QUASI-HEREDITARY ALGEBRAS: HOMOLOGICAL PROPERTIES

ROLF FARNSTEINER

Throughout, we let A be a finite-dimensional algebra over an algebraically closed field k!. We fix
a finite, partially ordered set (I, <) with (S(7));esr being a complete set of representatives for the
isomorphism classes of the simple A-modules. For each i € I, let P(i) and I(i) be the projective
cover and the injective hull of S(i), respectively. We will be working in the category mod A of finite-
dimensional A-modules. The Jordan-Holder multiplicity of S(i) in M will be denoted [M : S(i)].
As in [2], we consider the standard modules (A(i));er, satisfying

(a) Top(A(:)) = S(i) and [A(4):5(7)] = 1, as well as

(b) [A():S(7)] =0 for j £ 5.
The full subcategory of mod A consisting of the A-good modules will be denoted F(A). Thus, each
object M € F(A) affords a filtration, whose factors are standard modules. We let (M : A(i)) be
the multiplicity of A(7) in M. As usual, 24 denotes the Heller operator of mod A.

Definition. The algebra A is quasi-hereditary if

(a) each P(i) is A-good, and

(b) (P(i):A(i)) =1 and (P(i): A(j)) =0 for i £ j.
If, in addition, there exists a duality D : mod A — mod A with D(S(i)) = S(7), then A is called
a BGG-algebra.

Recall that Q4(A(7)) is A-good with filtration factors belonging to {A(¢) ; ¢ > i}, see [2, Lemma 1].

Proposition 1. Let A be quasi-hereditary. Then A has finite global dimension.

Proof. (1) Let modgy, A be the full subcategory of mod A consisting of the modules of finite projec-
tive dimension. Given an exact sequence

0) — M — M — M" — (0),

one of its terms belongs to modg, A whenever the other two terms do. Moreover, M € modg, A if
and only if Q4 (M) € modg, A for some n > 0.

Suppose there exists a standard module A(i) of infinite projective dimension, and let iy € I
be maximal subject to this property. Since Q4(A(7)) is A-good with filtration factors of the
form (A(£))¢>i,, the choice of ig implies that Q4(A(ip)) has finite projective dimension. Hence
A(ip) € modg, 4, a contradiction. We conclude that all standard modules belong to modg, A.

To show that S(i) € modg, A for all i € I, we assume that there exists a minimal element iy € I
such that S(i1) has infinite projective dimension. Since all composition factors of Rad(A(i1)) belong
to {S(¢) ; ¢ < i1}, we obtain Rad(A(i1)),A(i1) € modg, A. Consequently, S(i;) € modg, A, a
contradiction. As a result, all simple modules have finite projective dimension, so that A has finite
global dimension. O

Date: January 30, 2008.
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The definition of standard modules provides an upper triangular matrix (a;;); jer € Mat,(Z) with
a;; = 1 such that the classes [A(j)] and [S(7)] in the Grothendieck group Ko(A) are related via

A =Y aylsG)] Vel
el
As a result, {[A(i)] ; i € I} is a basis of Ky(A). Given i € I, we consider the unique Z-linear map
fi : Ko(A) — Z with f;([A(j)]) = 0i; for j € I. We may thus define
(M:A(0) = fi([M])
for an arbitray M € mod A. For M € F(A), this number coincides with the filtration multiplicity
defined before.

Theorem 2. Let A be a quasi-hereditary algebra.
(1) We have

(M:A(i) =) (—1)" dimy Extfy (M, V(i)
>0
for every M € mod A.
(2) If Ais a BGG-algebra, then
(M:A(i) = (—1)" dimy Ext’y (A(i), M)
>0
for every M € mod A.
Proof. (1) By the Euler-Poincaré principle, the map
N (=1)" dimy Ext’y (N, V(i)
>0

defines a Z-linear map g; : Ko(A) — Z. Owing to [2, Lemma 2], we obtain

9i([P(5)]) = dimg Homa(P(j), V(i) = (P(5): A7) = fi([P()))-
In view of Proposition 1, the set {[P(j)] ; j € I} is a basis of K(A), so that f; = g;. This implies
our assertion.
(2) As in (1), the map
N Y (—1)" dimy Ext’y (A(i), N)
£>0

defines a Z-linear map h; : Ko(A) — Z. Since A is a BGG-algebra, there exists a duality
D : mod A — mod A with D(S(7)) = S(i). Consequently, D induces the identity map on Ko(A).
Oberserving D(A(7)) = V(i) along with D being a duality, we obtain

hi([M]) = hi([D(M)]) = (=1)" dimy, Ext}y (A(i), D(M)) = > (=1)" dimy, Ext}y (M, D(A(7)))
£>0 £>0

