Rigid Cohen-Macaulay modules over a three dimensional Gorenstein ring

Yuji Yoshino

1. Main theorem

Let k be an algebraically closed field of characteristic zero, and let S = k[[x, y, z]] be a formal power series ring in three variables x, y and z. The cyclic group $G = \mathbb{Z}/3\mathbb{Z}$ of order 3 acts linearly on S in such a way that

$$x^{\sigma} = \zeta x, \quad y^{\sigma} = \zeta y, \quad z^{\sigma} = \zeta z,$$

where σ is a generator of G and $\zeta \in k$ is a primitive cubic root of unity. We denote by R the invariant subring of S by this action of G. It is easy to see that

 $R = k[[\{\text{monomials of degree three in } x, y, z\}]],$

which is often called (the completion of) the Veronese subring of degree three. It is known and is easy to prove that R is a Gorenstein complete local normal domain that has an isolated singularity.

The action of G gives a G-graded structure on S such as

$$S = S_0 \oplus S_1 \oplus S_2,$$

where each S_j is the *R*-module of semi-invariants that is defined as

$$S_j = \{ f \in S \mid f^\sigma = \zeta^j f \}$$

Note that $S_0 = R$. It is known that S_j $(0 \le j \le 2)$ are maximal Cohen-Macaulay modules over R, and in particular they are reflexive R-modules of rank one, whose classes form the divisor class group of R;

$$\operatorname{Cl}(R) = \{ [S_0], [S_1], [S_2] \}.$$

In particular, any maximal Cohen-Macaulay module of rank one over R is isomorphic to one of S_j $(0 \leq j \leq 2)$.

It is not difficult to see that the category CM(R) of maximal Cohen-Macaulay modules over R is of wild representation type. Actually, one can construct a family of nonisomorphic classes of indecomposable maximal Cohen-Macaulay modules over R in relation with the representations of the following quiver.

$$Q = \left(\bullet \implies \bullet \right)$$

In this talk I am interested in rigid maximal Cohen-Macaulay modules that are defined as follows:

Definition. An *R*-module *M* is called *rigid* if $\operatorname{Ext}^{1}_{R}(M, M) = 0$. And we denote the full subcategory of mod *R* consisting of all rigid maximal Cohen-Macaulay modules by \mathcal{C} .

By computation, the modules S_j $(0 \leq j \leq 2)$ and any of their syzygies and any of their cosyzygies are rigid (and indecomposable). Our main theorem is the following:

Theorem. Let S be a sequence of indecomposable rigid maximal Cohen-Macaulay modules defined as follows:

 $\mathcal{S} = (\cdots, \Omega^{-2}S_1, \ \Omega^{-2}S_2, \ \Omega^{-1}S_1, \ \Omega^{-1}S_2, \ S_1, \ S_2, \ \Omega^{1}S_1, \ \Omega^{1}S_2, \ \Omega^{2}S_1, \ \Omega^{2}S_2, \cdots).$

Then any object in ${\mathcal C}$ is isomorphic to a module of the following form:

$$P^a \oplus Q^b \oplus R^c$$
,

where a, b, c are nonnegative integers and $\{P, Q\}$ is a pair of two adjacent modules in the sequence S.

2. Outline of Proof

The proof of the theorem is divided into the following four steps.

2.1. First Step (Approximation).

Let \mathcal{E} be the full subcategory of mod R consisting of modules M which can be embedded in an exact sequence of the following type:

$$(*) \qquad 0 \longrightarrow S_1^n \longrightarrow S_2^m \oplus R^\ell \longrightarrow M \longrightarrow 0$$

If $M \in \mathcal{E}$, then the sequence (*) gives a right $\operatorname{add}_R S$ -approximation of M that is, of course, right minimal.

Claim 1. Let M be an indecomposable object in C. Suppose that M is isomorphic neither to S_1 nor $\Omega^{-1}S_2$. Then M belongs to \mathcal{E} .

The claim means that $\operatorname{Ind}(\mathcal{C}) = \operatorname{Ind}(\mathcal{C} \cap \mathcal{E}) \cup \{S_1, \Omega^{-1}S_2\}.$

2.2. Second Step (Rigidity).

Claim 2. Let M and M' be objects in $\mathcal{C} \cap \mathcal{E}$. Suppose there are exact sequences:

If n = n' and m = m', then M and M' are stably isomorphic to each other.

2.3. Third Step (Tate-Vogel cohomology).

The Tate-Vogel cohomology for maximal Cohen-Macaulay modules is defined as follows:

$$\operatorname{Ext}_{R}^{i}(M, N) = \operatorname{Hom}_{R}(\Omega^{i}M, N),$$

for any $i \in \mathbb{Z}$ and $M, N \in CM(R)$. We define

$$e_i^i(M) = \dim_k \check{\operatorname{Ext}}_R^i(S_j, M)$$

for any $i \in \mathbb{Z}$, $j \in G$ and $M \in CM(R)$.

Claim 3. Let M be an object in $\mathcal{C} \cap \mathcal{E}$, and suppose there is an exact sequence:

 $0 \longrightarrow S_1^n \longrightarrow S_2^m \oplus R^\ell \longrightarrow M \longrightarrow 0.$ Then $n = e_1^1(M)$ and $m = e_2^0(M)$.

Now we define a mapping e from the isomorphism classes of modules in $\mathcal{C} \cap \mathcal{E}$ to nonnegative integral vectors $\mathbb{Z}_{\geq 0}^2$ by

$$e(M) = (e_1^1(M), e_2^0(M)).$$

Note that it follows from Claim 2 that the mapping

$$e: \mathcal{C} \cap \mathcal{E} / \cong \longrightarrow \mathbb{Z}^2_{\geq 0}$$

is an injection. Hence, to classify the objects in $\mathcal{C} \cap \mathcal{E}$, it is enough to determine the image of the mapping e.

Remark. Note that the Auslander-Reiten-Serre duality says that

$$\operatorname{Ext}_{R}^{3}(\operatorname{\check{Ext}}_{R}^{i}(M,N),R) \cong \operatorname{\check{Ext}}_{R}^{2-i}(N,M),$$

for any $i \in \mathbb{Z}$ and $M, N \in CM(R)$. Therefore, the triangulated category $\underline{CM}(R)$ is 2-Calabi-Yau.

2.4. Fourth Step (Root system).

Let H be the set of nonnegative integral vectors (x, y) with $x^2 - 3xy + y^2 \ge 1$:

$$H = \{(x, y) \in \mathbb{Z}_{\geq 0}^2 \mid x^2 - 3xy + y^2 \ge 1\}$$

It is easy to see that $H = H_+ \cup H_-$ where

$$H_{+} = \{(x,y) \in \mathbb{Z}^{2}_{\geq 0} \mid 2x - (3 + \sqrt{5})y \geq 0\}, \quad H_{-} = \{(x,y) \in \mathbb{Z}^{2}_{\geq 0} \mid 2x - (3 - \sqrt{5})y \leq 0\}$$

each of which is a semigroup. We can prove the following claim.

Claim 4. The image of the mapping $e : \mathcal{C} \cap \mathcal{E} \to \mathbb{Z}^2_{\geq 0}$ is exactly H.

The main theorem follows from this claim with a little observation.

References

[1] Y. Yoshino, Rigid Cohen-Macaulay modules over a three dimensional Gorenstein ring, Preprint (in preparation), 2005.