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The torsionless modules of an artin algebra

Claus Michael Ringel

We consider an artin algebra Λ with duality functor D. Usually, we will consider
left Λ-modules of finite length and call them just modules. Always, morphisms will
be written on the opposite side of the scalars.

A module is said to be torsionless provided it can be embedded into a pro-
jective module. Let L = L(Λ) be the class of torsionless Λ-modules.

1. Torsionless Λ-modules and torsionless Λop-modules.

Let P = P(Λ) be the class of projective Λ-modules. We have P(Λ) ⊆ L(Λ),
and we denote by L(Λ)/P(Λ) the factor category obtained from L(Λ) by factoring
out the ideal of all maps which factor through a projective module.

Theorem 1. There is a duality

η : L(Λ)/P(Λ) −→ L(Λop)/P(Λop)

with the following property: If U is a torsionless module, and f : P1(U)→ P0(U) is
a projective presentation of U , then for η(U) we can take the image of Hom(f, Λ).

Note that there also is a duality between P(Λ) and P(Λop), given by the
functor Hom(−, Λ). Using these two dualities, we see:

Corollary 1. There is a canonical bijection between the isomorphism classes
of the indecomposable torsionless Λ-modules and the isomorphism classes of the
indecomposable torsionless Λop-modules.

Proof: Hom(−, Λ) provides a bijection between the isomorphism classes of the
indecomposable projective Λ-modules and the isomorphism classes of the indecom-
posable projective Λop-modules. For the non-projective indecomposable torsionless
modules, we use the duality η.

Remark. As we have seen, there are canonical bijections between the indecom-
posable projective Λ-modules and Λop-modules, as well between the indecompo-
sable non-projective torsionless Λ-modules and Λop-modules, both being given by
categorical dualities, but these bijections do not combine to a bijection with nice
categorical properties. We will exhibit suitable examples below. There, we will use
the duality D in order to replace the category L(Λop) of torsionless Λop-modules
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by Λ-modules, namely by the category K(Λ) of all factor modules of injective
modules.

We call Λ torsionless-finite provided there are only finitely many isomorphism
classes of indecomposable torsionless Λ-modules.

Corollary 3. If Λ is torsionless-finite, also Λop is torsionless-finite.

Whereas corollaries 1 and 2 are of interest only for non-commutative artin
algebras, the theorem itself is also of interest for Λ commutative.

Corollary 3. For Λ a commutative artin algebra, the category L/P has a
self-duality.

For example, consider the factor algebra Λ = k[T ]/〈Tn〉 of the polynomial
ring k[T ] in one variable, with k is a field. Since Λ is self-injective, all the modules
are torsionless. Note that in this case, η coincides with the syzygy functor Ω.

Proof of theorem 1. We call an exact sequence P1 → P0 → P−1 with
projective modules Pi strongly exact provided it remains exact when we apply
Hom(−, Λ). Let E be the category of strongly exact sequences P1 → P0 → P−1

with projective modules Pi (as a full subcategory of the category of complexes).

Lemma. The exact sequence P1
f
−→ P0

g
−→ P−1, with all Pi projective and

epi-mono factorization g = ue is strongly exact if and only if u is a left Λ-
approximation.

Proof: Under the functor Hom(−, Λ), we obtain

Hom(P−1, Λ)
g∗

−→ Hom(P0, Λ)
f∗

−→ Hom(P1, Λ)

with zero composition. Assume that u is a left Λ-approximation. Given α ∈
Hom(P0, Λ) with f∗(α) = 0, we rewrite f∗(α) = αf. Now e is a cokernel of f ,
thus there is α′ with α = α′e. Since u is a left Λ-approximation, there is α′′ with
α′ = α′′u. It follows that α = α′e = α′′ue = α′′g = g∗(α′′).

Conversely, assume that the sequence (∗) is exact, let U be the image of g,
thus e : P0 → U, u : U → P−1. Consider a map β : U → Λ. Then f∗(βe) = βef = 0,
thus there is β′ ∈ Hom(P−1, Λ with g∗(β′) = βe. But g∗(β) = β′g = β′ue and
βe = β′ue implies β = β′u, since e is an epimorphism.

