Rigid Cohen-Macaulay modules over a three dimensional Gorenstein ring
 Yuji Yoshino

1. Main theorem

Let k be an algebraically closed field of characteristic zero, and let $S=k[[x, y, z]]$ be a formal power series ring in three variables x, y and z. The cyclic group $G=\mathbb{Z} / 3 \mathbb{Z}$ of order 3 acts linearly on S in such a way that

$$
x^{\sigma}=\zeta x, \quad y^{\sigma}=\zeta y, \quad z^{\sigma}=\zeta z,
$$

where σ is a generator of G and $\zeta \in k$ is a primitive cubic root of unity. We denote by R the invariant subring of S by this action of G. It is easy to see that

$$
R=k[[\{\text { monomials of degree three in } x, y, z\}]],
$$

which is often called (the completion of) the Veronese subring of degree three. It is known and is easy to prove that R is a Gorenstein complete local normal domain that has an isolated singularity.

The action of G gives a G-graded structure on S such as

$$
S=S_{0} \oplus S_{1} \oplus S_{2},
$$

where each S_{j} is the R-module of semi-invariants that is defined as

$$
S_{j}=\left\{f \in S \mid f^{\sigma}=\zeta^{j} f\right\} .
$$

Note that $S_{0}=R$. It is known that $S_{j}(0 \leqq j \leqq 2)$ are maximal Cohen-Macaulay modules over R, and in particular they are reflexive R-modules of rank one, whose classes form the divisor class group of R;

$$
\mathrm{Cl}(R)=\left\{\left[S_{0}\right],\left[S_{1}\right],\left[S_{2}\right]\right\} .
$$

In particular, any maximal Cohen-Macaulay module of rank one over R is isomorphic to one of $S_{j}(0 \leqq j \leqq 2)$.

It is not difficult to see that the category $\mathrm{CM}(R)$ of maximal Cohen-Macaulay modules over R is of wild representation type. Actually, one can construct a family of nonisomorphic classes of indecomposable maximal Cohen-Macaulay modules over R in relation with the representations of the following quiver.

$$
Q=\left(\bullet \begin{array}{lll}
\bullet & \rightrightarrows & \bullet
\end{array}\right)
$$

In this talk I am interested in rigid maximal Cohen-Macaulay modules that are defined as follows:

Definition. An R-module M is called rigid if $\operatorname{Ext}_{R}^{1}(M, M)=0$. And we denote the full subcategory of $\bmod R$ consisting of all rigid maximal Cohen-Macaulay modules by \mathcal{C}.

By computation, the modules $S_{j}(0 \leqq j \leqq 2)$ and any of their syzygies and any of their cosyzygies are rigid (and indecomposable). Our main theorem is the following:

Theorem. Let \mathcal{S} be a sequence of indecomposable rigid maximal Cohen-Macaulay modules defined as follows:
$\mathcal{S}=\left(\cdots, \Omega^{-2} S_{1}, \Omega^{-2} S_{2}, \Omega^{-1} S_{1}, \Omega^{-1} S_{2}, S_{1}, S_{2}, \Omega^{1} S_{1}, \Omega^{1} S_{2}, \Omega^{2} S_{1}, \Omega^{2} S_{2}, \cdots\right)$.
Then any object in \mathcal{C} is isomorphic to a module of the following form:

$$
P^{a} \oplus Q^{b} \oplus R^{c}
$$

where a, b, c are nonnegative integers and $\{P, Q\}$ is a pair of two adjacent modules in the sequence \mathcal{S}.

2. Outline of Proof

The proof of the theorem is divided into the following four steps.

2.1. First Step (Approximation).

Let \mathcal{E} be the full subcategory of $\bmod R$ consisting of modules M which can be embedded in an exact sequence of the following type:

$$
(*) \quad 0 \longrightarrow S_{1}^{n} \longrightarrow S_{2}^{m} \oplus R^{\ell} \longrightarrow M \longrightarrow 0
$$

If $M \in \mathcal{E}$, then the sequence $(*)$ gives a right $\operatorname{add}_{R} S$-approximation of M that is, of course, right minimal.

Claim 1. Let M be an indecomposable object in \mathcal{C}. Suppose that M is isomorphic neither to S_{1} nor $\Omega^{-1} S_{2}$. Then M belongs to \mathcal{E}.

