
1. Quivers and their representations: Basic definitions and examples.

1.1. Quivers.

A quiver Q (sometimes also called a directed graph) consists of vertices and oriented
edges (arrows): loops and multiple arrows are allowed. An arrow goes from some vertex
(its tail) to some vertex (its head), if we denote the tail of the arrow α by t(α), the head
by h(α), we see that we deal with two set-theoretical maps

t, h : Q1 → Q0,

where Q0 denotes the set of vertices, Q1 the set of arrows. Here is the formal definition of
a quiver Q = (Q0, Q1, t, h): there are given two sets Q0, Q1 and two maps h, t : Q1 → Q0,
the elements of Q0 are called vertices, the elements of Q1 are called arrows, and for every
arrow α ∈ Q1, there is defined its tail t(α) and its head h(α). One depicts this in the usual
way:

t(α)
α
−→ h(α). or also α : t(α) → h(α)

(actually, often we will draw arrows from right to left, or also in any possible direction).
Arrows α with h(α) = t(α) are called loops.

Given a quiver Q, one may delete the orientation of the arrows and obtains in this
way the underlying graph Q, this is the triple consisting of the two sets Q0, Q1 and the
functions which attaches to α ∈ Q1 the set {t(α), h(α)} (this means that one does no
longer distinguish which one of the vertices is the head and which one is the tail. The
reverse process will be called choosing an orientation.

The wording was chosen by Gabriel (1972): “quiver” means liter-
ally a box for holding arrows. Before Gabriel, quivers were called
“diagram schemes” by Grothendieck.

Here is a collection of typical quivers, with the names which are now usually attached,
often these names refer just to the underlying graph.

◦ ◦....................................................... ............ A2 ◦ ◦ ◦....................................................... ............ ....................................................... ............ A3 ◦ ◦ ◦....................................................... ............ ................................................................... A3

◦

◦ ◦ ◦
......................................................................... ........

....

.....................................................................
....
............

..................................................
.....
.......
.....

D4

◦ ◦ ◦ ◦ ◦

◦

....................................................... ............ ....................................................... ............ ................................................................... ...................................................................

..................................................
.....
.......
.....

E6

◦................ ..........
..

............
.........
........
.......
.......
.......
.......
.......
........
.........

..............
.......................................................................................................................

L (loop)
◦ ◦....................................................... ............

....................................................... ............
Kronecker
quiver

Of course, one may consider much more complicated quivers, say with 1000 vertices
and 7000 arrows, but the representation theory already of quite small quivers usually turns
out to be quite complicated. There are quivers with many edges which we will deal with,
for example

◦ ◦ ◦ ◦ ◦........................................... ........................................... ............... ............... ............................................ . . An
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with n vertices, usually labeled 1, 2, . . . , n, and with n− 1 arrows αi with {t(αi), h(αi)} =
{i, i + 1}, but usually one is interested in rather small quivers, for example the Dynkin

quivers E6, E7, E8, or the corresponding Euclidean quivers Ẽ6, Ẽ7, Ẽ8.

If Q is a quiver, a subquiver Q′ of Q is of the form Q′ = (Q′

0, Q
′

1, t
′, h′), with subsets

Q′

0 ⊆ Q0, Q
′

1 ⊆ Q1, such that t(Q′

1) ⊆ Q′

0 and h(Q′

1) ⊆ Q′

0, and such that t′, h′ are the
restrictions of t, h, respectively.

For example, a quiver of type A3 has two subquivers of type A2.

A quiver Q is said to be connected, provided for any decomposition Q0 = Q′

0 ∪ Q′′

0

of the set of vertices of Q with non-empty subsets Q′

0, Q
′′

0 , there is an arrow α such that
h(α) ∈ Q′

0, t(α) ∈ Q′′

0 or h(α) ∈ Q′′

0 , t(α) ∈ Q′

0.

