U \oplus M'/V$ shows that U is a direct summand of M/V in contrast to our assumption that M/U belongs to \mathcal{T}_U . Thus $V \not\subseteq M'$. It follows that V is not contained in the kernel of the canonical projection $q: M \to M/M' \simeq U$, thus the restriction of q to V is a non-zero map $V \to U$. The condition (ii) asserts that this map $V \to U$ is split epi, therefore V does not belong to \mathcal{T}_U , a contradiction. This shows that M belongs to \mathcal{T}_U . \Box

Proposition 4. Let \mathcal{E} be a class of indecomposable modules with the following property: If E belongs to \mathcal{E} , there is E' in \mathcal{E} with $\text{Ext}(E, E') \neq 0$. Then the set of functorially finite torsion classes \mathcal{T} which contain \mathcal{E} has no minimal elements.

Proof. Let \mathcal{T} be a functorially finite torsion class which contains \mathcal{E} . According to Proposition 2, there is an indecomposable module U in \mathcal{T} such that any non-zero map $V \to U$ with $V \in \mathcal{T}$ is a split epimorphism. According to Proposition 3, the class \mathcal{T}_U is a torsion class. Since \mathcal{T} is functorially finite, also \mathcal{T}_U is functorially finite.

We claim that \mathcal{E} is contained in \mathcal{T}_U . Thus, let E belong to \mathcal{E} . Since E is indecomposable, we have to show that E is not isomorphic to U. By assumption, there is E' in \mathcal{E} with $\operatorname{Ext}(E, E') \neq 0$. Thus, there is a non-split exact sequence $0 \to E' \to M \to E \to 0$. Since E, E' both belong to $\mathcal{E} \subseteq \mathcal{T}$ and \mathcal{T} is closed under extensions, M belongs to \mathcal{T} . Since the given map $M \to E$ is not split epi, it follows that E is not isomorphic to U. Thus $\mathcal{E} \subseteq \mathcal{T}_U$. Since \mathcal{T}_U is properly contained in \mathcal{T} , we see that \mathcal{T} is not minimal in the set of functorially finite torsion classes which contain \mathcal{E} .

3. Construction of Ext-pairs.

The aim of this section is to show the following proposition.

Proposition 5. A connected hereditary artin algebra which is representation-infinite and has at least three simple modules has Ext-pairs.

Given a finite dimensional artin algebra R, we denote by Q(R) its Ext-quiver: its vertices are the isomorphism classes [S] of the simple R-modules S, and given two simple R-modules S, S', there is an arrow $[S] \to [S']$ provided $\operatorname{Ext}(S, S') \neq 0$. If R is hereditary, then clearly Q(R) is directed. If necessary, we endow Q(R) with a valuation as follows: Given an arrow $S \to S'$, consider $\operatorname{Ext}(S, S')$ as a left $\operatorname{End}(S)^{\operatorname{op}}$ -module or as a left $\operatorname{End}(S')$ module and put

 $v([S], [S']) = (\dim_{\operatorname{End}(S)^{\operatorname{op}}} \operatorname{Ext}(S, S'))(\dim_{\operatorname{End}(S')} \operatorname{Ext}(S, S'))$

(note that in contrast to [DR], we only will need the product of the two dimensions, not the pair). Given a vertex i of Q(R), we denote by S(i), P(i), I(i) a simple, projective or injective module corresponding to the vertex i, respectively.

The valuation of any arrow can be interpreted as follows (τ is the Auslander-Reiten translation).

Lemma 2. If $Q(\Lambda) = (1 \to 2)$, then the arrow $1 \to 2$ has valuation at least 2 if and only if I(2) is not projective if and only if P(1) is not injective. If the arrow $1 \to 2$ has valuation at least 3, then $\tau S(1)$ is neither projective, nor a neighbor of P(1) in the Auslander-Reiten quiver, consequently $\operatorname{Hom}(P(1), \tau^2 S(1)) \neq 0$, thus $\operatorname{Ext}(\tau S(1), P(1)) \neq 0$.

In the proof of Proposition 5, we will have to construct some exceptional modules. Two general results will be needed.

