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In the mid-1980s Pierre Vogel introduced a cohomology theory that associates
to each pair (M,N) of modules over an associative ring A groups Êxt

n

A(M,N)
defined for every n ∈ Z, which vanish when either M or N has finite projective
dimension. The first published account is in [5], and different constructions were
independently found by Benson and Carlson [2] and by Mislin [8]. Kropholler’s
survey [6, §4] contains background and details. Known as stable cohomology, this
theory contains as a special case Tate’s cohomology theory for modules over a
finite group G (namely, Êxt

n

ZG(Z, N) = Ĥ(G, N), where ZG is the group ring), as
well as its extension by Buchweitz [3] to two-sided noetherian Gorenstein rings.

Little is known about the meaning or the properties of stable cohomology out-
side of the original context of group representations. One reason for that may be
the fact that the stable groups, and the multiplicative structures they support, are
not readily amenable to computations through classical techniques.

We develop new approaches to their computation and present applications to
commutative algebra. For the rest of this text, R denotes a commutative local ring
with residue field k. Historical precedents indicate that considerable ring theoretic
information on R is reflected in the homological behavior of k, so we focus on the
stable cohomology of that module.

The classical Auslander-Buchsbaum-Serre theorem characterizes regular local
rings as the local rings of finite global dimension. In particular, when R is regular
all functors Êxt

n

R(−,−) are trivial. We prove a strong converse:

1. If Êxt
n

R(k, k) = 0 for a single n ∈ Z, then R is regular.

When R is Gorenstein and M is finitely generated, Êxt
n

R(M,N) can be com-
puted from a complete resolution of M , which is a complex of finite free R-modules.
It follows that if N is finitely generated as well, then so is Êxt

n

R(M,N) for each
n ∈ Z. No characterization of Gorenstein rings is known in terms of the numbers
rankk Extn

R(k, k), so the next result comes as a surprise:

2. If rankk Êxt
n

R(k, k) < ∞ for a single n ∈ Z, then R is Gorenstein.

The statements above concern R-module structures, but their proofs use the
fact that E = ExtR(k, k) and S = ÊxtR(k, k) are graded k-algebras, linked by a
canonical homomorphism ι : E → S. The structure of E has been the subject of
numerous investigations. The structure of S is a major topic of the talk.

When R is regular, 1. yields S = 0. Martsinkovsky [7] proved that for singular
rings ι is injective. We reprove this as part of the next result, where Σ denotes
the translation functor and E acts canonically on I = Homk(E , k). This theorem
leads to an effective procedure for checking the finiteness condition in 2.
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3. If R is singular, then there is an exact sequence

0 −→ E ι−−→ S −→
∞∐

i=d−1

(Σ−iI)µi+1
−→ 0

of graded left E-modules, where d = depth R and µi = rankk Exti
R(k,R).

One measure of the singularity of R is provided by a non-negative number,
codepthR = edim R − depth R, where edim R denotes the minimal number of
generators of m and depth R the depth of the ring. One has codepthR = 0 precisely
when R is regular. The condition codepthR ≤ 1 characterizes hypersurface rings.
Their stable cohomology algebra, determined by Buchweitz [3], satisfies:

4. When R is a hypersurface, S = E [ϑ−1], where ϑ ∈ E2 is a central non-zero-
divisor and E/(ϑ) is an exterior algebra on edim R generators of degree 1.

Except for the special case of group algebras of finite abelian groups, little is
known about the structure of S for local rings R having codepthR ≥ 2.

Our results on the subject involve the number

depth E = inf{n ∈ Z | Extn
E(k, E) 6= 0}.

Clearly, one always has depth E ≥ 0. When R is regular, the k-algebra E is finite
dimensional, so depth E = 0. The converse also holds, but this time for a non-
trivial reason. Indeed, a fundamental structure theorem, due to Milnor and Moore,
André, and Sjödin, shows that E is the universal enveloping algebra of a graded Lie
algebra πR. If R is singular, then π2

R 6= 0, so the Poincaré-Birkhoff-Witt theorem
implies depth E ≥ 1; see [1] for details on πR. Félix et al. [4] pioneered the use of
depth E in the study of the structure of E . We show that this invariant provides
also a lot of information on the structure of the k-algebra S.

To describe the structure of S we use the subset

N = {τ ∈ S | E> iτ = 0 for some i ≥ 0} .

For instance, if codim R = 1, then 4. shows that depth E = 1 and N = 0. From
the next result a completely different picture emerges ‘in general’.

5. If R is a Gorenstein ring and one of the following conditions holds:
(a) depth E ≥ 2; or
(b) codepthR ≥ 2, and E> 1 contains a central non-zero-divisor,

then N is a two-sided ideal of S, such that

S = ι(E)⊕N and N 2 = 0 .

The theorem applies in many cases. For example, we prove that (a) holds when
R is Gorenstein and codim R = 3; when R has minimal multiplicity; when R is a
localization of a graded Gorenstein Koszul algebra; or when R is a tensor product
of singular Gorenstein algebras over a field. Condition (b) is known to apply to
all complete intersection rings R with codepthR ≥ 2.
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However, there exist examples of Gorenstein rings for which depth E = 1 and
E> 1 does not contain non-zero central elements. The structure of their stable
cohomology algebra is not known at present.

Our results on the structure of the stable cohomology algebra S = ÊxtR(k, k)
for a Gorenstein ring R are similar to—and partly motivated by—results of Benson
and Carlson [2] on the structure of the Tate cohomology algebra Ĥ(G, k) for a finite
group G. The similarity is rather unexpected, as the cohomology algebra H(G, k)
is always noetherian, while the absolute cohomology algebra E = ExtR(k, k) is
noetherian precisely when R is complete intersection.

The structure of the algebra S when R is not Gorenstein is the subject of work
in progress. We have found out that in some cases S can be described in terms of
ι(E) and N , as in 5., but that fundamentally new phenomena also occur.
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