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The Ringel-Hall algebra H(A) of a finitary abelian category A is the free abelian
group on the isomorphism classes of A endowed with the multiplication whose
structure constants are given by the Hall numbers fZ

XY , which count the number
of subobjects of Z isomorphic to X and such that Z/X is isomorphic to Y , cf. [1].
Thanks to Ringel’s famous theorem [6] [7], for each simply laced Dynkin diagram
∆, the positive part of the Drinfeld-Jimbo quantum group Uq(∆) (cf. e.g. [4]) is
obtained as the (generic, twisted) Ringel-Hall algebra of the abelian category of
finite-dimensional representations of a quiver ~∆ with underlying graph ∆. Since
Ringel’s discovery, it has been pointed out by several authors, cf. e.g. [3], that an
extension of the construction of the Ringel-Hall algebra to the derived category
of the representations of ~∆ might yield the whole quantum group. However, if
one tries to mimic the construction of H(A) for a triangulated category T by
replacing short exact sequences by triangles, one obtains a multiplication which
fails to be associative, cf. [2]. A solution to this problem has been proposed by
Bertrand Toën in his recent preprint [8]. He obtains an explicit formula1 for the
structure constants φZ

XY of an associative multiplication on the rational vector
space generated by the isomorphism classes of any triangulated category T which
appears as the perfect derived category of a dg category T over a finite field all
of whose Hom-complexes have homology of finite total dimension. The resulting
Q-algebra is the derived Hall algebra. Toën’s formula for the structure constants
reads as follows:

φZ
XY =

∑
f

|Aut(f/Z)|−1
∏
i>0

|Ext−i(X, Z)|(−1)i

|Ext−i(X, X)|(−1)i+1
,

where f ranges over the set of orbits of the group Aut(X) in the set of morphisms
f : X → Z whose cone is isomorphic to Y , and Aut(f/Z) denotes the stabilizer of
f under the action of Aut(X). Toën’s proof of associativity is inspired by methods
from the study of higher moduli spaces [11] [9] [10] and by the homotopy theoretic
approach to K-theory [5]. It remains to be investigated if and how the derived
Hall algebra of the category of representations of ~∆ over a finite field is related to
the quantum group Uq(∆). In any case, it seems likely that Toën’s construction
will prove influential in the study of Ringel-Hall algebras.
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