SOME EXAMPLES OF BOUNDED RESOLUTIONS OVER RINGS WITH RADICAL CUBE (OR TO THE FOURTH POWER) ZERO

Some Questions and Some Answers. Compiled by D. Jorgensen for the Seminar Darstellungstheorie, Bielefeld, Juli 2009.

Question 1. (Eisenbud ~1976) Assume that R is commutative Noetherian local,

$$F: \cdots \to R^n \to R^n \to \cdots \to R^n \to 0$$

a minimal free resolution with constant Betti numbers. Then is F periodic of period ≤ 2 ?

Answer: NO, due to Gasharov–Peeva [1] (\sim 1990). Examples 1 and 1' are their original examples. See also Examples 2 and 2' below.

Example 1. Choose $0 \neq \alpha \in k$ (k a field) and let

$$B = B_{\alpha} = k[X_1, X_2, X_3, X_4] / I_{\alpha}$$

where I_{α} is generated by the 7 homogeneous quadratics

$$\alpha X_1 X_3 + X_2 X_3, \ X_1 X_4 + X_2 X_4, \ X_3^2, \ X_4^2, \ X_1^2, \ X_2^2, \ X_3 X_4$$

Then B_{α} has Hilbert polynomial $1 + 4t + 3t^2$ and

$$\dots \to B^2 \xrightarrow{\begin{pmatrix} x_1 & \alpha^i x_3 + x_4 \\ 0 & x_2 \end{pmatrix}} B^2 \xrightarrow{\begin{pmatrix} x_1 & \alpha^{i-1} x_3 + x_4 \\ 0 & x_2 \end{pmatrix}} B^2 \to \dots$$

is a resolution with constant Betti numbers 2, and of period $\circ(\alpha)$ if $\circ(\alpha) < \infty$, and aperiodic otherwise.

A k-basis for B_2 is given by x_1x_2 , x_1x_3 , x_1x_4 .

Example 1'. Choose $0 \neq \alpha \in k$ (k a field) and let

$$A = A_{\alpha} = k[X_1, X_2, X_3, X_4, X_5] / I_{\alpha}$$

where I_{α} is generated by the 10 homogeneous quadratics

$$\begin{aligned} \alpha X_1 X_3 + X_2 X_3, \ X_1 X_4 + X_2 X_4, \ X_3^2 + \alpha X_1 X_5 - X_2 X_5, \\ X_4^2 + X_1 X_5 - X_2 X_5, \ X_1^2, \ X_2^2, \ X_3 X_4, \ X_3 X_5, \ X_4 X_5, \ X_5^2 \end{aligned}$$

Then A_{α} is selfinjective and has Hilbert polynomial $1 + 4t + 4t^2 + t^3$. The same facts hold for the resolution

$$\cdots \to A^2 \xrightarrow{\begin{pmatrix} x_1 & \alpha^i x_3 + x_4 \\ 0 & x_2 \end{pmatrix}} A^2 \xrightarrow{\begin{pmatrix} x_1 & \alpha^{i-1} x_3 + x_4 \\ 0 & x_2 \end{pmatrix}} A^2 \to \cdots$$

as for the resolution in Example 1. Note that $B = A/(x_5)$, and a k-basis for $A_{\geq 2}$ is given by x_1x_2 , x_1x_3 , x_1x_4 , x_1x_5 , x_2x_5 , $x_1x_2x_5$.

Question 2. (Auslander ~19??) Assume that Λ is a finite dimensional algebra over a field k. For finitely generated $_{\Lambda}M$, does there exist an n = n(M) such that $\operatorname{Ext}^{i}_{\Lambda}(M, N) = 0$ for all $i \gg 0$ implies $\operatorname{Ext}^{i}_{\Lambda}(M, N) = 0$ for all $i \ge n$?

Answer: NO, due to Jorgensen–Sega [3] (2003).

