On the finitistic dimension conjecture CHANGCHANG XI

1. INTRODUCTION

Given an artin algebra A, the finitistic dimension of A is defined to be the supremum of the projective dimensions of the finitely generated left A-modules of finite projective dimension. The famous **finitistic dimension conjecture** says that for any artin algebra A the finitistic dimension of A is finite. This conjecture was proposed 45 years ago and still remains open, and has been related to at least five other homological conjectures (see the last 6 conjectures of the total 13 conjectures in the book [4]):

Strong Nakayama conjecture [7]: If M is a non-zero module over an artin algebra A, then there is an integer $n \ge 0$ such that $\operatorname{Ext}_{A}^{n}(M, A) \neq 0$.

Generalized Nakayama conjecture [2]: If $0 \to {}_{A}A \to I_0 \to I_1 \to \dots$ is a minimal injective resolution of an artin algebra A, then any indecomposable injective is a direct summand of some I_j . Equivalently, if M is a finitely generated A-module such that $\operatorname{add}(A) \subseteq \operatorname{add}(M)$ and $\operatorname{Ext}^i_A(M, M) = 0$ for all $i \ge 1$, then M is projective.

Nakayama conjecture [15]: If all I_j in a minimal injective resolution of an artin algebra A, say $0 \to {}_{A}A \to I_0 \to I_1 \to \dots$, are projective, then A is self-injective.

Gorenstein symmetry conjecture: Let A be an artin algebra. If the injective dimension of $_AA$ is finite, then the injective dimension of A_A is finite.

In general, all the above conjectures are still open. They have the following wellknown relationship: The finitistic dimension conjecture \implies the strong Nakayama conjecture \implies the generalized Nakayama conjecture \implies the Nakayama conjecture. And, the finitistic dimension conjecture \implies the Gorenstein symmetry conjecture.

In this talk I shall report on some new developments attacking the finitistic dimension conjecture. Our idea to approach the conjecture is to use a chain of subalgebras with certain radical conditions. Let us introduce the following notion:

- **Definition.** (1) Given an artin algebra A, we say that the *left representation* distance of A, denoted by lrep. dis(A), is the minimum of the lengths of chains of subalgebras $A = A_0 \subseteq A_1 \subseteq \cdots \subseteq A_s$ such that $rad(A_i)$ is a left ideal in A_{i+1} for all i and that A_s is representation-finite. Here we have denoted the Jacobson radical of A by rad(A).
 - (2) A homomorphism $f: B \longrightarrow A$ between two algebras A and B is said to be *radical-full* if $rad(A) = rad(_BA)$.

Note that the left representation distance of an artin algebra is always finite by [19] and invariant under Morita equivalences. Every surjective homomorphism is radical-full. Note that if B is a subalgebra of an artin algebra A, the inclusion map being radical-full does not imply that rad(B) is a left ideal in A.

2. Main results

In this section we shall summarize some new results in the recent papers [19, 20]. For some known results on finitistic dimension conjecture we refer to [3, 9, 10, 8, 11, 16] and many other papers. (I apologize that I could not display all literature here.)

Our main results are the following.

Theorem 1. Let A be an artin algebra.

- (1) If lrep. dis $(A) \leq 2$, then the finitistic dimension conjecture is true for A.
- (2) Let B be a subalgebra of A such that rad(B) is a left ideal of A and that the inclusion map is radical-full. If the global dimension of A is at most 4, then the finitistic dimension conjecture is true for B.

We may also use a chain of factor algebras to bound the finitistic dimension. In this direction, we have the following result.

Theorem 2. Let A be an artin algebra, and let I and J be two ideals in A with $IJ \operatorname{rad}(A) = 0$. If A/I and A/J are representation-finite, then the finitistic dimension conjecture is true for A.

The proofs of Theorem 1 and Theorem 2 are based on the following lemmas.

Lemma 1. Suppose B is a subalgebra of A such that rad(B) is a left ideal in A. Then, for any B-module X and integer $i \ge 2$, there is a projective A-module Q and an A-module Z such that $\Omega^i_B(X) \simeq \Omega_A(Z) \oplus Q$ as A-modules, where Ω_B stands for the first syzygy over the algebra B.