Lemma 3. Let e be an idempotent of the artin algebra Λ and $\langle e \rangle$ the twosided ideal generated by e. Let M be a Λ -module with eM = 0. Then M is exceptional as a Λ -module if and only if M is exceptional when considered as a $\Lambda/\langle e \rangle$ -module.

Proof. Of course, if $0 \to M \to M' \to M \to 0$ is an exact sequence in mod Λ , then eM' = 0, thus it is an exact sequence in mod $\Lambda/\langle e \rangle$.

A Λ -module M is said to be sincere provided there is no non-zero idempotent $e \in \Lambda$ with eM = 0.

Lemma 4. Any connected artin algebra Λ has sincere exceptional modules.

(Let us add that sincere exceptional modules are even faithful, see for example Corollary 2.3 of [R2].)

Proof, using induction on the number n of vertices of $Q(\Lambda)$. If n = 1, then any simple Λ -module is a sincere exceptional module.

Now assume that $n \geq 2$. Up to duality, we can assume that there exists a simple injective module S such that the full subquiver Q' of $Q(\Lambda)$ whose vertices are the isomorphism classes [S'] of the simple modules S' which are not isomorphic to S is connected. Let Λ'

be the restriction of Λ to Q'. By induction, there is a sincere exceptional Λ' -module M'. We form the universal extension M of M' by S, thus there is an exact sequence

$$0 \to M' \to M \to S^t \to 0$$

such that S is not a direct summand of M and Ext(S, M) = 0. It is well-known (and easy to see) that M is indecomposable and has no self-extensions.

The proof of Proposition 5 requires to look at four special cases.

Case 1. The algebra Λ is tame.

We use the structure of the Auslander-Reiten quiver of Λ as presented in [DR]. Since we assume that Λ has at least 3 vertices, there is a tube of rank $r \geq 2$. The simple regular modules in this component form an Ext-cycle of cardinality r, say X_1, \ldots, X_r . There is a unique indecomposable module Y with a filtration $Y = Y_0 \supset Y_1 \supset \cdots \supset Y_{r-1} = 0$ such that $Y_{i-1}/Y_i = X_i$ for $1 \leq i \leq r-1$. Clearly, the pair Y, X_r is an Ext-pair.

Case 2. The quiver $Q = Q(\Lambda)$ is not a tree.

Deleting, if necessary, vertices, we may assume that the underlying graph of Q is a cycle. Let w be a path from a source i to a sink j of smallest length, let Q' be the subquiver of Q given by the vertices and the arrows which occur in w. Not every vertex of Q belongs to Q', since otherwise Q is obtained from Q' by adding just arrows, thus by adding a unique arrow, namely an arrow $i \to j$. But then this arrow is also a path from a sink to a source, and it has length 1. By the minimality of w, we see that also w has length 1 and therefore Q has just the two vertices i, j. But then Q can have only one arrow, thus is a tree. This is a contradiction.

Let Q'' be the full subquiver given by all vertices of Q which do not belong to Q'. Of course, Q'' is connected (it is a quiver of type A). According to Lemma 4, there is an exceptional module X with support Q' and an exceptional module Y with support Q''. Since Q', Q'' have no vertex in common, we see that $\operatorname{Hom}(X, Y) = 0 = \operatorname{Hom}(Y, X)$.

There is an arrow $i \to j''$ with j'' a vertex of Q''. This arrow shows that $\text{Ext}(X, Y) \neq 0$. Similarly, there is an arrow $i'' \to j$ with i'' a vertex of Q''. This arrow shows that $\text{Ext}(Y, X) \neq 0$.

We consider now algebras Λ with Ext-quiver $1 \to 2 \to 3$. We denote by Λ' the restriction of Λ to the subquiver with vertices 1, 2, and by Λ'' the restriction of Λ to the subquiver with vertices 2, 3. Given a representation M, let M_3 be the sum of all submodules of M which are isomorphic to S(3), then M/M_3 is a Λ' -module.

Lemma 5. Let X, Y be Λ -modules. If $X_3 = 0$ and $\operatorname{Ext}(Y/Y_3, X) \neq 0$, then also $\operatorname{Ext}(Y, X) \neq 0$.