A connected quiver with n vertices and n − 1 arrows is called a tree quiver (this just
means that the underlying graph is a tree in the sense of graph theory). The tree quivers
can be constructed inductive as follows: first of all, the quiver A1 (it consists of a single
vertex and there is no arrow) is a tree quiver, and a quiver Q with n ≥ 2 vertices is a tree
quiver provided it is obtained from a tree quiver Q′ with n − 1 vertices by attaching an
arm of the form A2 at the vertex x (this means that x is a vertex of Q′ and one obtains
Q0 by adding to Q′

0 a vertex, say labeled ω, and that one obtains Q1 by adding to Q′

1 an
arrow α such that {h(α), t(α)} = {x, ω})

x ω
α

Q′ ...........................................
..............................................................................................................................................................................

.......................
................

...........
.........
.......
.......
.........
............
.................

..........................
...........................................................................................................................................................................

1.2. Representations of a quiver.

Let k be some field. Al the vector spaces to be considered are assumed to be k-spaces.
For most considerations, the structure of k itself will not play a role, but we should stress
that we always work with a fixed (commutative) field k.

A representation of the quiver Q is of the form M = (Mx,Mα)x,α, where Mx is a
vector space, for every vertex x ∈ Q0, and Mα : Mt(α) → Mh(α) is a linear map, for
every α ∈ Q1; instead of Mα one often writes just α. Thus, representations of quivers are
nothing else than collections of vector spaces and linear maps between these vector spaces.
We usually will assume that the vector spaces which we consider are finite-dimensional
(however most of the considerations carry over to the general case of dealing with vector
spaces of arbitrary dimension).

Given a representation M = (Mx,Mα)x,α, we call the sum of the dimensions of the
vector spaces Mx with x ∈ Q0 the dimension of M and denote it by dimM. Later it will
be convenient to denote the maps Mα with α ∈ Q1 just by α (clearly an abuse of notation,
but quite convenient).

Why do we use the letter M for a representation of a quiver? The
representations of a quiver M may be considered as the “modules”
over the “path algebra” of Q, see section 4.
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Of course, for any quiver there is defined the corresponding zero representation (or
“trivial” representation) with all the vector spaces being zero (and all the maps being zero
maps). The zero representation is usually just denoted by 0.

Representations M with all vector spaces Mx of dimension at most 1 are said to be
thin.

We will deal with thin representations in 1.6. Here is a typical rep-
resentation which is not thin (and not isomorphic to a direct sum of
thin modules). We deal with a quiver of type D4:

◦

◦ ◦ ◦
......................................................................... ........

....

.....................................................................
....
............

..................................................
.....
.......
.....

k2

k0 0k ∆
......................................................................... ........

....

.....................................................................
....
............

..................................................
.....
.......
.....

with ∆ = {(x, x) | x ∈ k} and all the maps being the correspond-
ing inclusion maps. In section 3 we will see that this is an “inde-
composable representation” (but we did not yet define what means
“indecomposable”).

Also we may be interested in a vector space V with 4 subspaces
U1, U2, U3, U such that U1 ⊆ U2 ⊆ U3. Such a system can be
considered as a representation of the following quiver of type A5

◦ ◦ ◦ ◦ ◦....................................................... ............ ....................................................... ............ ....................................................... ............ ................................................................... A5

namely as

VU1 U2 U3 U......................................... ............ ......................................... ............ ......................................... ............ .....................................................

where again all the maps are the inclusion maps.

When looking at representations of quivers, we often will replace a given representation
by an “isomorphic” one, whenever this is suitable. Given representations M,M ′ of a
quiver Q, an isomorphism f = (fx)x : M → M ′ is given by vector space isomorphisms
fx : Mx → M ′

x such that for any arrow α : t(α) → h(α) the following diagram commutes:

Mt(α)

ft(α)
−−−−→ M ′

t(α)

Mα

y
yM ′

α

Mh(α)

fh(α)
−−−−→ M ′

h(α).

(We often will have to consider such diagrams, they are given by an arrow say α : x → y;
the usual convention will be to draw the data concerning M vertically on the left, those
concerning M ′ vertically on the right, and the maps fx horizontally.)

