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In representation theory one is interested in Calabi–Yau triangulated categories.
These few lectures were an attempt to survey the classical analogue in algebraic
geometry and complex analysis. In this abstract I treat the case of abelian varieties.
Much more detail on everything I say may be found in [2, 3].

For the sake of definiteness, we begin with the definitions.

Definition 0.1. A Calabi–Yau manifold is a connected, compact, complex mani-
fold with trivial sheaf of top differential forms.

In other words a connected, compact, complex manifold X of dimension g will
be Calabi–Yau if the sheaf Ωg

X has a nowhere vanishing holomorphic section. We
recall

Theorem 0.2. (Serre Duality). Let X be a connected, compact, complex man-
ifold of dimension g. If D is the bounded derived category of chain complexes of
coherent analytic sheaves on X, then there is a natural isomorphism

HomD(A,B)∗ ' HomD

(
B,A⊗ Ωg

X [g]
)
.

In the language of [1] the category D has a Serre functor S, given by the formula

S(−) = (−)⊗ Ωg
X [g].

D is a Calabi–Yau triangulated category if and only if Ωg
X ' OX , that is if and only

if the manifold X is Calabi–Yau. The dimension of the Calabi–Yau triangulated
category D agreed with the complex dimension of the manifold X. One very
classical case of this is complex tori. We recall the definition

Definition 0.3. A complex torus is a connected, compact, complex Lie group.

We note that every complex torus is automatically Calabi–Yau. The point is that
the line bundle Ωg

X has a unique trivialisation by a left invariant g–form. Take any
non–vanishing g–form at the identity, and extend it (uniquely) to a left invariant
g–form on all of X.

Let us say a little more about connected, compact, complex Lie groups. We
observe

Theorem 0.4. Any connected, compact, complex Lie group is commutative.

Proof. The result is well–known but we include a proof. Let X be a connected,
compact, complex Lie group. Consider the map

f : X ×X −→ X

given by
f(x, y) = xyx−1y−1.

If e ∈ X is the identity, then f(e, y) = e for all y ∈ X. Now let V ⊂ X be a small
ball around e. Then f−1V must contain an open set of the form U ×X, with U
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an open neighbourhood of the identity e ∈ X. For any u ∈ U , the map f induces
a holomorphic map from the compact manifold {u} × X to the ball V , and any
such map is constant. But then

f(u, y) = f(u, e) = e;

that is f sends all of U ×X to the singleton e. Now analytic continuation tells us
that f collapses all of X ×X to e. �

It follows that the Lie algebra of X is commutative; it is just the trivial Lie algebra
Cg. Furthermore, the exponential map Cg −→ X is a group homomorphism, which
is locally a diffeomorphism. The image is an open subgroup of the connected group
X, and hence the exponential map is surjective. This means that X is isomorphic
to a quotient group Cg/Λ, where Λ is a discrete closed subgroup of Cg. Since X
is compact, Λ must be a lattice. That is the natural map

R⊗Z Λ −→ Cg

is an isomorphism. We summarise:

Theorem 0.5. Any connected, compact, complex Lie group is Cg/Λ, where Λ ⊂
Cg is a lattice.

Remark 0.6. Theorem 0.5 justifies the terminology of Definition 0.3. By Theo-
rem 0.5 a connected, compact, complex Lie group is Cg/Λ, which is nothing other
than a 2g–dimensional real torus with a complex structure. Hence we call these
complex tori.

Now we come to the question of how many different complex tori are there.
The answer is clear. Two complex tori Cg/Λ and Cg/Λ′ will agree if there is a
linear transformation in GL(g, C) taking Λ to Λ′. If we choose a basis for Λ we can
always, up to a linear transformation in GL(g, C), assume that g elements of this
basis are the standard basis vectors for Cg. Our freedom in varying Λ amounts
to the freedom in selecting the other g basis vectors. The space of choices is an
open subset of {Cg}g = Cg2

. There are g2 “degrees of freedom” in choosing a
g–dimensional complex torus.

Definition 0.7. A complex torus is called an abelian variety if it can be given the
structure of an algebraic variety. Equivalently, this means it can be embedded as
a complex analytic submanifold of projective space.

How many complex tori are abelian varieties? One classical way to answer the
problem is using Theta functions. We briefly explain.

If X admits an embedding into projective space then it must have a line bundle
on it, with plenty of sections. Pulling back the line bundle by the exponential map
Cg −→ X we get a holomorphic line bundle on Cg, but all such bundles are trivial.
The sections of the line bundle on X pull back to sections of the trivial bundle
(that is, functions) on Cg, with certain periodicity properties. These functions
have been studied classically as Theta functions.

2



Without giving much detail, Theta functions are constructed as infinite sums. If
z ∈ Cg and Ω is a symmetric g×g matrix over C with a positive definite imaginary
part, we can form the sum

Θ(Ω, z) =
∑

n∈Zg

expπi
(

tnΩn + 2 tnz
)

If we fix Ω and view this as a function in z we get one of our sections of holomorphic
line bundles on Cg. The point we want to make is that, as we vary the parameter
Ω over the symmetric g×g matrices, the dimension of the parameter space is only
g(g +1)/2. There is only a g(g +1)/2–dimensional space of g–dimensional abelian
varieties. Therefore most complex tori do not admit the structure of algebraic
varieties.

The physics literature is divided on whether abelian varieties should be admitted
as Calabi–Yau manifolds. From the point of representation of quivers, some of
the most interesting examples come from elliptic curves, which are 1–dimensional
abelian varieties. Undoubtedly the quiver theoretic statements one can make about
the categories of sheaves over elliptic curves (equivariant with respect to the action
of suitable automorphisms) all generalise to higher dimensional abelian varieties.

An elliptic curve admits an involution, which is nothing other than the map
taking x ∈ X to −x ∈ X. Much has been made of the quiver representations
giving the category of equivariant sheaves on X. There is no reason why this
should not generalise to higher dimension.

If σ : X −→ X is the involution taking x ∈ X to −x ∈ X, one can study the
variety X/σ. If X is a curve then X/σ is nothing other than P1, in particular X/σ
is smooth. In higher dimensions X/σ is singular. But the singularities of X/σ
are not too bad and are well understood. For example if X is a surface (that is,
2–dimensional) then X/σ has exactly 16 singular points. A minimal resolution of
these 16 points gives an Enriques surface. It is not quite Calabi–Yau, but almost.
The sheaf Ωg

X is not trivial, but {Ωg
X}

2 = Ωg
X ⊗ Ωg

X is. That is, there is an
isomorphism {Ωg

X}
2 ' OX . In other words the Serre functor

S(−) = (−)⊗ Ωg
X [g].

is not a shift, but
S2(−) = (−)⊗ {Ωg

X}
2[2g]

is a shift.
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