= gi([M]) = fi([M])
for every M € mod A. O

Since M + dimy M also defines a homomorphism Ky(A) — Z, we have

dimy M = (M : A(i)) dimy, A(%)
el
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for every M € mod A. In the motivating examples, one usually knows the dimensions or the
characters of the standard modules A(7). Accordingly, the knowledge of the coefficients (S(j): A(7))
provides the dimensions or the characters of the simple modules.

Given ¢ < j € I, we define the distance between ¢ and j via

d(i,j):=max{n € Ng; Ji=ip<ig <---<in=7}

Lemma 3. Let A be quasi-hereditary. Then the following statements hold:

(1) Homa(A(i), A(j)) = (0) fori £ j.

(2) Let £ >0 and i & j. Then Ext%(A(i),S(5)) = (0) = Ext4 (A®), A(%)).

(3) Ifi<jandl>d(i,j), then Extg “A®G), S(5)) = (0) = Ext) (A®), AH)).
(= A@))

Proof. (1) If i £ j, then left-exactness of Hom 4
0= [A@):5(9)] = dimg Homa(P(i), A(j)) = dimy, Homa (A(2), A(j))-
(2) Suppose that i £ j. General theory yields
Ext} (A(1), 5(7)) = Exti (Qa(A(0), () V=1

Since Q4(A(i)) is A-good with filtration factors belonging to {A(n) ; n > i}, the vanishing of
Ext% (A(i), S(j)) follows by induction on ¢, with the case £ = 1 being a consequence of (1).

As A(3) has composition factors belonging to {S(m) ; m < 5}, we also obtain Ext% (A(i), A(j)) =
(0).

(3) We proceed by induction on d(i, j). If d(i,j) = 0, then ¢ = j and the assertion follows from
(2). Suppose that d(i,7) > 0 and £ > d(i,7). Given M € {A(j),S(j)}, we consider ¢ > i. If ¢ < j,
then d(q,j) < d(4,7), and the inductive hypothesis yields Exte_l(A(q),M) = (0). Alternatively,
q £ 7 and (2) gives the same result. Thanks to [2, Lemma 1], the module Q4(A(i)) is A-good with
filtration factors belonging to {A(q) ; ¢ > i}. Our foregoing observations imply

Exty (A(7), M) & Ext;  (Qa(A(0), M) = (0),
as desired. ]

We can express the above results in terms of certain polynomials.

Definition. Let A be a BGG-algebra. Given i < j € I, we consider the polynomial

d(i,g)—

Pji= > (~1)2E)" dimy Ext’y (A(0), SG)X 2 € Z[X3).

n>0

Corollary 4. Let A be a BGG-algebra. Then the following statements hold:
(1) Pi=1
(2) Ifi<yj, then deg(P; ;) < d(ig 2) !
(8) Ifi < j, then Pyy(1) = (=1) (”)(5(3):A(i))-

Proof. (1) In view of Lemma 3(2), we only have to compute dimy Hom 4(A(7), A(7)). Since Rad(A(7))
has composition factors S(j) with j < i, we have Homy4(A(4), Rad(A(i))) = (0), whence
1.

1 < dimyg Hom4 (A(i), A(7)) < dimg Homy4 (A(4), S(i)) =
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(2) Suppose that ¢ < j. Since Hom4(A(7), S(j)) = (0), part (3) of Lemma 3 gives

d(i,5) N
Piy= Y (~)%)" dimy Ext (A(0), SGHX 7,
n=1
so that deg(P; ;) < %
(3) This follows from Theorem 2. -

Remarks. (1) For blocks of the category O, Kazhdan and Lusztig [5] defined polynomials 15”
algorithmically and conjectured

Pyj(1) = (1) (S(5): A®0)).
Vogan showed that this conjecture is equivalent to PLJ =P ;.
(2) In the category of G,T-modules, values closely related to P; (1) occur as coefficients in a

formula that expresses the character of a simple module in terms of the (well-known) characters of
the baby Verma modules, see [4, (I1.9.9)].
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