Maximal orthogonal subcategories of triangulated categories satisfying Serre duality

OSAMU IYAMA

1. MOTIVATION

The classical Auslander correspondence gives a bijection between the set of Moritaequivalence classes of representation-finite finite-dimensional algebras Λ and that of finite-dimensional algebras Γ with gl. dim $\Gamma \leq 2$ and dom. dim $\Gamma \geq 2$. Our motivation comes from a higher dimensional generalization [5] of the Auslander correspondence in Theorem 1.2.

Definition 1.1. Let **T** be a triangulated category (resp. a full subcategory of abelian category) and $n \ge 0$. For a functorially finite full subcategory **C** of **T**, put

$$\begin{aligned} \mathbf{C}^{\perp_n} &:= \{ X \in \mathbf{T} \mid \text{Ext}^i(\mathbf{C}, X) = 0 \text{ for any } i \ (0 < i \le n) \}, \\ ^{\perp_n} \mathbf{C} &:= \{ X \in \mathbf{T} \mid \text{Ext}^i(X, \mathbf{C}) = 0 \text{ for any } i \ (0 < i \le n) \}. \end{aligned}$$

We call **C** a maximal *n*-orthogonal subcategory of **T** if $\mathbf{C} = \mathbf{C}^{\perp_n} = {}^{\perp_n}\mathbf{C}$ holds [4].

By definition, \mathbf{T} is a unique maximal 0-orthogonal subcategory of \mathbf{T} .

Theorem 1.2. For any $n \ge 1$, there exists a bijection between the set of equivalence classes of maximal (n-1)-orthogonal subcategories \mathbb{C} of $\operatorname{mod} \Lambda$ with additive generators M and finite-dimensional algebras Λ , and the set of Moritaequivalence classes of finite-dimensional algebras Γ with gl. dim $\Gamma \le n+1$ and dom. dim $\Gamma \ge n+1$. It is given by $\mathbb{C} \mapsto \Gamma := \operatorname{End}_{\Lambda}(M)$.

Important examples of maximal orthogonal subcategories appear in the work of Buan-Marsh-Reineke-Reiten-Todorov on cluster categories [1], that of Geiß-Leclerc-Schröer on preprojective algebras [3], and in considerations of invariant subrings of finite subgroups G of $\operatorname{GL}_d(k)$ (see [4]). Let us find some kind of higher dimensional analogy of Auslander-Reiten theory by considering maximal orthogonal subcategories.

2. TRIANGULATED CATEGORIES

In this section, let **T** be a triangulated category with a Serre functor S, and **C** a maximal (n-1)-orthogonal subcategory of **T**.

Theorem 2.1 ([6]). (1) $S_n := S \circ [-n]$ gives an autoequivalence of **C**.

(2) **C** has "Auslander-Reiten (n + 2)-angles", i.e. any $X \in \mathbf{C}$ has a complex

$$S_n X \xrightarrow{f_n} C_{n-1} \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_1} C_0 \xrightarrow{f_0} X$$

which is obtained by glueing triangles $X_{i+1} \longrightarrow C_i \xrightarrow{f_i} X_i \longrightarrow X_{i+1}[1], 0 \le i < n$, with $X_0 = X, X_n = S_n X, C_i \in \mathbf{C}$ and the following sequences

are exact.

$$\mathbf{C}(-, S_n X) \xrightarrow{\cdot f_n} \mathbf{C}(-, C_{n-1}) \xrightarrow{\cdot f_{n-1}} \cdots \xrightarrow{\cdot f_1} \mathbf{C}(-, C_0) \xrightarrow{\cdot f_0} J_{\mathbf{C}}(-, X) \longrightarrow 0$$
$$\mathbf{C}(X, -) \xrightarrow{f_0} \mathbf{C}(C_0, -) \xrightarrow{f_1 \cdot} \cdots \xrightarrow{f_{n-1} \cdot} \mathbf{C}(C_{n-1}, -) \xrightarrow{f_n \cdot} J_{\mathbf{C}}(S_n X, -) \longrightarrow 0$$

It is quite interesting to study the relationship among all maximal (n-1)orthogonal subcategories of **T**. In the rest of this section, assume that **T** is *n*-*Calabi-Yau*, i.e. $S_n = 1$. For example, if Λ is a *d*-dimensional symmetric order, then <u>CM</u> Λ is (d-1)-Calabi-Yau.