3



Of course, the commuativity of the diagram above implies that also the diagram

M ′

t(α)

f−1
t(α)

−−−−→ Mt(α)

M ′

α

y
yMα

M ′

h(α)

f−1
h(α)

−−−−→ Mh(α).

commutes; thus if f = (fx)x : M → M ′ is an isomorphism, also f−1 = (f−1
x )x : M

′ → M
is an isomorphism.

Slogan: Representation theory studies properties of representations
which are invariant under isomorphisms.

In section 3, we will introduce the notion of a homomorphism f : M →
M ′; isomorphisms are special homomorphisms.

For example:

Polishing. Let Q be a quiver, α : x → y an arrow of Q, but not a loop, and M a
representation such that Mα is injective. Then M is isomorphic to a representation M ′

such that M ′

α is the inclusion of a subspace (namely the inclusion of the image of Mα into
My).

Proof: Let M ′ be defined as follows: Let M ′

x = Im(Mα), and M ′

a = Ma for all vertices
a 6= x of Q. If β : b → x and b 6= x, let M ′

β = MαMβ : Mb → M ′

a. If γ : x → c and c 6= x, let

M ′

γ = Mγ(Mα)
−1 : M ′

x → Mc. Finally, if δ : x → x, let M ′

δ = MαMδ(Mα)
−1 : M ′

x → M ′x.
Always note that (Mα)

−1 is defined on M ′

a and the definition for γ = α shows that
M ′

α = Mγ(Mα)
−1 : M ′

x → My is just the inclusion map. The representations M and
M ′ are isomorphic, with an isomorphism f : M → M ′ given by fa = 1 for a 6= x and
fx = Mα : Mx → M ′

x; in order to see that f is a homomorphism, let us exhibit two typical
squares: on the left we consider an arrow β : b → x, on the right an arrow γ : x → c.

Mb M ′

b

Mβ

y
yMαMβ

Mx
Mα−−−−→ M ′

x

Mx
Mα−−−−→ M ′

x

Mγ

y
yMγ(Mα)−1

Mc M ′

c

Warning: If M is a representation with several of the maps Mα being injective, one
may try to replace successively all these maps by inclusion maps, but in general this will
not be possible. For example, consider a cycle with all the maps being invertible. If there
are n arrows, we may replace n− 1 of them by corresponding identity maps, but trying to
replace also the remaining map by an identity map may destroy a previous identity map.

Similarly, if M is a representation of a quiver Q and α : x → y is an arrow which is
not a loop, such that Mα is surjective, then M is isomorphic to a representation M ′ such
that M ′

α is the canonical projection My → My/Ker(Mα).
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1.3. Direct decomposition.

Given a representation M of a quiver Q, a direct sum decomposition of M is of the
following form: for every x ∈ Q0, there is given a direct sum Mx = M ′

x ⊕ M ′′

x and for
every α : x → y, one has Mα(M

′

x) ⊆ M ′

y and Mα(M
′′

x ) ⊆ M ′′

y . One may denote the
restriction of Mα to M ′

x by M ′

α : M
′

x → M ′

y, and similarly, the restriction of Mα to M ′′

x

by M ′′

α : M ′′

x → M ′′

y . One obtains in this way representations M ′ = (M ′

x,M
′

α)x,α and
M ′′ = (M ′′

x ,M
′′

α)x,α and one writes M = M ′ ⊕M ′′.
The representation theory of quivers is concerned with the following question: given a

representation M of some quiver Q, is it possible to decompose the representation? If there
is no non-trivial decomposition andM is non-zero, thenM is said to be indecomposable: To
repeat: M is indecomposable if and only ifM 6= 0 and for any decompositionM = M ′⊕M ′′,
either M ′ = 0 or M ′′ = 0.

There is the following question: describe all the indecomposable representations of a
given quiver. For some (quite small) quivers, this will be possible (and indeed for all the
examples exhibited above), but in general it seems to be impossible (there is a notion of
“wildness”: nearly all the large quiver are wild and one does not expect that there is a
decent way to classify all the indecomposable representations of any wild quiver).

