Maximal orthogonal subcategories of triangulated categories satisfying Serre duality
 Osamu Iyama

1. Motivation

The classical Auslander correspondence gives a bijection between the set of Moritaequivalence classes of representation-finite finite-dimensional algebras Λ and that of finite-dimensional algebras Γ with gl. $\operatorname{dim} \Gamma \leq 2$ and dom. $\operatorname{dim} \Gamma \geq 2$. Our motivation comes from a higher dimensional generalization [5] of the Auslander correspondence in Theorem 1.2.

Definition 1.1. Let \mathbf{T} be a triangulated category (resp. a full subcategory of abelian category) and $n \geq 0$. For a functorially finite full subcategory \mathbf{C} of \mathbf{T}, put

$$
\begin{array}{rl}
\mathbf{C}^{\perp_{n}} & :=\left\{X \in \mathbf{T} \mid \operatorname{Ext}^{i}(\mathbf{C}, X)=0 \text { for any } i(0<i \leq n)\right\}, \\
\perp_{n} & \mathbf{C}
\end{array}:=\left\{X \in \mathbf{T} \mid \operatorname{Ext}^{i}(X, \mathbf{C})=0 \text { for any } i(0<i \leq n)\right\} .
$$

We call \mathbf{C} a maximal n-orthogonal subcategory of \mathbf{T} if $\mathbf{C}=\mathbf{C}^{\perp_{n}}={ }^{\perp_{n}} \mathbf{C}$ holds [4].

By definition, \mathbf{T} is a unique maximal 0 -orthogonal subcategory of \mathbf{T}.
Theorem 1.2. For any $n \geq 1$, there exists a bijection between the set of equivalence classes of maximal $(n-1)$-orthogonal subcategories \mathbf{C} of $\bmod \Lambda$ with additive generators M and finite-dimensional algebras Λ, and the set of Moritaequivalence classes of finite-dimensional algebras Γ with $\mathrm{gl} . \operatorname{dim} \Gamma \leq n+1$ and $\operatorname{dom} . \operatorname{dim} \Gamma \geq n+1$. It is given by $\mathbf{C} \mapsto \Gamma:=\operatorname{End}_{\Lambda}(M)$.

Important examples of maximal orthogonal subcategories appear in the work of Buan-Marsh-Reineke-Reiten-Todorov on cluster categories [1], that of Geiß-Leclerc-Schröer on preprojective algebras [3], and in considerations of invariant subrings of finite subgroups G of $\mathrm{GL}_{d}(k)$ (see [4]). Let us find some kind of higher dimensional analogy of Auslander-Reiten theory by considering maximal orthogonal subcategories.

2. Triangulated categories

In this section, let \mathbf{T} be a triangulated category with a Serre functor S, and \mathbf{C} a maximal ($n-1$)-orthogonal subcategory of \mathbf{T}.

Theorem $2.1([6]) . \quad$ (1) $S_{n}:=S \circ[-n]$ gives an autoequivalence of \mathbf{C}.
(2) \mathbf{C} has "Auslander-Reiten $(n+2)$-angles", i.e. any $X \in \mathbf{C}$ has a complex

$$
S_{n} X \xrightarrow{f_{n}} C_{n-1} \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_{1}} C_{0} \xrightarrow{f_{0}} X
$$

which is obtained by glueing triangles $X_{i+1} \longrightarrow C_{i} \xrightarrow{f_{i}} X_{i} \longrightarrow X_{i+1}[1]$, $0 \leq i<n$, with $X_{0}=X, X_{n}=S_{n} X, C_{i} \in \mathbf{C}$ and the following sequences

$$
\begin{aligned}
& \quad \text { are exact. } \\
& \mathbf{C}\left(-, S_{n} X\right) \xrightarrow{\cdot f_{n}} \mathbf{C}\left(-, C_{n-1}\right) \xrightarrow{\cdot f_{n-1}} \cdots \xrightarrow{\cdot f_{1}} \mathbf{C}\left(-, C_{0}\right) \xrightarrow{\cdot f_{0}} J_{\mathbf{C}}(-, X) \longrightarrow 0 \\
& \mathbf{C}(X,-) \xrightarrow{f_{0} \cdot} \mathbf{C}\left(C_{0},-\right) \xrightarrow{f_{1} \cdot} \cdots \xrightarrow{f_{n-1} \cdot} \mathbf{C}\left(C_{n-1},-\right) \xrightarrow{f_{n} \cdot} J_{\mathbf{C}}\left(S_{n} X,-\right) \longrightarrow 0
\end{aligned}
$$

