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1. Introduction

IN this paper, we present a framework for studying moduli spaces of finite
dimensional representations of an arbitrary finite dimensional algebra A
over an algebraically closed field k. (The abelian category of such
representations is denoted by mod-A.) Our motivation is twofold. Firstly,
such moduli spaces should play an important role in organising the
representation theory of wild algebras. Secondly, such moduli spaces can
be identified with moduli spaces of vector bundles on special projective
varieties. This identification is somewhat hidden in earlier work ([6],[7])
but has become more explicit recently ([4], [12]). It can now be seen to
arise from a ‘tilting equivalence’ between the derived category of mod-A
and the derived category of coherent sheaves on the variety.

It is well-established that mod-A is equivalent to the category of
representations of an arrow diagram, or ‘quiver’, Q by linear maps
satisfying certain ‘admissible’ relations. Thus, the problem of classifying
A-modules with a fixed class in the Grothendieck group Ky(mod-A),
represented by a ‘dimension vector’ «, is converted into one of classifying
orbits for the action of a reductive algebraic group GL(a) on a subvariety
Va(a) of the representation space (Q, a) of the quiver.

Now, the moduli spaces provided by classical invariant theory
((1], [18]) are not interesting in this context. This is because the classical
theory only picks out the closed GL(a)-orbits in V,(a), which corres-
pond to semisimple A-modules, and the quiver Q is chosen so that there
is only one semisimple A-module of each dimension vector. On the other
hand, we can apply Mumford’s geometric invariant theory, with the
trivial linearisation twisted by a character y of GL(«a), which restricts our
attention to an open subset of V,(a), consisting of semistable representa-
tions. Within this open set there are more closed orbits and the
corresponding algebraic quotient is then a more interesting moduli space.
In fact, this approach also has a classical flavour, since it involves the
relative (or semi-) invariants of the GL(a) action.

The main purpose of this paper is to show that the notions of
semistability and stability, that arise from the geometric invariant theory,
coincide with more algebraic notions, expressed in the language of
mod-A. Indeed, the definition is formulated for an arbitrary abelian
category as follows: |
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DerINmoN 1.1. Let o be an abelian category and 6: Ko(«#)— R an
additive function on the Grothendieck group. (We shall call 8 a character
of #.) An object M € o is called @-semistable if 6(M)=0 and every
subobject M’ = M satisfies O(M') =0. Such an M is called 6-stable if the
only subobjects M’ with 8(M') =0 are M and 0.

In the light of the relation to vector bundles, mentioned in the first
paragraph, it is important to note that this definition has as another
special case Mumford’s definition of stability for vector bundles on a
smooth projective curve [15] and its subsequent generalisation, as
p-stability, to other projective varieties [22].

The central result of the paper (Theorem 4.1 together with Proposi-
tions 4.2 and 5.2) shows that, when 0 takes integer values, there is an
associated character y, for GL(a) such that the algebraic quotient of
Vi(a) by GL(a) with respect to the linearisation y,, is a coarse moduli
space for families of @-semistable modules up to S-equivalence. The
notion of S-equivalence was originally introduced by Seshadri [21] for
vector bundles on curves. Two 6-semistable modules are S-equivalent if
they have the same composition factors in the full abelian subcategory of
6-semistable modules. The simple objects in this subcategory are the
0-stable modules.

We denote the moduli space thus constructed by #,(a, 8) and show
that it is a projective variety (Proposition 4.3), which may be a little
surprising, since it is constructed as the quotient of an affine variety.
General theory also implies that #,(a, 8) contains an open set 4, (a, 8)
which is a coarse moduli space for families of 8-stable modules up to
isomorphism. We show (Proposition 4.4) that if A is hereditary, then
A4 (a, 0) is nonempty for some 0 if and only if a is a ‘Schur root’ (as
defined in [9]). We also give a criterion (Proposition 5.3) for the existence
of a universal family over 4(a, 8). Finally, when k = C, we give a more
analytic construction of #,(a, 68) as a ‘symplectic quotient’ (or Marsden-
Weinstein reduction).

The paper is organised as follows. In Section 2, we present the main
results from geometric invariant theory in a form tailored to the
applications in the rest of the paper. In Section 3, we prove the central
result for representations of quivers. This is the key case, since there is no
interaction between the notions of stability and the relations which
determine the A-modules. In Section 4, we explain how the results of
Section 3 apply to an arbitrary algebra A and we prove some of the
additional properties of the moduli space mentioned above. In Section 5,
we discuss families of A-modules and show that #(,(a, ) is a moduli
space in the strict sense of the term. In Section 6, we describe the
symplectic quotient construction of the moduli space.
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General references for the material discussed in the paper are [2] and
[19] for the representation theory of algebras and quivers, [16] and [17]
for geometric invariant theory and moduli spaces, and [13] for symplectic
quotients. In addition, [14] contains much on the application of invariant
theory to representation theory.