Slogan: Representation theory studies the isomorphism classes of
indecomposable representations.

Let us consider the quiver A2, we label the vertices 1 and 2 so that the unique arrow
is α : 2 → 1. The representations of Q are of the form M = (M2,M1,Mα), where M1,M2

are vector spaces and Mα : M2 → M1 is a linear map, we will denote M just by writing
M = (Mα : M2 → M1). There are three indecomposable representations of V which are
easy to describe:

(0 → k), (k → 0), (1k : k → k).

(and later it will turn out that these are the only indecomposable representations up to
isomorphism. Why are these representations indecomposable? This should be clear for the
first two representations, thus let us look at the third one: write it asM = (Mα : M2 → M1)
with M1 = M2 = k and Mα the identity map. What is important is only that Mα 6= 0.
Assume we have given a direct decomposition M = M ′ ⊕ M ′′, thus M2 = M ′

2 ⊕ M ′′

2 ,
M1 = M ′

1 ⊕ M ′′

1 , such that Mα(M
′

2) ⊆ M ′

1 and Mα(M
′′

2 ) ⊆ M ′′

1 . Since M2 = k is one-
dimensional, we must have M ′

2 = 0 or M ′′

2 = 0. Without loss of generality, we can assume
that M ′′

2 = 0, thus M ′

2 = M2. Now Mα is non-zero and maps M ′

2 into M ′

1, therefore also
M ′

1 6= 0. Since M1 = M ′

1 ⊕M ′′

1 is one-dimensional and M ′

1 6= 0, it follows that M ′′

1 = 0.
Thus M ′′ = 0.

Given a representation M and for every x ∈ Q0 a subspace M ′

x of Mx with Mα(M
′

x) ⊆
M ′

y, for every arrow α : x → y, then we may denote the restriction of Mα to M ′

x by M ′

α,
for α : x → y, and we obtain in this way a representation M ′ = (M ′

x,M
′

α) of Q which is
called a subrepresentation of M .

Direct decomposition M = M ′ ⊕ M ′′ are given by subrepresentations M ′,M ′′ of M
such that Mx = M ′

x ⊕M ′′

x for all x.
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Definition. We say that a representation N of a quiver Q with a vertex y is y-sincere,
provided for any direct decomposition N = N ′ ⊕N ′′ with N ′′

y = 0 we have N ′′ = 0.

Proposition. Let Q be obtained from a quiver Q′ by attaching an arm of type A2 at
the vertex x. Let M be an indecomposable representation of Q with support not contained
in Q′. Then the restriction M ′ of M to Q′ is x-sincere.

Prof: Let N = N ′ ⊕ N ′′ with N ′′

x = 0. Then we obtain a direct decomposition of
M = M ′ ⊕ M ′′ by taking M ′

ω = Mω, M
′′

ω = 0 and such that the restriction of M ′ to Q′

is N ′, the restriction of M ′′ to Q′ is N ′′. Since M ′ 6= 0, and M is indecomposable, we
conclude that M ′′ = 0, thus N ′′ = 0.

1.4. The simple representations S(x).

Let x be a vertex of Q. The representation S(x) of Q is defined by S(x)x = k,
S(x)y = 0 for y 6= 0, and S(x)α = 0 for all arrows α (note that the latter condition
concerns only loops α : x → x).

Proposition. If y is a vertex of the quiver Q, and M a representation of Q, define
subspaces Ky, Iy of My as follows: Ky is the intersection of the kernels of the maps Mα,
where α is an arrow with tail t(α) = y and Iy is the sum of the images of the maps Mβ

where β is an arrow with head h(β) = y. Then S(y) is a direct summand of M if and only
if Ky 6⊆ Ix.

◦

◦
◦

◦

◦

◦
◦

..................................................................................
...

............

........................
........................

........................................... ..............
.............

..............
.............

..............
.............................

.............
..............

.............
..............

.............
..............................

..............................................................................
.

............

..................................................................................
...

............

...
...