It is quite interesting to study the relationship among all maximal $(n-1)$ orthogonal subcategories of \mathbf{T}. In the rest of this section, assume that \mathbf{T} is n -Calabi-Yau, i.e. $S_{n}=1$. For example, if Λ is a d-dimensional symmetric order, then $\underline{\mathrm{CM}} \Lambda$ is $(d-1)$-Calabi-Yau.
Definition 2.2. Assume that \mathbf{C} satisfies the strict no-loop condition, i.e. for any $X \in \operatorname{ind} \mathbf{C}, X \notin \operatorname{add} \bigoplus_{i=1}^{n-1} C_{i}$ holds in Theorem 2.1, (2). Define a full subcategory $\mu_{X, i}(\mathbf{C})$ of \mathbf{T} by

$$
\text { ind } \mu_{X, i}(\mathbf{C}):=(\text { ind } \mathbf{C} \backslash\{X\}) \cup\left\{X_{i}\right\} \quad(X \in \operatorname{ind} \mathbf{C}, i \in \mathbf{Z} / n \mathbf{Z})
$$

where X_{i} is the term of the triangle in Theorem 2.1, (2). This can be regarded as a higher dimensional generalization of the Fomin-Zelevinsky mutation in [1] and [3].
Theorem 2.3 ([6]). Assume that \mathbf{C} satisfies the strict no-loop condition. For any $X \in \operatorname{ind} \mathbf{C},\left\{\mu_{X, i}(\mathbf{C}) \mid i \in \mathbf{Z} / n \mathbf{Z}\right\}$ is the set of all maximal $(n-1)$-orthogonal subcategories of \mathbf{T} containing ind $\mathbf{C} \backslash\{X\}$.
2.4. It is an interesting question when transitivity holds in \mathbf{T}, i.e. the set of all maximal $(n-1)$-orthogonal subcategories of \mathbf{T} is transitive under the action of mutations defined in Definition 2.2. It is known that transitivity holds for cluster categories $\mathbf{T}[1]$, and $\mathbf{T}=\mathrm{CM} \Lambda$ for the Veronese subring Λ of degree 3 of $k[[x, y, z]]$ (see [8]).

3. Derived equivalence

It is suggestive to relate our question in 2.4 to Van den Bergh's generalization [7] of the Bondal-Orlov conjecture [2] in algebraic geometry, which asserts that all (commutative or non-commutative) crepant resolutions of a normal Gorenstein domain have the same derived category. Let us generalize the concept of Van den Bergh's non-commutative crepant resolutions [7] of commutative normal Gorenstein domains to our situation.
3.1. Let Λ be an R-order which is an isolated singularity. We call $M \in \mathrm{CM} \Lambda$ a $N C C$ resolution of Λ if $\Lambda \oplus \operatorname{Hom}_{R}(\Lambda, R) \in \operatorname{add} M$ and $\Gamma:=\operatorname{End}_{\Lambda}(M)$ is an R-order with gl. $\operatorname{dim} \Gamma=d$. We have the remarkable relationship below between NCC resolutions and maximal $(d-2)$-orthogonal subcategories [5].

Proposition. Let $d \geq 2$. Then $M \in \mathrm{CM} \Lambda$ is a $N C C$ resolution of Λ if and only if add M is a maximal ($d-2$)-orthogonal subcategory of CM Λ.
3.2. We conjecture that the endomorphism rings $\operatorname{End}_{\Lambda}(M)$ are derived equivalent for all maximal ($n-1$)-orthogonal subcategories add M of $\mathrm{CM} \Lambda$. This is an analogy of the Bondal-Orlov and Van den Bergh conjecture by 3.1, and true for $n=2$.

Theorem ([5]). Let $\mathbf{C}_{i}=$ add M_{i} be a maximal 1-orthogonal subcategory of $\mathrm{CM} \Lambda$ and $\Gamma_{i}:=\operatorname{End}_{\Lambda}\left(M_{i}\right), i=1,2$. Then Γ_{1} and Γ_{2} are derived equivalent.
Corollary 3.3 ([5, 6]). All NCC resolutions of Λ are derived equivalent if
(1) $d \leq 3$, or
(2) Λ is a symmetric order and transitivity holds in $\underline{\mathrm{CM} \Lambda}$ (2.4).

References

[1] A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov: Tilting theory and cluster combinatorics, preprint.
[2] A. Bondal, D. Orlov: Semiorthogonal decomposition for algebraic varieties, preprint.
[3] C. Geiß, B. Leclerc, J. Schröer: Rigid modules over preprojective algebras, preprint.
[4] O. Iyama: Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories, preprint.
[5] O. Iyama: Higher dimensional Auslander correspondence, preprint.
[6] O. Iyama: Maximal orthogonal subcategories of triangulated categories satisfying Serre duality, preprint.
[7] M. Van den Bergh: Non-commutative crepant resolutions. The legacy of Niels Henrik Abel, 749-770, Springer, Berlin, 2004.
[8] Y. Yoshino: Rigid Cohen-Macaulay modules over a three dimensional Gorenstein rings, preprint.