Proof: The exact sequence $0 \to Y_3 \to Y \to Y/Y_3 \to 0$ yields an exact sequence

$$\operatorname{Hom}(Y_3, X) \to \operatorname{Ext}(Y/Y_3, X) \to \operatorname{Ext}(Y, X)$$

The first term is zero, since Y_3 is a sum of copies of S(3) and $X_3 = 0$. Thus, the map $\operatorname{Ext}(Y/Y_3, X) \to \operatorname{Ext}(Y, X)$ is injective.

Case 3. $Q(\Lambda) = (1 \to 2 \to 3)$, and $v(1,2) \ge 2$, $v(2,3) \ge 2$.

Let X = S(2) and let Y be the universal extension of X using the modules (1) and S(3) (thus, we form the universal extension from above using copies of S(1) and the universal extension from below using copies of S(3). Clearly, Y is exceptional. Since the socle of Y consists of copies of S(3), we have Hom(S(2), Y) = 0. Since the top of Y consists of copies of S(1), we have Hom(Y, S(2)) = 0.

Since $v(1,2) \ge 2$, the module Y/Y_3 is not a projective Λ' -module. As a consequence, Ext $(Y/Y_3, S(2)) \ne 0$. Lemma 5 shows that also Ext $(Y, S(2)) \ne 0$. By duality, we similarly see that Ext $(S(2), Y) \ne 0$.

Case 4.
$$Q(\Lambda) = (1 \rightarrow 2 \rightarrow 3)$$
, and $v(1,2) \ge 3$, $v(2,3) = 1$.

Let $X = P(1)/P(1)_3$ (thus X is the projective Λ' -module with top S(1)). Let $Y = \tau X$, where $\tau = D$ Tr is the Auslander-Reiten translation in mod Λ . Of course, both modules X, Y are exceptional. Since $Y = \tau X$, we know already that $\text{Ext}(X, Y) \neq 0$.

We claim that $Y/Y_3 = \tau' S(1)$, where τ' is the Auslander-Reiten translation of Λ' . Since $P(1)_3 = S(3)^a$ for some $a \ge 1$, a minimal projective presentation of X has the form

(*)
$$0 \to S(3)^a \to P(1) \to X \to 0,$$

thus the defining exact sequences for $Y = \tau X$ is of the form

$$0 \to Y \to I(3)^a \to S(1) \to 0.$$

In order to obtain $\tau' S(1)$, we start with a minimal projective presentation

$$(**) 0 \to S(2)^a \to P'(1) \to S(1) \to 0,$$

where P'(1) is the projective cover of S(1) as a Λ' -module (actually, P'(1) = X). Since $\nu(2,3) = 1$, the number a in (*) and (**) is the same. The defining exact sequences for $Y = \tau X$ and $\tau' S(1)$ are part of the following commutative diagram with exact rows and columns:

The left column shows that $Y/Y_3 = \tau' S(1)$.

As we have mentioned in Lemma 2, $v(1,2) \ge 3$ implies that $\text{Ext}(\tau'S(1), P'(1)) \ne 0$. According to Lemma 5, we see that $\text{Ext}(Y, X) \ne 0$. Finally, let us show that X, Y are orthogonal. Since $Y = \tau X$ and X is exceptional, we see that $\operatorname{Hom}(X, Y) = 0$. On the other hand, any homomorphism $Y \to X$ vanishes on Y_3 , since X has no composition factor S(3). Now Y/Y_3 is indecomposable and not projective as a Λ' -module, whereas X is a projective Λ' -module, thus $\operatorname{Hom}(Y, X) = \operatorname{Hom}(Y/Y_3, X) = 0$.

Remark. Concerning the cases 3 and 4, there is an alternative proof which uses dimension vectors and the Euler form on the Grothendieck group $K_0(\Lambda)$. But for this approach, one needs to deal with the valuation of $Q(\Lambda)$ as in [DR], attaching to any arrow $i \to j$ a pair (a, b) of positive numbers instead of the single number v(i, j) = ab.

Proof of Proposition 5. Let Λ be connected, hereditary, representation-infinite, with at least 3 simple modules. Case 2 shows that we can assume that $Q(\Lambda)$ is a tree.