Let U be the full subcategory of E of all sequences which are direct sums of
sequences of the form

P −→ 0 −→ 0, P
1
−→ P −→ 0, 0 −→ P

1
−→ P, 0 −→ 0 −→ P.

Define the functor q : E → L by q(P1
f
−→ P0

g
−→ P−1) = Im g. Clearly, q sends U

onto P, thus it induces a functor

q : E/U −→ L/P.
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Claim: This functor q is an equivalence.

First of all, the functor q is dense: starting with U ∈ L, let

P1
f
−→ P0

e
−→ U −→ 0

be a projective presentation of U , let u : U → P−1 be a left Λ-approximation of U ,
and g = ue.

Second, the functor q is full. This follows from the lifting properties of pro-
jective presentations and left Λ-approximations.

It remains to show that q is faithful. We will give the proof in detail (and it
may look quite technical), however we should remark that all the arguments are
standard; they are the usual ones dealing with homotopy categories of complexes.

Looking at strongly exact sequences P1
f
−→ P0

g
−→ P−1, one should observe that

the image U of g has to be considered as the essential information: starting from
U , one may attach to it a projective presentation (this means going from U to

the left in order to obtain P1
f
−→ P0) as well as a left Λ-approximation of U (this

means going from U to the right in order to obtain P−1).

In order to show that q is faithful, let us consider the following commutative
diagram

P1
f

−−−−→ P0
g

−−−−→ P−1

h1





y

h0





y

h−1





y

P ′

1
f ′

−−−−→ P ′

0
g′

−−−−→ P ′

−1

with strongly exact rows. We consider epi-mono factorizations g = eu, g′ = e′u′

with e : P0 → U, u : U → P−1, e
′ : P ′

0 → U ′, u′ : U ′ → P ′

−1, thus q(P•) = U, q(P ′

•
) =

U ′. Assume that q(h•) = ab, where a : U → X, b : X → U ′ with X projective. We
have to show that h• belongs to U .

The factorizations g = eu, g′ = e′u′, q(h•) = ab provide the following equali-
ties:

eab = h0e
′, uh1 = abu′.

Since u : U → P−1 is a left Λ-approximation and X is projective, there is a′ : P−1 →
X with ua′ = a. Since e′ : P ′

0 → U ′ is surjective and X is projective, there is
b′ : X → P ′

0 with b′e′ = b.

Finally, we need c : P0 → P ′

1 with cf ′ = h0 − eab′. Write f ′ = w′v′ with w′

epi and v′ mono; in particular, v′ is the kernel of g′. Note that eab′g′ = eab′e′u′ =
eabu′ = h0e

′u′ = h0g
′, thus (h0 − eab′)g′ = h0g

′ − eab′g′ = h0g
′ − h0g

′ = 0,
thus h0 − eab′ factors through the kernel v′ of g′, say h0 − eab′ = c′v′. Since
P0 is projective and w′ is surjective, we find c : P0 → P ′

1 with cw′ = c′, thus
cf ′ = cw′v′ = c′v′ = h0 − eab′.
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Altogether, we obtain the following commutative diagram

P1
f

−−−−→ P0
g

−−−−→ P−1

[ 1 f ]





y





y

[ 1 ea ]





y

[ a′ h1−a′bu′ ]

P1 ⊕ P0

[

0 0

1 0

]

−−−−→ P0 ⊕X

[

0 0

1 0

]

−−−−→ X ⊕ P ′

−1
[

h1−fc

c

]





y





y

[

h0−eab′

b′

]





y

[

bu′

1

]

P ′

1
f ′

−−−−→ P ′

0
g′

−−−−→ P ′

−1

which is the required factorization of h• (here, the commutativity of the four square
has to be checked; in addition, one has to verify that the vertical compositions yield
the maps hi; all these calculations are straight forward).

Now consider the functor Hom(−, Λ), it yields a duality

Hom(−, Λ): E(Λ) −→ E(Λop)

which sends U(Λ) onto U(Λop). Thus, we obtain a duality

E(Λ)/U(Λ) −→ E(Λop)/U(Λop).