Definition 2.2. Assume that **C** satisfies the strict no-loop condition, i.e. for any $X \in \text{ind } \mathbf{C}, X \notin \text{add} \bigoplus_{i=1}^{n-1} C_i$ holds in Theorem 2.1, (2). Define a full subcategory $\mu_{X,i}(\mathbf{C})$ of **T** by

 $\operatorname{ind} \mu_{X,i}(\mathbf{C}) := (\operatorname{ind} \mathbf{C} \setminus \{X\}) \cup \{X_i\} \quad (X \in \operatorname{ind} \mathbf{C}, i \in \mathbf{Z}/n\mathbf{Z})$

where X_i is the term of the triangle in Theorem 2.1, (2). This can be regarded as a higher dimensional generalization of the Fomin-Zelevinsky mutation in [1] and [3].

Theorem 2.3 ([6]). Assume that \mathbf{C} satisfies the strict no-loop condition. For any $X \in \text{ind } \mathbf{C}$, $\{\mu_{X,i}(\mathbf{C}) \mid i \in \mathbf{Z}/n\mathbf{Z}\}$ is the set of all maximal (n-1)-orthogonal subcategories of \mathbf{T} containing ind $\mathbf{C} \setminus \{X\}$.

2.4. It is an interesting question when transitivity holds in \mathbf{T} , i.e. the set of all maximal (n-1)-orthogonal subcategories of \mathbf{T} is transitive under the action of mutations defined in Definition 2.2. It is known that transitivity holds for cluster categories \mathbf{T} [1], and $\mathbf{T} = \text{CM }\Lambda$ for the Veronese subring Λ of degree 3 of k[[x, y, z]] (see [8]).

3. Derived equivalence

It is suggestive to relate our question in 2.4 to Van den Bergh's generalization [7] of the Bondal-Orlov conjecture [2] in algebraic geometry, which asserts that all (commutative or non-commutative) crepant resolutions of a normal Gorenstein domain have the same derived category. Let us generalize the concept of Van den Bergh's non-commutative crepant resolutions [7] of commutative normal Gorenstein domains to our situation.

3.1. Let Λ be an *R*-order which is an isolated singularity. We call $M \in CM\Lambda$ a *NCC resolution* of Λ if $\Lambda \oplus Hom_R(\Lambda, R) \in \operatorname{add} M$ and $\Gamma := \operatorname{End}_{\Lambda}(M)$ is an *R*-order with gl. dim $\Gamma = d$. We have the remarkable relationship below between NCC resolutions and maximal (d-2)-orthogonal subcategories [5].

Proposition. Let $d \ge 2$. Then $M \in CM \Lambda$ is a NCC resolution of Λ if and only if add M is a maximal (d-2)-orthogonal subcategory of CM Λ .

3.2. We conjecture that the endomorphism rings $\operatorname{End}_{\Lambda}(M)$ are derived equivalent for all maximal (n-1)-orthogonal subcategories add M of CM Λ . This is an analogy of the Bondal-Orlov and Van den Bergh conjecture by 3.1, and true for n = 2.

Theorem ([5]). Let $\mathbf{C}_i = \operatorname{add} M_i$ be a maximal 1-orthogonal subcategory of CM Λ and $\Gamma_i := \operatorname{End}_{\Lambda}(M_i)$, i = 1, 2. Then Γ_1 and Γ_2 are derived equivalent.

Corollary 3.3 ([5, 6]). All NCC resolutions of Λ are derived equivalent if

(1) $d \leq 3$, or

(2) Λ is a symmetric order and transitivity holds in <u>CM</u>A (2.4).

References

- [1] A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov: *Tilting theory and cluster combinatorics*, preprint.
- [2] A. Bondal, D. Orlov: Semiorthogonal decomposition for algebraic varieties, preprint.
- [3] C. Geiß, B. Leclerc, J. Schröer: Rigid modules over preprojective algebras, preprint.
- [4] O. Iyama: Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories, preprint.
- [5] O. Iyama: Higher dimensional Auslander correspondence, preprint.
- [6] O. Iyama: Maximal orthogonal subcategories of triangulated categories satisfying Serre duality, preprint.
- [7] M. Van den Bergh: Non-commutative crepant resolutions. The legacy of Niels Henrik Abel, 749–770, Springer, Berlin, 2004.
- [8] Y. Yoshino: Rigid Cohen-Macaulay modules over a three dimensional Gorenstein rings, preprint.