α β
y

Better:

Splitting off copies of S(y). Let C,D be subspaces of My such that

(Ky ∩ Iy)⊕ C = Ky and (Ky + Iy)⊕D = My.

Let M ′

y = Iy ⊕D and M ′

x = Mx for all x 6= y. Let M ′′

y = C and M ′′

x = 0 for all x 6= y.
Then M ′,M ′′ are subrepresentations of M , and M = M ′ ⊕M ′′. The representation M ′

has no direct summand of the form S(x), whereas M ′′ is a direct sum of copies of S(x).

If x is a vertex, a representation without a direct summands S(x)
may be called y-reduced, thus here we deal with the y-reduction.
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Proof: Here is the lattice of the relevant subspace of My:

•

•

• •

•

•

......

.......

.......

......

.......

.......

......

.......

.........
.........
........
.........
.........
.........
.........
........
.........
..........
.........
........
.........
.........
.........
.........
........
.........
.......
.......
.......
.......
......
.......
.......
......

.........
........
.........
.........
.........
.........
........
.........
..........
.........
.........
........
.........
.........
.........
.........
........
..

Ky Iy

My

C

D

Ky ∩ Iy

Ky + Iy

We will need that (Ky ∩ Iy)⊕ C = Ky implies that Iy ⊕ C = Ky + Iy.

In order to see that M ′ is a subrepresentation of M , we need to look only at arrows
β ending in y, since M ′

x = Mx for x 6= y. But by construction My contains Iy, thus the
image of any map Mβ with h(β) = y. In order to see that M ′′ is a subrepresentation of
M , we only have to note that C is contained in the kernel of any map Mα with t(α) = y.
Actually, this also shows that M ′′ is a direct sum of copies of S(y). Namely, take a basis
B of C and observe that any b ∈ B yields a copy of S(y).

Since Iy ⊕ C = Ky + Iy, it follows that My = Iy ⊕ C ⊕D = M ′

y ⊕M ′′

y , and therefore
M = M ′ ⊕M ′′. Looking at M ′, we see that the sum of the images of the maps M ′

β with
h(β) = y is precisely Iy, whereas the intersection of the kernels of the maps M ′

α with
t(α) = y is Ky ∩ Iy and thus a subset of Iy.

Of course, in general, if M has a direct summand isomorphic to S(y), there is an
element b ∈ My which belongs to Kx and not to Iy, thus Ky 6⊆ Iy. Conversely, the
splitting-off assertion shows: If Ky 6⊆ Iy, then Ky ∩ Iy is a proper subspace of Ky and
therefore C 6= 0. The splitting-off assertion shows that we split off the the direct sum of c
copies of S(x), where c is the dimension of C, thus the dimension of Ky/(Ky ∩ Iy).

Corollaries. Let y be a vertex of Q and M an indecomposable representation of Q
which is not isomorphic to S(y).

(a) Always, Ky ⊆ Iy.

(b) If y is a source, then Ky = 0.

(c) If y is a sink, then Iy = My.

Namely, if y is a source, then Iy = 0, and Ky ⊆ Iy = 0. And if y is a sink, then
Ky = My and then My = Ky ⊆ Iy.

Let us consider again the quiver Q of type A2 with the arrow α : 2 → 1. Let M be
an indecomposable representation. If M is not isomorphic to S(1), then Mα has to be
surjective, according to (c). If M is not isomorphic to S(2), then Mα has to be injective,
according to (b). Thus if M is neither isomorphic to S(1) not to S(2), then Mα is both
injective and surjective, thus a vector space isomorphism. It follows that M is isomorphic
to a direct sum of say n copies of (1k : k → k) (here n may be a non-negative integer or
some cardinality. Namely, choose a basis B of M2, this yields a vector space isomorphism
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Φ: kn → M2 and a commutative diagram

kn
Φ

−−−−→ M2

1

y
yMα

kn
MαΦ

−−−−→ M1

which is an isomorphism of representations of Q. Note that the left vertical map is the
direct sum of n copies of (1k : k → k). We see:

Let Q be the quiver of type A2. Any representation of Q is a direct sum of copies of
S(1), S(2) and (1k : k → k), thus of thin representations.