The claim means that $\operatorname{Ind}(\mathcal{C})=\operatorname{Ind}(\mathcal{C} \cap \mathcal{E}) \cup\left\{S_{1}, \Omega^{-1} S_{2}\right\}$.

2.2. Second Step (Rigidity).

Claim 2. Let M and M^{\prime} be objects in $\mathcal{C} \cap \mathcal{E}$. Suppose there are exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow S_{1}^{n} \xrightarrow{f} S_{2}^{m} \oplus R^{\ell} \longrightarrow M \longrightarrow S_{1}^{n^{\prime}} \xrightarrow{f^{\prime}} S_{2}^{m^{\prime}} \oplus R^{\ell^{\prime}} \longrightarrow M^{\prime} \longrightarrow 0 . \\
& 0 \longrightarrow
\end{aligned}
$$

If $n=n^{\prime}$ and $m=m^{\prime}$, then M and M^{\prime} are stably isomorphic to each other.

2.3. Third Step (Tate-Vogel cohomology).

The Tate-Vogel cohomology for maximal Cohen-Macaulay modules is defined as follows:

$$
\check{\operatorname{Ext}}_{R}^{i}(M, N)=\underline{\operatorname{Hom}}_{R}\left(\Omega^{i} M, N\right),
$$

for any $i \in \mathbb{Z}$ and $M, N \in \operatorname{CM}(R)$. We define

$$
e_{j}^{i}(M)=\operatorname{dim}_{k} \check{\operatorname{Ext}}_{R}^{i}\left(S_{j}, M\right)
$$

for any $i \in \mathbb{Z}, j \in G$ and $M \in \operatorname{CM}(R)$.

Claim 3. Let M be an object in $\mathcal{C} \cap \mathcal{E}$, and suppose there is an exact sequence:

$$
0 \longrightarrow S_{1}^{n} \longrightarrow S_{2}^{m} \oplus R^{\ell} \longrightarrow M \longrightarrow 0
$$

Then $n=e_{1}^{1}(M)$ and $m=e_{2}^{0}(M)$.
Now we define a mapping e from the isomorphism classes of modules in $\mathcal{C} \cap \mathcal{E}$ to nonnegative integral vectors $\mathbb{Z}_{\geqq 0}^{2}$ by

$$
e(M)=\left(e_{1}^{1}(M), e_{2}^{0}(M)\right)
$$

Note that it follows from Claim 2 that the mapping

$$
e: \mathcal{C} \cap \mathcal{E} / \cong \longrightarrow \mathbb{Z}_{\geqq 0}^{2}
$$

is an injection. Hence, to classify the objects in $\mathcal{C} \cap \mathcal{E}$, it is enough to determine the image of the mapping e.
Remark. Note that the Auslander-Reiten-Serre duality says that

$$
\operatorname{Ext}_{R}^{3}\left(\operatorname{Ext}_{R}^{i}(M, N), R\right) \cong \check{\operatorname{Ext}_{R}^{2-i}}(N, M),
$$

for any $i \in \mathbb{Z}$ and $M, N \in \operatorname{CM}(R)$. Therefore, the triangulated category $\underline{\mathrm{CM}}(R)$ is 2-Calabi-Yau.

2.4. Fourth Step (Root system).

Let H be the set of nonnegative integral vectors (x, y) with $x^{2}-3 x y+y^{2} \geqq 1$:

$$
H=\left\{(x, y) \in \mathbb{Z}_{\geqq 0}^{2} \mid x^{2}-3 x y+y^{2} \geqq 1\right\}
$$

It is easy to see that $H=H_{+} \cup H_{-}$where
$H_{+}=\left\{(x, y) \in \mathbb{Z}_{\geqq 0}^{2} \mid 2 x-(3+\sqrt{5}) y \geqq 0\right\}, \quad H_{-}=\left\{(x, y) \in \mathbb{Z}_{\geqq 0}^{2} \mid 2 x-(3-\sqrt{5}) y \leqq 0\right\}$, each of which is a semigroup. We can prove the following claim.
Claim 4. The image of the mapping e $: \mathcal{C} \cap \mathcal{E} \rightarrow \mathbb{Z}_{\geqq 0}^{2}$ is exactly H.
The main theorem follows from this claim with a little observation.

References

[1] Y. Yoshino, Rigid Cohen-Macaulay modules over a three dimensional Gorenstein ring, Preprint (in preparation), 2005.