2. A numerical criterion

In this section, we describe the version of Mumford’s numerical
criterion that applies when a reductive algebraic group G acts linearly on
a finite dimensional vector space ®. The polarising line bundle L,
required by geometric invariant theory, is necessarily trivial, but the lift
of the G-action to L can be given by an arbitrary character y of G. To
the best of our knowledge, an explicit description of this case (in
particular the statements of Propositions 2.5 and 2.6, which we subse-
quently need) does not appear in the literature and we feel that it merits
a separate explanation.

We shall write the action of G on & on the left as GXR—
R: (g, x)—>g - x. Given a character y: G — k™, we lift the G-action to
the trivial line bundle L as follows. On the total space of L™', written
explicitly as & Xk, G acts by g-(x,z)=(g -x, x '(g)z). An invariant
section of L” is then a function f(x)z" € k[® X k], where f(x) € k[®] is a
relative invariant of weight y”. Recall that a function f € k[%] is a
relative invariant of weight y if f(g-x)= x(g)f(x). (We shall write
k[R]°* for the space of such relatively invariant functions.)

In this case, Mumford’s definitions of semistability and stability can be
phrased as in Definition 2.1 below. We use the terms ‘y-semistable’/‘y-
stable’ to mean semistable/stable with respect to the linearisation
determined, as above, by the character 2.

Warning. We wish to allow the representation to have a kernel A, so
we adopt a variant of the definition of ‘stable’ which is a compromise
between Mumford’s original definition and the more commonly used one
which Mumford called ‘properly stable’.

DEeFINITION 2.1. (i) A point x € R is y-semistable if there is a relative
invariant f € k[®]%*" with n =1, such that f(x) #0.

(ii) A point x € R is y-stable if there is a relative invariant f € k[R]°*"
with n = 1, such that f(x) >0 and, further, dim G - x =dim G/A and the
G-action on {x € & | f(x) # 0} is closed.

Hence, the corresponding algebraic quotient of & by G, which we shall
denote by ®//(G, x) can be described as

RI(G, x) = Proj (51,30 klgf]a’”)
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which is projective over the ordinary quotient ®//G = Spec (k[®]°). In
particular, if k[R]° =k, then R//(G, x) is a projective variety.

The central point of geometric invariant theory, is that this quotient
has a more geometric description, as the quotient of the open set & of
x-semistable points by the equivalence relation: x ~y if and only if the
orbit closures G-x and G-y intersect (in ®7). We shall call two
semistable points or orbits identified by this relation ‘GIT equivalent’.
Since each orbit closure contains a unique closed orbit, the points of the
quotient are in one-one correspondence with the closed orbits in 7. In
particular, there is an open subset of the quotient corresponding to the
x-stable orbits, all of which are closed.

There is also a more geometric characterisation of when points are
semistable or stable, which uses the action of G lifted to & X k, i.e. the
total space of L™, as described above.

LEMMA 2.2. Lift x € R to a point £ = (x, z) € RX k with 2 #0. Then

(i) x is y-semistable if and only if the orbit closure G-£= RXk is
disjoint from the zero-section R X {0}. In particular, it is necessary
that y(A) = {1}.

(i) x is y-stable if and only if G - £ is closed and the stabiliser of £
contains A with finite index.

Proof. Use the fact that G is geometrically reductive, i.e. that disjoint
closed G-sets in affine space can be distinguished by G-invariant
functions.

Remark 2.3. The GIT equivalence relation on R can also be
described by: x ~y if and only if there are lifts £ and ¢ for which G - £
and G - § intersect (in ® X k). In particular, the orbits G - x which are
closed in & are precisely those whose lifted orbits G - £ are closed in
R X k.

Using Lemma 2.2, we obtain a version of Hilbert’s Lemma characteris-
ing semistable and stable points by the behaviour of their lifts under the
action of the one-parameter subgroups of G.

LeMMA 2.4. Let £ € RX k be a lift of x € R, as above. Then
(1) x is y-semistable if and only if, for all one-parameter subgroups A of
G, lim A(t) - £ ¢ R X {0}.
1—0

(ii) x is y-stable if and only if the only one-parameter subgroups A of G,
for which lim A(t) - £ exists, are in A.
1—0

Proof. Use the ‘fundamental theorem’ ([10] Theorem 1.4) that any
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closed G-set that meets the closure of a G-orbit contains a point in the
closure of some one-parameter subgroup orbit.

This result can be reformulated in terms of the original G action on &
by introducing the integral pairing between one-parameter subgroups A
and characters ¥, defined by (x, A)=m when y(A(t)) =¢". This yields
‘Mumford’s Numerical Criterion’.