Combining the functors considered, we obtain the following sequence

L(Λ)/P(Λ)
q
←−− E(Λ)/U(Λ)

Hom(−,Λ)
−−−−−−→ E(Λop)/U(Λop)

q
−−→ L(Λop)/P(Λop),

this is duality, and we denote it by η.
It remains to show that η is given by the mentioned recipe. Thus, let U be a

torsionless module. Take a projective presentation

P1
f
−→ P0

e
−→ U −→ 0

of U , and let m : U → P−1 be a left P-approximation of U and g = eu. Then

P• = (P1
f
−→ P0

g
−→ P−1)

belongs to E and q(P•) = U. The functor Hom(−, Λ) sends P• to

Hom(P•, Λ) = (Hom(P−1, Λ)
Hom(g,Λ)
−−−−−−→ Hom(P0, Λ)

Hom(f,Λ)
−−−−−−→ Hom(P1, Λ))

in E(Λop). Finally, the equivalence

E(Λop)/U(Λop)
q
−−→ L(Λop)/P(Λop)
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sends Hom(P•, Λ) to the image of Hom(f, Λ).

A module is said to be co-torsionless provided it is a factor module of an
injective module. Let K = K(Λ) be the class of co-torsionless Λ-modules. Of course,
the duality functor D provides a bijection between the isomorphism classes of co-
torsionless modules and the isomorphism classes of torsionless right modules.

If we denote by Q = Q(Λ) the class of injective modules, then we see that D
provides a duality

D : L(Λop)/P(Λop) −→ K(Λ)/Q(Λ).

We get the following corollaries of Theorem 1.

Corollary 4. The categories L(Λ)/P(Λ) and K(Λ)/Q(Λ) are equivalent under
the functor Dη.

Note that Dη is is equal to Στ (restricted to Λ/P), where τ is the Auslander-
Reiten translation and Σ is the suspension functor (defined by Σ(V ) = I(V )/V,
where I(V ) is an injective envelope of V ). Namely, in order to calculate τ(U), we
start with a minimal projective presentation f : P1 → P0 and take as τ(U) the
kernel of

D Hom(f, Λ): D Hom(P1, Λ) −→ D Hom(P0, Λ).

Now the kernel inclusion τ(U) ⊂ D Hom(P1, Λ) is an injective envelope of τ(U);
thus Στ(U) is the image of D Hom(f, Λ), but this image is Dη(U).

Corollary 5. If Λ is torsionless-finite, the number of isomorphism classes
of indecomposable factor modules of injective modules is equal to the number of
isomorphism classes of indecomposable torsionless modules.

Examples: (1) The path algebra of a linearly oriented quiver of type A3

modulo the square of its radical.

◦ ◦ ◦................................................................... ...................................................................

..
..
.........

We present twice the Auslander-Reiten quiver. Left, we mark by + the inde-
composable torsionless modules and encircle the unique non-projective torsionless
module. On the right, we mark by ∗ the indecomposable co-torsionless modules
and encircle the unique non-injective co-torsionless module:

◦+

+

+

+

.....

........
.........................................
.....

.......
.......
.......
.......
.......
..............
............

................................................
.
......
.....
.

.......
.......
.......
.......
.......
..............
............

................................................
.
......
.....
.

......... .........

L
◦

∗

∗

∗

∗.....
........

.........................................
.....

.......
.......
.......
.......
.......
..............
............

................................................
.
......
.....
.

.......
.......
.......
.......
.......
..............
............

................................................
.
......
.....
.

......... .........

K

(2) Next, we look at the algebra Λ given by the following quiver with a com-
mutative square; to the right, we present its Auslander-Reiten quiver Γ(Λ) and
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mark the torsionless and co-torsionless modules as in the previous example. Note
that the subcategories L and K are linearizations of posets.

◦

◦

◦

◦

◦

...........................................
.....
.
...........
.

.......
.......
.......
.......
.......
..............
............

.......
.......
.......
.......
.......
..............
............

...........................................
.....
.
...........
.

.......
.......
.......
.......
.......
..............
............

. . . . . . . . .

Λ

◦

◦

◦

◦

◦

◦ ◦

+

+

+

+

+ +

∗

∗

∗

∗

∗

∗.....
........

.........................................
.....

.....

........
.........................................
.....

.......
.......
.......
.......
.......
..............
............

.......
.......
.......
.......
.......
..............
............

