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Let Q = (Q0, Q1) be a finite quiver, and let d ∈ NQ0 be a dimension vector. A
year ago I proved:

Theorem 1. There exists a polynomial aQ
d (t) ∈ Z[t] such that, for any finite field

k, the evaluation aQ
d (|k|) equals the number of isomorphism classes of absolutely

simple representations S of kQ of dimension vector d (i.e. k ⊗k S is a simple
representation of kQ).

Computer experiments show that the nature of these polynomials is rather
mysterious. However, a special value has a simple interpretation:

Theorem 2. If dim d > 1, the polynomial aQ
d (t) has a zero at t = 1, and aQ

d (t)

t−1

∣∣∣
t=1

equals the number of cyclic equivalence classes of primitive cycles in Q of weight
d.

A cycle ω in Q is of weight d if it passes di times through each vertex i ∈ Q0.
It is called primitive if it is not a proper power of another cycle. The equivalence
relation is cyclic rotation of paths.

The proof works as follows:
Step 1: Let Rd(Q) =

⊕
(α:i→j)∈Q1

Hom(Cdi ,Cdj ) be the variety of complex
representations of Q of dimension vector d, on which the algebraic group Gd :=∏

i∈Q0
GLdi

(C) acts by base change. The projective space PRd(Q) contains an
open subset U corresponding to the simple representations, which admits a geo-
metric quotient PMd(Q) := U/Gd, a smooth, but non-projective complex variety.

By Theorem 1 and some properties of `-adic cohomology, the value aQ
d (t)

t−1

∣∣∣
t=1

equals

the Euler characteristic in cohomology with compact support χc(PMd(Q)). This
reduces the theorem to a topological statement.

Step 2: The Borel localization formula in equivariant cohomology gives the fol-
lowing: given a torus action on a complex variety, the Euler characteristic χc is
preserved under passage to the fixed point set. Here we have an action of the
torus TQ = (C∗)Q1 on Rd(Q) by rescaling of arrows, which passes to an action on
PMd(Q). It thus suffices to compute (the Euler characteristic of) PMd(Q)Tq .

Step 3: Given an indivisible vector λ ∈ NQ1, define a quiver Qλ (an almost
universal abelian covering of Q) with set of vertices Q0 × ZQ1/Zλ and arrows
(α, µ) : (i, µ) → (j, µ + eα) for all (α : i → j) ∈ Q1 and all µ ∈ ZQ1/Zλ. Given
d ∈ NQ0, consider dimension vectors d̃ ∈ N(Qλ)0 such that

∑
µ d̃i,µ = di for all

i ∈ Q0.

Proposition. The fixed point set PMd(Q)TQ is isomorphic to the disjoint union⋃
λ,d̃ PMd̃(Qλ) running over all λ and d̃ as above.
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By additivity of Euler characteristic and Step 2, χc(PMd(Q)) equals the sum∑
λ,d̃ χc(PMd̃(Qλ)).

Step 4: The theorem can now be proved by induction on |Q0|, assuming in each
step w.l.o.g. that supp(d) = Q and that Q is connected. The reduction process
ends with quivers Q such that either PMd(Q) = ∅, or Q is an Ãn-quiver with
cyclic orientation, and di = 1 for all i ∈ I, in which case PMd(Q) is a single point,
thus of Euler characteristic 1. To count how many times this quiver is produced
in the reduction process, its arrows have to be labelled (up to cyclic permutation)
by arrows of the original quiver Q which form a primitive cycle. This proves
Theorem 2.

This principle of proof may be called microscopy for two reasons: on the
one hand, the iterated application of localization ”zooms” into the moduli space
PMd(Q) of simple representations. On the other hand, simples belonging to the
fixed point set PMd(Q)TQ possess an inner structure (they lift to a simple repre-
sentation of some Qλ), so the proof also ”looks at simples under a microscope”.
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