Example 2. Take the same $B = B_{\alpha}$ as in Example 1, but consider the resolution

$$C: \dots \to B^2 \xrightarrow{\begin{pmatrix} x_1 & \alpha^i x_3 \\ x_4 & x_2 \end{pmatrix}} B^2 \xrightarrow{\begin{pmatrix} x_1 & \alpha^{i-1} x_3 \\ x_4 & x_2 \end{pmatrix}} B^2 \to \dots$$

This a complete resolution, meaning that the dual resolution $C^* = \text{Hom}_A(C, A)$ is also acyclic: $\text{H}(C^*) = 0$. Letting $N = B/(x_1 - x_2, x_1 - \alpha^q x_3, x_1 - x_4)$, the complex $C \otimes_B N$ has homology in precisely two consecutive degrees, depending on q, if C is aperiodic, and two consecutive periodic degrees if C is periodic. Letting M be an image in C or the dual of C, we get examples answering Auslander's question, as well as the analogous question for Tor(M, N).

Example 2'. Take the same $A = A_{\alpha}$ as in Example 1' and the matrices as in Example 2. Then the same conclusions as in Example 2 hold, this time using $N' = B/(x_1 - x_2, x_1 - \alpha^q x_3, x_1 - x_4, x_5)$.

Note. The resolutions in Examples 1 and 1' will not work to answer Question 2. There subsequently is a simpler non-commutative example answering Auslander's question in the negative due to Smal \emptyset [6], in which the Betti numbers are constant and equal to 1.

Question 3. (Avramov–Martsinkovsky, L. W. Christensen, et al \sim 1969) Assume R is Noetherian. In the definition of a module M of G-dimension zero (M is finitely generated with

- (1) the natural map $M \to M^{**}$ is an isomorphism
- (2) $\operatorname{Ext}_{R}^{i}(M, R) = 0$ for all i > 0
- (3) $\operatorname{Ext}_{R}^{i}(M^{*}, R) = 0$ for all i > 0

here $-^* = \operatorname{Hom}_R(-, R)$ are the conditions 1–3 independent?

Answer: YES, due to Jorgensen–Şega [4] (2004).

Example 3. Let $0 \neq \alpha \in k$ (k a field) be of infinite multiplicative order, and

$$A = A_{\alpha} = k[X_1, X_2, X_3, X_4]/I_{\alpha}$$

with I_{α} generated by the 7 homogeneous quadratics

$$X_1X_2 + \alpha X_2X_4, \ X_1X_3 + X_3X_4, \ X_1^2, \ X_1X_3 - X_2^2, \ X_1X_2 + X_3^2, \ X_4^2, \ X_2X_3$$

Then we have a minimal acyclic complex C of free modules of constant rank 2 to the right, and which blows up (grows exponentially) to the left:

$$\cdots \to A^{7} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{-2}x_{2} & -x_{3} & 0 & 0 & 0 & 0 \\ x_{3} & x_{4} & \alpha x_{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{1} & x_{2} & x_{3} & x_{4} \end{pmatrix} }_{A^{3}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{-1}x_{2} & x_{3}x_{4} \\ x_{3} & x_{4} & 0 \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3} & x_{4} \end{pmatrix}}_{A^{2}} \xrightarrow{\begin{pmatrix} x_{1} & \alpha^{i}x_{2} \\ x_{3$$

We have $H_n(C^*) = 0$ only for n in degrees occurring in the flat half of the complex C^* . Thus the answer to Question 3 comes by letting M be the image of any square matrices of sufficiently large i (any $i \ge 1$ actually works).

A basis for A_2 is given by x_1x_2 , x_1x_3 , x_1x_4 .

Question 4. (Avramov–Buchweitz ~1998) Assume that R is commutative Noetherian local. In a minimal totally acyclic complex of finitely generated free modules (i.e., a minimal complete resolution)

$$F \quad \dots \to F_1 \to F_0 \to F^0 \to F^1 \to \dots$$

do the sequences $\{\operatorname{rank} F_i\}_{i\geq 0}$ and $\{\operatorname{rank} F^i\}_{i\geq 0}$ grow symmetrically?

Answer: NO, due to Jorgensen–Sega [5] (2005).