.......
.......
.......
.......
.......
..............
............

.......
.......
.......
.......
.......
..............
............

.......
.......
.......
.......
.......
..............
............

.......
.......
.......
.......
.......
..............
............

.......
.......
.......
.......
.......
..............
............

.......
.......
.......
.......
.......
..............
............

.......
.......
.......
.......
.......
..............
............

.......
.......
.......
.......
.......
..............
............

................................................
.
......
.....
.

................................................
.
......
.....
.

................................................
.
......
.....
.

................................................
.
......
.....
.

................................................
.
......
.....
.

................................................
.
......
.....
.

................................................
.
......
.....
.

................................................
.
......
.....
.

................................................
.
......
.....
.

................................................
.
......
.....
.

................................................
.
......
.....
.

....................................... .........
... ....................................... .........

... ....................................... .........
...

....................
...................
............

....................
...................
............

....................
...................
............

Γ(Λ)

•

•

•

•

• •..........................................................
.......
.......
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
.......
...

..............................................................................................................................................
.........................................
....

L

• •

•

•

•

•.....................................................................
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
.......
......

......................................................................................................................................... .....
.........................................
....

K

(3) The local algebra Λ with generators x, y and relations x2 = y2 and xy =
0. In order to present Λ-modules, we use the following convention: the bullets
represent base vectors, the lines marked by x or y show that the multiplication
by x or y, respectively, sends the upper base vector to the lower one (all other
multiplications by x or y are supposed to be zero). The upper line shows all the
indecomposable modules in L, the lower one those in K.

•

• •

• •

..............................................................
......
......
......
......
......
......
......
......
.......
......
......
......
......
......
......
......
......
...................................................................................................................

x

x

y

y
x

ΛΛ

• •

•

•......
......
......
......
......
......
......
......
........................................................

x y
•

•

....................................................
x

• •

• •..........
......
......
......
......
......
......
................................................................

......
......
......
......
......
......
......
....

x
x

y

•

• •

•

•

..............................................................
......
......
......
......
......
......
......
......
.......
......
......
......
......
......
......
......
......
.................................................................

......
......
......
......
......
......
......
......
..

y

y

x

x

y
ΛDΛ •

•

•..........................................................
......
......
......
......
......
......
......
....

x y • •

•

......
......
......
......
......
......
......
......
....

y

•

•

•

•

......
......
......
......
......
......
......
......
..............................................................

......
......
......
......
......
......
......
....

y x
y

L

K

Let us stress the following: All the indecomposable modules in L \ P as well as
those in K \ Q are Λ′-modules, where Λ′ = k[x, y]/〈x, y〉2. Note that the category
of Λ′-modules is stably equivalent to the category of Kronecker modules, thus all
its regular components are homogeneous tubes. In L we find two indecomposable
modules which belong to one tube, inK we find two indecomposable modules which
belong to another tube. The algebra Λ′ has an automorphism which exchanges
these two tubes; this is an outer automorphism, and it cannot be lifted to an
automorphism of Λ itself.

2. Torsionless-finite artin algebras have representation dimension at
most 3.

Given a class M of modules, we denote by addM the modules which are
(isomorphic to) direct summands of direct sums of modules inM. We say thatM is
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finite provided there are only finitely many isomorphism classes of indecomposable
modules in addM, thus provided there exists a module M with addM = addM.

Theorem 2. Assume that Λ is torsionless-finite (thus, L and K are finite).
Let K, L be modules with addK = K, and add L = L. Then the endomorphism
ring of K ⊕ L has global dimension at most 3.

Note that L is a generator, K a cogenerator, thus K ⊕ L is a generator-
cogenerator. By definition, the representation dimension of Λ is the minimum of
the global dimension of the endomorphism rings of generator-cogenerators. Thus,
the theorem implies the following:

Corollary. The representation dimension of a torsionless-finite artin algebra
is at most 3.

Proof of Theorem. Let M = K⊕L. In order to prove that the global dimension
of End(M) is at most 3, we have to show that for any Λ-module X , the kernel
ΩM (X) of a minimal right M -approximation of X belongs to addM (Auslander-
Lemma, see [E] or [CP]).

