On the growth of the Coxeter transformations of derived-hereditary algebras

José Antonio de la Peña (joint work with Helmut Lenzing)

For a finite dimensional k-algebra A of finite global dimension, the Coxeter transformation φ_A is an automorphism of the Grothendieck group $K_0(A)$. Moreover, for any complex X^{\bullet} in the bounded derived category $D(A) := D^b(\text{mod } A)$ of finite dimensional A-modules, we have $[X^{\bullet}]\varphi_A = [\tau_{D(A)}X^{\bullet}]$, where $\tau_{D(A)}$ is the automorphism of D(A) given by the Auslander-Reiten translation. The characteristic polynomial $\chi_A(T)$ of φ_A , called the Coxeter polynomial and the corresponding spectral radius $\rho(\varphi_A) = \{\|\lambda\| : \lambda \in \text{Spec } \varphi_A\}$ control the growth behavior of φ_A and hence of $\tau_{D(A)}$. Clearly, χ_A and $\rho(\varphi_A)$ are invariant under derived equivalences of the algebra A and provide natural links between the representation theory of finite dimensional algebras and other theories: the theory of Lie algebras, the theory of C^* -algebras, the spectral theory of graphs and the theory of knots and links, among other topics.

In the representation theory of algebras several cases have been extensively studied. For a hereditary algebra $A = k[\vec{\Delta}]$ associated to a finite quiver $\vec{\Delta}$ without oriented cycles, either Δ is Dynkin or affine and $\rho(\varphi_A) = 1$, or A is of wild type and $\rho(\varphi_A)$ is a simple root of the Coxeter polynomial; moreover, if A is wild for any non-preprojective indecomposable module X, the sequence of vectors $([\tau_A^n X])_{n \in \mathbb{N}}$ grows exponentially with ratio $\rho(\varphi_A)$, where τ_A denotes the Auslander-Reiten translation in the module category mod A. Moreover, if A is wild, we have $\rho(\varphi_B) < \rho(\varphi_A)$ for any algebra $B = k[\vec{\Delta}']$ where Δ' is a proper full subgraph of Δ . For a canonical algebra $A = A(\mathbf{p}, \boldsymbol{\lambda})$, associated to a weight sequence $\mathbf{p} = (p_1, \ldots, p_t)$ of positive integers and a parameter sequence $\boldsymbol{\lambda} = (\lambda_3, \ldots, \lambda_t)$ of pairwise distinct non-zero elements from the base field k, the K-theory is well understood. In this case $\rho(\varphi_A) = 1$, even while A is a one-point extension B[M] of the hereditary star $B = \mathbb{T}_{p_1,\ldots,p_t}$

which has spectral radius $\rho(\varphi_B)$ arbitrarily large. In case A is wild, that is $\mathbb{T}_{p_1,\dots,p_t}$ is not Dynkin or affine, the growth of τ_A is more complicated than in the hereditary case, since there are indecomposable A-modules X and Y for which $([\tau_A^n X])_n$ and

 $([\tau_A^{-n}Y])_n$ grow exponentially with $\rho(\varphi_B)$ while $([\tau_A^{-n}X])_n$ and $([\tau_A^nY])_n$ grow linearly.

We consider the case of an algebra A derived equivalent to a hereditary algebra $k[\vec{\Delta}]$. These algebras may be obtained by a finite sequence of tilting processes starting from $k[\vec{\Delta}]$. Moreover, if Δ is of Dynkin or affine type, the construction of A and its Auslander-Reiten quiver is well described. In general, φ_A is conjugate to $\varphi_{k[\vec{\Delta}]}$, hence if Δ is of wild type, $\rho(\varphi_A)$ is a simple root of $\chi_A(T)$. On the other hand, we show simple examples of derived hereditary algebras A and B, with B a full convex subcategory of A and $\rho(\varphi_B) > \rho(\varphi_A)$. We give conditions on a B-module M such that, for the one-point extension A = B[M], the inequality $\rho(\varphi_B) \leq \rho(\varphi_A)$ is satisfied. Namely, we prove that such a module should be derived-directing, that is, M = F(X) for X a direct sum of directing complexes in $D(k[\vec{\Delta}])$ and $F: D(k[\vec{\Delta}]) \to D(A)$ an equivalence of triangulated categories.

We describe all possible one-point extensions B[M], of certain representationfinite algebras B derived equivalent to wild hereditary algebras, by an indecomposable B-module M. For modules which are not derived-directing, we find algebras A = B[M] which are not derived canonical or derived tame or wild hereditary; nevertheless, the spectral radius $\rho(\varphi_A)$ of the Coxeter polynomial is 1, but not an eigenvalue of φ_A . This new class of algebras will be further studied.

References

- M. Barot and H. Lenzing. One-point extensions and derived equivalences. J. Algebra 264 (2003) 1–5.
- [2] W. Geigle and H. Lenzing. A class of weighted projective curves arising in representation theory of finite dimensional algebras. In Singularities, representation of algebras and vector bundles. Springer LNM 1273 (1987) 265–297.
- W. Geigle and H. Lenzing. Perpendicular categories with applications to representations and sheaves. J. Algebra 144 (1991) 273–343.
- [4] D. Happel. Auslander-Reiten triangles in derived categories of finite dimensional algebras. Proc. Amer. Math. Soc. 112 (1991) 641–648.
- [5] H. Lenzing and J. A. de la Peña. Supercanonical algebras. Algebra 282 (2004) 298-348.
- [6] H. Lenzing and J. A. de la Peña. A link between knot theory and representations of finite dimensional algebras. To appear.
- [7] J. A. de la Peña. Periodic Coxeter matrices. Linear Alg. Appl. 365 (2003) 135–142.
- [8] C. C. Xi. On wild hereditary algebras with small growth numbers. Communications in Algebra 18 (1990) 3413–3422.