Lemma 2 ([11]). For any artial algebra A there is a function Ψ from the finitely generated A-modules to the non-negative integers such that

- (1) $\Psi(M) = \text{proj.dim}(M)$ if M has finite projective dimension.
- (2) For any natural number n, $\Psi(\bigoplus_{j=1}^{n} M) = \Psi(M)$.
- (3) For any A-modules X and Y, $\Psi(X) \leq \Psi(X \oplus Y)$.
- (4) If $0 \to X \to Y \to Z \to 0$ is an exact sequence in A-mod such that the projective dimension of Z is finite, then $\Psi(Z) \leq \Psi(X \oplus Y) + 1$.

Based on the above results, there are many elementary questions, for example, if the left representation distance of A is 3, could we prove the finitistic dimension conjecture for A? For more information and the details of the proofs of the above main results we refer to the papers [19, 20]. Preprints can be downloaded from http:/math.bnu.edu.cn/~ccxi/.

The research work is supported by the CFKSTIP(704004) and the Doctor Program Foundation, Ministry of Education of China; and the NSF of China.

References

 M. Auslander, Representation dimension of artin algebras. Queen Mary College Mathematics Notes, Queen Mary College, London, 1971.

- [2] M. Auslander and I. Reiten, On a generalized version of the Nakayama conjecture. Proc. Amer. Math. Soc. 52 (1975), 69-74.
- [3] M. Auslander and I. Reiten, Applications of contravariantly finite subcategories. Adv. in Math. 85 (1990), 111-152.
- M. Auslander, I. Reiten and S. O. Smalø, Representation theory of Artin algebras. Cambridge University Press, 1995.
- [5] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings. Trans. Amer. Math. Soc. 95 (1960), 466-488.
- [6] F.U. Coelho and M.I. Platzeck, On the representation dimension of some classes of algebras. J. Algebra 275 (2004), no. 2, 615–628.
- [7] R. R. Colby and K. R. Fuller, A note on the Nakayama conjectures. Tsukuba J. Math. 14 (1990), 343-352.
- [8] K. Erdmann, T. Holm, O. Iyama and J. Schröer, Radical embeddings and representation dimension. Adv. Math. 185 (2004), no. 1, 159–177
- [9] E. L. Green, E. Kirkman and J. Kuzmanovich, Finitistic dimensions of finite-dimensional monomial algebras. J. Algebra 136 (1991), no. 1, 37–50.
- [10] E. L. Green and B.Zimmermann-Huisgen, Finitistic dimension of artin rings with vanishing radical cube. Math. Z. 206 (1991), 505-526.
- K. Igusa and G. Todorov, On the finitistic global dimension conjecture for artin algebras. Preprint, (2002), 1-4.
- [12] K. Igusa and D. Zacharia, Syzygy pairs in a monomial algebra. Proc. Amer. Math. Soc. 108 (1990), 601-604.
- [13] O. Iyama, Finiteness of representation dimension. Proc. Amer. Math. Soc. 131 (2003), no.4, 1011-1014.
- [14] Y. M. Liu and C. C. Xi , Constructions of stable equivalences of Morita type for finite dimensional algebras II. Math. Z. (to appear). Preprint is available at http://math.bnu.edu.cn/~ccxi/Papers/Articles/mstable2.pdf/
- [15] T. Nakayama, On algebras with complete homology. Abh. Math. Sem. Univ. Hamburg 22 (1958), 300-307.
- [16] Y. Wang, A note on the finitistic dimension conjecture. Comm. in Algebra 22 (1994), no. 7, 2525-2528.
- [17] A. Wiedemann, Integral versions of Nakayama and finitistic dimension conjectures. J. Algebra 170 (1994), no.2, 388-399.
- [18] C. C. Xi, On the representation dimension of finite dimensional algebras. J. Algebra 226 (2000), 332-346.
- [19] C. C. Xi, On the finitistic dimension conjecture I: related to representation-finite algebras. J. Pure and Appl. Alg. 193 (2004) 287-305. Erratum to "On the finitistic dimension conjecture I: related to representation-finite algebras. J. Pure and Appl. Alg. 193 (2004) 287-305". Preprint is available at http://math.bnu.edu.cn/~ccxi/Papers/Articles/correctumnew.pdf/.
- [20] C. C. Xi, On the finitistic dimension conjecture II: related to finite global dimension. Adv. in Math. (to appear), Preprint is available at http://math.bnu.edu.cn/~ccxi/Papers/Articles/finchain.pdf/.
- [21] C. C. Xi, Representation dimension and quasi-hereditary algebras. Adv. in Math. 168 (2002), 193-212.
- [22] K. Yamagata, Frobenius Algebras. In: Handbook of Algebra. Vol.1 (1996), 841-887.