Let X be a Λ-module. Let U be the trace of K in X (this is the sum of
the images of maps K → X). Since K is closed under direct sums and factor
modules, U belongs to K (it is the largest submodule of X which belongs to K).
Let p : V → X be a right L-approximation of X (it exists, since we assume that L
is finite). Since L contains all the projective modules, it follows that p is surjective.
Now we form the pullback

V
p

−−−−→ X

u′

x





x





u

W −−−−→
p′

U

where u : U → X is the inclusion map. With u also u′ is injective, thus W is a
submodule of V ∈ L. Since L is closed under submodules, we see that W belongs
to L. On the other hand, the pullback gives rise to the exact sequence

0 −→W
[p′ −u′ ]
−−−−−−−→ U ⊕ V

[

u
p

]

−−−→ X −→ 0

(the right exactness is due to the fact that p is surjective). By construction, the

map

[

u
p

]

is a right M -approximation, thus ΩM (X) is a direct summand of W and

therefore in L ⊆ addM. This completes the proof.
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Special cases.

(1) Let J = rad Λ and assume that Jn = 0. Claim: Any indecomposable
torsionless module is either projective or annihilated by Jn−1. Namely, let M be
an indecomposable submodule of the projective module P , write P =

⊕

Pi with
Pi indecomposable. Let u : M → P be the inclusion and pi : P → Pi the canonical
projections. If we assume that Jn−1M 6= 0, then Jn−1(Mupi) 6= 0 for some i.
But then Mupi cannot be a submodule of JPi, since Jn = 0. Since JPi is the
unique maximal submodule of Pi, it follows that upi is surjective. Since Pi is
projective, we see that upi is a split epimorphism and thus an isomorphism (since
M is indecomposable). Thus we see: if M is not annihilated by Jn−1, then M is
projective. As a consequence, we see: If Λ/Jn−1 is representation-finite, then there
are only finitely many isomorphism classes of indecomposable torsionless modules.
By left-right symmetry, we also see that there are only finitely many isomorphism
classes of indecomposable torsionless right modules.

This implies: If Λ/Jn−1 is representation-finite, then the representation di-
mension of Λ is at most 3. (Auslander [A], Proposition, p.143)

(2) Following Auslander (again [A], Proposition, p.143) the special case J2 =
0 should be mentioned here. It is obvious that an indecomposable torsionless modu-
le is either projective or simple, an indecomposable co-torsionless module is either
injective or simple, and any simple module is either torsionless or co-torsionless.
Thus M is the direct sum of all indecomposable projective, all indecomposable
injective, and all simple modules. Thus, the representation dimension of an artin
algebra with radical square zero is at most 3.

(3) Another special case of (1) is of interest: We say that Λ is minimal
representation-infinite provided Λ is representation-infinite, but any proper fac-
tor algebra is representation-finite. If Λ is minimal representation-infinite, and n is
minimal with Jn = 0, then Λ/Jn−1 is a proper factor algebra, thus representation-
finite. It follows: The representation dimension of a minimal representation-infinite
algebra is at most 3.

(4) If Λ is hereditary, then the only torsionless modules are the projective
modules, the only co-torsionless modules are the injective ones, thus both classes
K and L are finite. Thus we recover Auslander’s result ([A], Proposition, p. 147)
that the representation dimension of a hereditary artin algebra is at most 3.

(5) More generally, we see that the classes K and L are finite in case Λ is stably
equivalent to a hereditary artin algebra. Thus, the representation dimension of an
artin algebra which is stably equivalent to a hereditary artin algebra is at most 3; (a
result of Auslander-Reiten [AR], see also [X]). Here, an indecomposable torsionless
module is either projective or simple (see [AR]).

(6) Right glued algebras (and similarly left glued algebras): An artin algebra
Λ is said to be right glued, provided the functor Hom(DΛ,−) is of finite length, or
equivalently, provided almost all indecomposable modules have projective dimen-
sion equal to 1. The condition that Hom(DΛ,−) is of finite length implies that
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K(Λ) is finite. Also, the finiteness of the isomorphism classes of indecomposable
modules of projective dimension greater than 1 implies that L(Λ) is finite. We
see that right glued algebras have representation dimension at most 3 (a result of
Coelho-Platzeck [CP]).
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