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Let G be a finite group, and let k be an algebraically closed field of charac-
teristic p. Then the cohomology ring H∗(G, k) = Ext∗kG(k, k) is a Noether-
ian graded commutative k-algebra, so we can form the maximal ideal spectrum
VG = max spec H∗(G, k). This is a closed homogeneous affine variety, and was
studied extensively by Quillen [6, 7]. If M is a finitely generated kG-module then
there is a ring homomorphism

H∗(G, k) M⊗k−−−−−→ Ext∗kG(M,M),

and the support variety VG(M) is defined to be the subvariety of VG determined
by the kernel of this homomorphism. Support varieties have been investigated
extensively by Carlson and others.

If p is a homogeneous prime ideal in H∗(G, k) corresponding to a closed homo-
geneous irreducible subvariety V of VG, then there is a kappa module κp = κV ,
introduced by Benson, Carlson and Rickard [1], with the following properties:

(i) V ⊆ VG(M) ⇐⇒ κV ⊗k M is not projective,
(ii) κV is idempotent, in the sense that κV ⊗k κV ∼= κV ⊕ (projective), and
(iii) κV is usually not finite dimensional.
The modules κV were used by Benson, Carlson and Rickard in [1] to develop

a theory of varieties for infinitely generated kG-modules. Instead of associating a
single variety to M , we associate a collection of subvarieties of VG:

VG(M) = {V ⊆ VG | κV ⊗k M is not projective}.

For example, VG(κV ) = {V }. One of the most important properties of this variety
theory is the tensor product formula

VG(M ⊗k N) = VG(M) ∩ VG(N).

This, together with the statement that VG(M) = ∅ if and only if M is projective,
are what make the variety theory useful.

The purpose of the joint work with Greenlees was to determine the cohomology
of these modules κV . It turns out that it is more sensible to ask about Tate coho-
mology. The answer, together with some consequences, is given by the following
theorem.

Theorem (Benson and Greenlees [2]). (i) The Tate cohomology of the kappa
modules is given by

Ĥ∗(G, κV ) ∼= Ip[d].

Here, Ip denotes the injective hull of H∗(G, k)/p in the category of graded
modules over H∗(G, k), and d is the dimension of the variety V (i.e., the
Krull dimension of H∗(G, k)/p).
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(ii) The kappa modules are the representing objects for the Matlis dual of Tate
cohomology:

HomkG(M,κV ) ∼= HomH∗(G,k)(Ĥ∗(G, M), Ip[d]);

these representing objects were investigated in [3].
(iii) The modules κV are pure injective—there are no phantom maps into them.
(iv) Ex̂t

∗
kG(κV , κV ) ∼= H∗(G, k)

∧

p = lim←−
n

H∗(G, k)/pn.

The extraordinary thing about the theorem is that its proof involves translating
to the context of modules over E∞ ring spectra and solving the problem there.
The context is as follows. Let BG be the classifying space of G, so that ΩBG ' G.
The Rothenberg–Steenrod construction gives for any space X a quasiisomorphism
between the differential graded algebras R EndC∗(ΩX)(k) and C∗(X; k). In par-
ticular, for a finite group G this gives R EndkG(k) ' C∗(BG; k). Writing R for
R EndkG(k) and C for C∗(BG; k), the following diagram of categories and functors
explains the route we took:

Mod(kG) //

&&NNNNNNNNNNN
D(kG)

R HomkG(k,−)
//

��

D(Rop)
−⊗L

Rkoo ' // D(C)

StMod(kG)

Here, D(kG) stands for the derived category of all chain complexes of kG-modules.
Similarly, D(Rop) is the derived category obtained from the homotopy category
of differential graded right R-modules by inverting quasi-isomorphisms. Since
R ' Rop, this is equivalent to the derived category formed from the differential
graded left R-modules. We regard C (or rather, the Eilenberg–Mac Lane spectrum
of C) as an E∞ ring spectrum; here, E∞ means “commutative and associative up
to all higher homotopies.” This allows us, for example, to take two objects A and
B in D(C) and regard A ⊗L

C B as another object in D(C), just as we can regard
the tensor product of two modules over a commutative ring as another module
over the same ring. For this purpose, it is essential to be working in a category of
spectra in which the smash product is commutative and associative up to coherent
natural isomorphism, and not just up to all higher homotopies; there are nowadays
a number a candidates for such a category, and we chose to work in the framework
of Elmendorf, Kř́ıž, Mandell and May [5].

Another construction requiring the E∞ structure is localization at a prime ideal
in the homotopy. Since π∗C = H−∗(G, k), we can form the localization Cp, and
then use tensor products to apply a stable Koszul type construction with respect
to a homogeneous system of parameters in p. This construction gives the image
in D(C) of a suitable lift to D(kG) of the kappa module κp in StMod(kG). This
construction can therefore be regarded as a sort of local cohomology object in
D(C) for the prime p. The statement that its cohomology is injective is a sort of
Gorenstein duality for Cp.
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The statement that C is Gorenstein in the appropriate sense appeared in the
work of Dwyer, Greenlees and Iyengar [4]. The usual proof that localization at a
prime ideal of a Gorenstein ring gives a Gorenstein ring no longer works in this
context, because it relies on the characterization of Gorenstein via finite injective
dimension, which doesn’t make much sense in this context. So proving that Cp

is Gorenstein went via a different route. We applied Grothendieck duality with
respect to a normalization coming from an embedding of G in SU(n), and proved
the corresponding dual statement.

To summarize, the proof involves translating the original problem from modular
representation theory into the language of modules over an E∞ ring spectrum from
algebraic topology, and then using methods from commutative algebra to solve the
problem there. The level of machinery involved is formidable, but the hope is that
other problems in modular representation theory will succumb to a similar route.
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