1.5. The indecomposable representations of quivers of type A.

Let us first consider the quivers of type A3.

(1) The quiver Q of type A3 with linear orientation. This is the following
quiver

◦ ◦ ◦................................................................... ...................................................................

1 2 3α β

Splitting off copies of S(1) we can assume that we deal with a representation M with Mα

surjective; splitting off copies of S(3) we can assume that Mβ is injective. After polishing.
we can assume that Mβ is the inclusion of a subspace U of V = M2, and that there is a
subspace U ′ of V such that Mα is the canonical projection V → V/U ′. Thus we deal with
a vector space V with two subspaces U, U ′ and consider the corresponding representation
of Q:

VV/U U ′................................................................... ...................................................................

One knows that there is a basis B of V such that both subspaces U, U ′ are generated
by subsets of B. But this means that we can decompose M into a direct sum of copies of
the following representations

b ∈ U ∩ U ′

kk0 ................................................................... ...................................................................

1

b ∈ U \ U ′

k 00 ................................................................... ...................................................................

b ∈ U ′ \ U

k k k................................................................... ...................................................................

1 1

b /∈ U ∪ U ′

k k 0................................................................... ...................................................................

1

(always, we specify which elements b ∈ B give rise to the representation in question). In
particular, we see: Any indecomposable representation of Q is thin.

(2) The 2-subspace quiver. This is the following quiver

◦ ◦ ◦....................................................... ............ ...................................................................

1 2 3α β

Splitting off copies of S(1) and of S(3), we can assume that we deal with a representation
M with both Mα,Mβ injective. After polishing. we can assume that Mα and Mβ are the
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inclusions subspaces U, U ′ of V = M2, respectively. Thus we deal with a vector space V
with two subspaces U, U ′.

VU U ′....................................................... ............ ...................................................................

One knows that there is a basis B of V such that both subspaces U, U ′ are generated
by subsets of B. But this means that we can decompose M into a direct sum of copies of
the following representations:

b ∈ U ∩ U ′

k k k....................................................... ............ ...................................................................

1 1

b ∈ U \ U ′

k k 0....................................................... ............ ...................................................................

1

b ∈ U ′ \ U

kk0 ....................................................... ............ ...................................................................

1

b /∈ U ∪ U ′

k 00 ....................................................... ............ ...................................................................

(again, we specify which elements b ∈ B give rise to the representation in question). Also
here, we see: Any indecomposable representation of Q is thin.

(3) The 2-factor-space quiver. This is the quiver

◦ ◦ ◦................................................................... ....................................................... ............
1 2 3α β

One uses vector space duality in order to relate the representations of the 2-factor-space
quiver Q and the representations of the 2-subspace quiver Q′ (at least when dealing with
finite-dimensional representations):

representation of Q

M1 M2 M3

Mα Mβ
................................................................... ....................................................... ............

representation of Q′

M∗

1 M∗

2 M∗

3

M∗

α
M∗

β
....................................................... ............ ...................................................................

Or else, one shows that any polished representation ofQ without direct summands S(1), S(3)
is of the form

V/U V V/U ′.............................................................................. .................................................................. ............

where U, U ′ are subspaces of a vector space V . Thus, again, we see: any indecomposable
representation is thin.

Altogether we have shown: If Q is a quiver of type A3, then any indecomposable
representation is thin.

Let us stress that the indecomposable non-simple representations of
all quivers of type A3 have been obtained by looking at a vector
space V with two subspaces U, U ′, thus by looking at the following
subspace lattice of a vector space V :

•

•

• •

•

•

.......

......

.......

.......

......

.........
.........
.........
.........
.........
..........
.........

.........
.........

.........
.........

.........
......
.......
.......
......
......

.........
.........

.........
.........

.........
..........
.........
.........
.........
.........
.........
..

U U ′

V
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Slogan: Representation theory of quivers is just (a higher form of)
linear algebra.