PROPOSITION 2.5. A point x € R is y-semistable if and only if x(A) = {1}
and every one parameter subgroup A of G, for which im A(t) - x exists,
1—0

satisfies (x, A)=0. Such a point is y-stable if and only if the only
one-parameter subgroups A of G, for which 11m A(t) - x exists and
(x, A)=0, are in A.

It is this criterion that we will use to identify stable and semistable
representations of quivers. Note the similarity in form with Definition 1.1.
It will also be useful to characterise the GIT equivalence relation on
semistable points in terms of the original G-action on & and its one
parameter subgroups.

ProPOSITION 2.6. (i) An orbit G - x is closed in R if and only if, for
every one parameter subgroup A with (¥, A) =0, when the limit lim A(t) - x
exists, it is in G - x. =0

(i) If x,y e R, then x~y if and only if there are one parameter
subgroups A,, )«2 such that (x, A\)={x,A»)=0 and 11m A(@) - x and
hm Ay(1) - y are in the same closed G-orbit.

Proof. Use Remark 2.3 and the fundamental theorem used in Lemma
24.

3. Representations of quivers

We now use the results of the previous section to reinterpret
x-semistability, y-stability and GIT equivalence for representations of
quivers in the language of the abelian category of such representations.
We start by recalling some basics to fix notation.

A quiver Q is a diagram of arrows, specified combinatorially by two
finite sets Q, (of ‘vertices’) and Q, (of ‘arrows’) with two
maps h, t: Q;— Qy which indicate the vertices at the head and tail of
each arrow. A representation of Q consists of a collection of k-vector
spaces W,, for each v e Q,, together with k-linear maps ¢,: W,,—> W,,,
for each a € Q,. The dimension vector a € Z2° of such a representation
is given by a, =dim, W,. A map between representations (W,, ¢,) and
(U,, ¥.) is given by linear maps f,: W,— U,, for each v e Q, such that
fira®u = W, [, for each a € Q,. Such a map is an isomorphism if and only
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if each f, is. The abelian category of representations of Q will be denoted
by mod-kQ, since it is the same as the category of finite dimensional
representations of the path algebra kQ.

Having chosen vector spaces W, of dimension a,, the isomorphism
classes of representations of Q with dimension vector a are in natural
one-one correspondence with the orbits in the representation space

RQ, a) = GB Hom (W, Wis)-

aeQ

of the symmetry group

GL(a)= [ GL(W,)
veQp

acting by (g ¢). = gnd.gi'. Note that this contains the diagonal
one-parameter subgroup A ={(t1, ..., r1): t € k™} acting trivially.

We now wish to apply Propositions 2.5 and 2.6 to the action of GL(«)
on R(Q, a). We first note that the characters of GL(a) are given by

xo(g) = [ det(g,)™

veQo

for 8 e Z9. Such a function 8 can also be interpreted as a homomorph-
ism Ky(mod-kQ)— Z as follows. Let M = (U,, ) be a representation of
Q, set 9(M)=20,, dim U,, and observe that this is additive on short

exact sequences. The condition ygA)={1} becomes 2 6,a,=0, ie.
6(M) =0 if M has dimension vector a.

We next observe that one-parameter subgroups of GL(a) correspond
to filtrations. This requires a small modification of the argument in [14]
Proposition 4.3. Let A: k> — GL(a) be a one-parameter subgroup and,
for each v e Q,, make the decomposition

W, = @ W,

where A(t) acts on the weight space W{” as multiplication by ", and
define the filtrations

Wi = @ wim.

maxn

Under the action of A the components of the arrow maps ¢5™: W§' —
W™ are multiplied by ™" Hence, 11m A(t)¢, exists if and only if

o™ =0, for all m <n. This in turn happens if and only if ¢, gives a
map W — W{Z™, for all n, i.e. if and only if the subspaces W{™"
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determine subrepresentations M, of M, for all n. Thus a one-parameter
subgroup A, for which lim A(f)¢, exists, determines a filtration of M,
—0

2M2M,, 2

indexed by Z and such that M, =M for n<« 0 and M, =0 for n>0.
Furthermore, it is clear that every such ‘Z-filtration’ is associated to some
(not necessarily unique) one-parameter subgroup A for which hm A,
exists. This limit is then equal to

@Z(Wf;") (M))_ @ M, /M, .,

i.e. it is the graded representation associated to the filtration. Observe
also that the filtration determined by A is proper, i.e. some M, is neither
M nor 0, unless A is in A,

Finally, provided X 6,a, =0, the pairing (¥4 A) has a simple expres-

sion in terms of the filtration (M,), .z, namely

Ao A= D, 6, > ndimW®

ve Qo neZ

= > nb(M,/M,.,)

neZ

=2 6(M,).
nelZ
Note that the last equality requires the fact that 6(M,) =0, for all but
finitely many n.