Assume that there is a subquiver Q' such that at least two of the arrows have valuation at least 2, choose such a Q' of minimal length. We want to construct an Ext-pair for the restriction of Λ to Q'. Using reflection functors (see [DR]), we can assume that Q' has orientation $1 \to 2 \to \cdots \to n-1 \to n$. If n = 3, then this is case 3. Thus assume $n \ge 4$. The minimality of Q' asserts that $\nu(i, i + 1) = 1$ for $2 \le i \le n-2$. If we denote by Λ' the restriction of Λ to Q', then Λ' has a full exact abelian subcategory \mathcal{U} which is equivalent to the module category of an algebra as discussed in case 3 (namely the subcategory of all Λ' -modules which do not have submodules of the form S(i) with $2 \le i \le n-2$ and no factor modules of the form S(i) with $3 \le i \le n-1$). Since \mathcal{U} has Ext-pairs, also mod Λ has Ext-pairs.

Thus, we can assume that at most one arrow $i \to j$ has valuation greater than 2. If $v(i,j) \ge 3$, then we take a connected subquiver Q' with 3 vertices containing this arrow $i \to j$. If necessary, we use again reflection functors in order to change the orientation so that we are in case 4.

Thus we are left with the representation-infinite algebras Λ with the following properties: $Q(\Lambda)$ is a tree, there is no arrow with valuation greater than 2 and at most one arrow with valuation equal to 2. It is easy to see that $Q(\Lambda)$ contains a subquiver Q' such that the restriction of Λ to Q' is tame, thus we can use case 1.

Proof of Theorem.

Let Λ be connected and hereditary. If Λ is representation-finite, then tors $\Lambda = \text{f-tors }\Lambda$, thus f-tors Λ is a lattice. If Λ has precisely two simple modules, then f-tors Λ can be described easily (see the proof of Proposition 2.2 in [IRTT] which works in general), it obviously is a lattice.

On the other hand, if Λ is representation-infinite and has at least three simple modules, then Proposition 5 asserts that Λ has an Ext-pair, say X, Y. Since X, Y are exceptional modules, Proposition 1 shows that $\mathcal{T}(X) = \mathcal{G}(X)$ and $\mathcal{T}(Y) = \mathcal{G}(Y)$ both belong to f-tors Λ . The join of $\mathcal{T}(X)$ and $\mathcal{T}(Y)$ in tors Λ is $\mathcal{T}(X, Y)$. According to Proposition 4, $\mathcal{T}(X, Y)$ cannot belong to f-tors Λ .

4. References

[AS] M. Auslander, S. O. Smalø: Preprojective modules over artin algebras, J. Algebra 66 (1980) 61–122.

- [DR] V. Dlab, C. M. Ringel: Indecomposable representations of graphs and algebras. Mem. Amer. Math. Soc. 173 (1976).
- [IRTT] O. Iyama, I. Reiten, H. Thomas, G. Todorov: Lattice structure of torsion classes for path algebras of quivers. Bull. London Math. Soc. 47 (2015) 4, 639–650.
- [ONFR] M. A. A. Obaid, S. K. Nauman, W. M. Fakieh and C. M. Ringel: The Ingalls-Thomas bijections. IEJA 20 (2016), 28-44.
 - [R1] C. M. Ringel: Representations of k-species and bimodules. J. Algebra 41 (1976), 269–302.
 - [R2] C. M. Ringel: Exceptional objects in hereditary categories. Proceedings Constantza Conference. An. St. Univ. Ovidius Constantza Vol. 4 (1996), f. 2, 150-158.
 - [R3] C. M. Ringel: The Catalan combinatorics of the hereditary artin algebras. to appear in: Recent Developments in Representation Theory, Contemp. Math., 673, Amer. Math. Soc., Providence, RI, 2016.
 - [Ro] A. V. Roiter: Unboundedness of the dimension of the indecomposable representations of an algebra which has infinitely many indecomposable representations. Izv. Akad. Nauk SSSR. Ser. Mat. 32 (1968), 1275-1282

C. M. Ringel Department of Mathematics, Shanghai Jiao Tong University Shanghai 200240, P. R. China. e-mail: ringel@math.uni-bielefeld.de