Recall: The splitting-off of copies of S(y) as considered in section
1.4 also relies on the same subspace lattice, namely we were dealing
with:

•

•

• •

•

•

......

.......

.......

......

.......

.......

......

.......

.........
.........
........
.........
.........
.........
.........
........
.........
..........
.........
........
.........
.........
.........
.........
........
.........
.......
.......
.......
.......
......
.......
.......
......

.........
........
.........
.........
.........
.........
........
.........
..........
.........
.........
........
.........
.........
.........
.........
........
..

Ky Iy

My

C

D

Ky ∩ Iy

Ky + Iy

Proposition. Let Q be a quiver of type An. Then any indecomposable representation
of Q is thin.

Proof: As we know already, the assertion is true for n ≤ 3. Thus, consider now some
n ≥ 4. By induction, we may assume that any indecomposable representation of a quiver
of type An−1 is thin.

Let M be an indecomposable representation of Q with underlying graph

◦ ◦ ◦ ◦........................................... ........................................... ........................................... ...........................................
1 2 n−1 n

. . .

and assume that both M1 6= 0 and Mn 6= 0. The restriction M ′ of M to the full subquiver
Q′ with vertices 1, . . . , n − 1 is a direct sum of thin representations which are (n − 1)-
sincere, according to Proposition 1.3. For example, if n = 6, then M ′ is the direct sum
of copies of the following 5 representations of Q′ (where the edges have to be replaced by
corresponding arrows, and all the maps k → k are identity maps):

k k k k k........................................... ........................................... ........................................... ...........................................

k k k k0 ........................................... ........................................... ........................................... ...........................................

k k k0 0........................................... ........................................... ........................................... ...........................................

k k0 0 0........................................... ........................................... ........................................... ...........................................

k0 0 0 0........................................... ........................................... ........................................... ...........................................

We claim that M ′ is increasing from left to right: this should mean that for any arrow
α with t(α), h(α) ∈ [1, n − 1], the map M ′

α(= Mα) is a monomorphism provided t(α) <
h(α), and an epimorphism otherwise. Similarly, consider the restriction M ′′ of M to
the full subquiver with vertices 2, . . . , n. The representation M ′′ is a direct sum of thin
representations which are 2-sincere, according to Proposition 1.3. Thus M ′′ is decreasing
from left to right: for any arrow α with t(α), h(α) ∈ [2, n], the map M ′′

α(= Mα) is an
epimorphism, if t(α) < h(α), otherwise a monomorphism.
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It follows that all the maps Mα with t(α), h(α) ∈ [2, n − 1] are bijective, thus up to
isomorphism, we can assume that these maps are identity maps. But then it is sufficient
to look at the representation

M1
M2

= Mn−1
Mn

......................................................... ........................................................................

(where the edges have to be replaced by the appropriate arrows), thus at a representation
of a quiver of type A3. We know that this representation is a direct sum of thin represen-
tations, thus also M itself is a direct sum of thin representations. But since by assumption
M is indecomposable, we conclude that M is thin.

Remark. The proof provides a normal form for all the indecomposable represen-
tations of Q. Namely, any indecomposable representation of the quiver Q of type A is
isomorphic to a representation M using as vector spaces only 0 and k and as non-zero
maps only the identity map 1: k → k. Thus M is determined by the pair of numbers i ≤ j,
such that the support quiver Q(M) consists of the vertices x with i ≤ x ≤ j and all the
arrows in-between. In particular, the classification of the indecomposable representations
uses only combinatorial data.

Actually, the assertion concerning the normal form is an easy con-
sequence, once we have established that any indecomposable rep-
resentation is thin. We just have to use the process of polishing
inductively, starting at one end. It is easy to see that all thin rep-
resentations of tree quivers can be polished in this way, as we will
outline in the next section.

Corollary. Let V be a vector space with two filtrations

U1 ⊆ U2 ⊆ · · · ⊆ Up ⊆ V,

U ′

1 ⊆ U ′

2 ⊆ · · · ⊆ U ′

q ⊆ V.