Example 4. Let $0 \neq \alpha \in k$ (k a field) be of infinite multiplicative order, and

$$A = A_{\alpha} = k[X_1, X_2, X_3, X_4, X_5, X_6] / I_{\alpha}$$

where I_{α} is the ideal generated by the following 15 homogeneous quadratic polynomials:

$$\begin{split} X_6^2, \ X_2^2, \ X_2X_5, \ X_3^2, \ X_2X_4, \ X_1X_2, \ X_4X_5, \ X_5X_6 + X_3X_5, \ X_4X_6 + \alpha X_3X_4, \\ X_2X_6 - X_1X_4 - \alpha X_2X_3, \ X_5^2 - X_1X_4 - (\alpha - 1)X_2X_3, \ X_4^2 - X_1X_4 - X_1X_3, \\ X_1X_6 + X_1X_5 + \alpha X_3X_4, \ X_1X_5 - X_3X_4 + X_1X_3, \ X_1^2 + (\alpha + 1)X_2X_3 - X_3X_5. \end{split}$$

Then A is a selfinjective k-aglebra with Hilbert polynomial $1 + 6t + 6t^2 + t^3$.

We have a minimal totally acyclic complex C (so that $H(C^*) = 0$) of free modules of constant rank 2 to the right, and which blows up (grows exponentially) to the left:

$$\dots \to A^3 \xrightarrow{\begin{pmatrix} x_3 & x_5 & 0 \\ x_4 & x_6 & x_1 x_3 \end{pmatrix}} A^2 \xrightarrow{\begin{pmatrix} x_3 & x_5 \\ \alpha x_4 & x_6 \end{pmatrix}} A^2 \xrightarrow{\begin{pmatrix} x_3 & x_5 \\ \alpha^2 x_4 & x_6 \end{pmatrix}} \dots \to A^2 \xrightarrow{\begin{pmatrix} x_3 & x_5 \\ \alpha^2 x_4 & x_6 \end{pmatrix}} \dots$$

Of course the behavior is reversed for the totally acyclic complex C^* .

A basis for $A_{\geq 2}$ is given by x_1x_3 , x_1x_4 , x_2x_3 , x_3x_4 , x_3x_5 , x_3x_6 , $x_1x_3x_4$.

Question 5. (Christensen–Veliche ~ 2006) Assume that R a commutative Notherian local ring. In a minimal acyclic complex of finitely generated free modules

$$F \quad \dots \to F_1 \to F_0 \to F^0 \to F^1 \to \dots$$

does one always have $H_i \operatorname{Hom}_R(F, R) = 0$ for all $i \gg 0$?

Answer: NO, due to Hughes–Jorgensen–Sega [2] (2008).

Example 5. Let k be a field and

 $A = k[X_1, X_2, X_3, X_4, X_5]/I$

where I is the ideal generated by the following 11 homogeneous quadratic relations:

 $\begin{aligned} X_1^2, X_4^2, X_2X_3, X_1X_2 + X_2X_4, X_1X_3 + X_3X_4, \\ X_2^2, X_2X_5 - X_1X_3, X_3^2 - X_1X_5, X_4X_5, X_5^2, X_3X_5 \end{aligned}$

Then A has Hilbert polynomial $1 + 5t + 4t^2$, and

$$C: \qquad \cdots \to A^2 \xrightarrow{\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}} A^2 \xrightarrow{\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}} A^2 \to \cdots$$

Is a minimal acyclic complex of free modules of rank 2, and we have $H_n(C^*) \neq 0$ for all $n \in \mathbb{Z}$.

A k-basis of A is given by x_1x_2 , x_1x_3 , x_1x_4 , x_1x_5 .

Remark. All of the algebras in the above examples are Koszul.

References

- V. Gasharov, I. Peeva, Boundedness versus periodicity over commutative local rings, Trans. Amer. Math. Soc. 320 (1990), 569–580.
- [2] M. T. Hughes, D. A. Jorgensen, L. M. Şega, On acyclic complexes of free modules, Math. Scand. (to appear).
- [3] D. A. Jorgensen, L. M. Şega, Nonvanishing cohomology and classes of Gorenstein rings, Adv. Math. 188 (2004), 470–490.
- [4] D. A. Jorgensen, L. M. Şega, Independence of the total reflexivity conditions for modules, Algebr. Represent. Theory 9 (2006), 217–226.
- [5] D. A. Jorgensen, L. M. Şega, Asymmetric complete resolutions and vanishing of Ext over Gorenstein rings, Internat. Math. Res. Notices 2005, no. 56, 3459-3477
- [6] S. O. Smalø, Local limitations of the Ext functor do not exist, Bull. London Math. Soc. 38 (2006), no. 1, 97–98.