Then there is a basis B of V such that any of the subspaces Ui, U
′

j is generated by a subset
of B.

Proof: Consider the quiver Q of type An with n = p + q + 1 with vertices labeled
1, . . . , p, 1′, . . . , q′ and 0 and the following orientation

◦ ◦ ◦ ◦ ◦ ◦ ◦
1 2 p 0 q′ 2′ 1′

........................................................................ ............ .......................................... ............ ........................................................................ ............ .................................................................................... ...................................................... ....................................................................................· · · · · ·.............................. ..............................

The two filtrations yield the following representation of Q (all maps are the inclusion
maps):

U1 U2 Up V U ′

q U ′

2 U ′

1
........................................................................ ............ .......................................... ............ ........................................................................ ............ .................................................................................... ...................................................... ....................................................................................· · · · · ·.............................. ..............................

If we write this representation as a direct sum of indecomposable representations, thus of
thin representations, and choose in any direct summand N a non-zero element b ∈ N0, we
obtain the required basis.
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Slogan: One can use the representation theory of quivers in order
to solve vector space problems.

Theorem 1. Let Q be a finite connected quiver. Then all indecomposable modules
are thin if and only if Q is of type An.

Proof: We have seen above that the indecomposable representations of a quiver of type
An are thin. Conversely, assume now Q is a connected quiver and all its indecomposable
representations are thin. We look at some special cases of Q.

The Kronecker quiver Q. It has two vertices, labeled 1, 2 and two arrows α, β : 2 →

1. Define M as follows: M1 = M2 = k2, Mα the identity matrix, Mβ =
[
0 1

0 0

]
. One easily

checks that M is indecomposable.

More general: Cycles. Say assume there are pairwise different vertices x(1), . . . , x(n)
with arrows α(i) such that {h(α(i)), t(α(i))} = {x(i), x(i + 1)} for all 1 ≤ i ≤ n (and
x(n + 1) = x(1); in the Kronecker case, one also requires α(1) 6= α(2)). As in the Kro-
necker case, take Mx(i) = k2, and take for all but one arrows α(i) the identity matrix, and

Mα(n) =
[
0 1

0 0

]
. Again, we get an indecomposable representation.

The quivers of type D4. We have mentioned already the case of the subspace orien-
tation. In general, we have to distinguish the 4 different orientations. The construction is
quite similar in all cases. Namely, we start with the subspaces k0, 0k,∆ = {(x, x) | x ∈ k}
of k2 and take the following representations:

k2

k0 0k ∆
............................................................................... ........

....

...........................................................................
....
............

..................................................
.....
.......
.....

k2

k0 0k k2/∆
............................................................................... ........

....
..........
..........
..........
..........
..........
..........
...................
..............................................................

.....
.......
.....

k2

k0 k2/0k k2/∆
............................................................................... ........

....
..........
..........
..........
..........
..........
..........
...................
............

......

.......

.......

.......

.......

.......

..............

............

k2

k2/k0 k2/0k k2/∆

..........
..........

..........
..........

..........
..........

...............................

..........
..........
..........
..........
..........
..........
...................
............

......

.......

.......

.......

.......

.......

..............

............

The maps which we use are either the inclusion maps or the canonical projections. One
may check directly that these representations are indecomposable. In section 1.7 we will
see that the corresponding endomorphism rings are all equal to k.

If Q is not of type An, then Q has a subquiver which is either a cycle or of type D4.

A quiver is said to be representation-finite (or to be of finite representation type,
provided the number of isomorphism classes of indecomposable representations is finite.
We have shown above that any quiver of type A is representation-finite.

The connected quivers of finite representation type have been deter-
mined by Gabriel, they are the quivers whose underlying graph is
a “Dynkin diagram”. A typical example of a quiver which is not
representation finite is the loop quiver L; as we will point out in the
next section, this is a consequence of the Jordan normal form of lin-
ear endomorphisms which usually is established in a Linear Algebra
course.
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