ProrosiTION 3.1. A point in R(Q, a) corresponding to a representation
M e mod-kQ is ye-semistable (resp. xo-stable) if and only if M is
0-semistable (resp. 6-stable).

Proof. The ‘if’ part is now immediate from Proposition 2.5. For the
‘only if part, observe that a subrepresentation M'<M induces a
Z-filtration with M, = M’, for (any) one value of i{, and M,=M or 0,
otherwise. The filtration is proper if and only if M’ is proper. For a
corresponding one-parameter subgroup A, we have (xq, A) = 8(M').

Now for any map between O-semistable representations, the kernel,
image and cokernel of the map are all 8-semistable and hence the
O-semistable representations from an abelian subcategory of mod-kQ.
furthermore, the simple objects in this subcategory are precisely the
6-stable répresentations. Since this category is noetherian and artinian,
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the Jordan-Holder theorem holds ([21] Theorem 2.1) and so we call two
6-semistable representations ‘S-equivalent’ if they have the same com-
position factors in the category of 8-semistable representations. We can
thus use Proposition 2.6 to show that two @-semistable representations
are S-equivalent if and only if the corresponding points in #(Q, a) are
GIT equivalent.

ProrosrTioN 3.2. (i) A O-semistable representation M corresponds to a
GL(a)-orbit which is closed in ;(Q, a), if and only if M is a direct sum
of 0-stable modules.

(ii)) Two 6-semistable representations correspond to GIT equivalent
GL(a)-orbits if and only if they have filtrations with 6-stable quotients and
the same associated graded representation.

Proof. First observe that, if M is @-semistable, then a Z-filtration {M;}
corresponds to a one-parameter subgroup A with (x4 A) =0 if and only if
each M; is 8-semistable. Now recall the earlier observation that taking the
limit under a one-parameter subgroup corresponds to taking the as-
sociated graded representation of a filtration. Thus Proposition 2.6(i)
becomes: M is isomorphic to the associated graded of any filtration, in
particular a maximal filtration in which all the quotients are 8-stable.
Proposition 2.6(ii) immediately gives part (ii) above.

4. Representations of algebras

In this section, we adapt the results just proved for quivers to prove our
main theorem for an arbitrary finite dimensional algebra A. We first
explain the various correspondences mentioned in the statement of the
theorem.

Given any finite dimensional algebra A, the subcategory #, < mod-A
of projective A-modules is generated by a quiver Q, subject to certain
linear relations amongst its ‘paths’, i.e. formal composites of arrows. The
vertices of @ are in one-one correspondence with the isomorphism classes
of indecomposable projective modules. Given any M e mod-A, the
functor Hom, (—, M) restricted to %, determines and is determined by a
representation of Q. The module M can be recovered from this restricted
functor, because A € #,, while Hom, (A, M) = M with the natural action
of End, (A)=A. In this way, mod-A can be realised as an abelian
subcategory of mod-kQ. The vertices of Q are also in one-one correspon-
dence with the isomorphism classes of simple A-modules and thus, since
the Jordan—-Holder theorem holds in mod-A, the Grothendieck group
Ko(mod-A) is naturally the free abelian group generated by Q,. Hence an
integer-valued character 8 of mod-A is just an element of Z%, which
determines a character of GL(«a), as described in Section 3.
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THEOREM 4.1. Let A be a finite dimensional algebra over an algebrai-
cally closed field k and let Q be the associated quiver. Let M be a finite
dimensional A-module, a its dimension vector and x € R(Q, a) a point of
the representation space that corresponds to M. Let 0: Ky(mod-A)— Z be
a character of mod-A and xg: GL(a)— k™ the corresponding character of
GL(a).

Then x is a yg-semistable (resp. yo-stable) point for the action of GL(a)
on R(Q, a), if and only if M is a 8-semistable (resp. 6-stable) module.

Proof. We first note that mod-A, as a subcategory of mod-kQ, is
closed under taking arbitrary subobjects. Furthermore, a character 8 of
mod-A, being just an element of Z9°, extends to a character of mod-kQ,
which we shall also denote by 6. It is then clear that an A-module M is
6-semistable (resp. 8-stable) as an element of mod-A if and only if the
corresponding representation of Q is 8-semistable (resp. 8-stable) as an
element of mod-k£Q. But, by Proposition 3.1, this is in turn the case if and
only if the corresponding point x € R(Q, a) is ye-semistable (resp.
Xe-Stable).

We further observe that 6-semistable modules in mod-A are S-
equivalent in mod-A if and only if they are S-equivalent in mod-kQ. Then
Proposition 3.2 becomes

ProposiTiON 4.2. Let x,y be x, semistable points of R(Q, a)
corresponding to 6-semistable A-modules M, N. Then M and N are
S-equivalent if and only if x and y are GIT equivalent.

The representations in #(Q, a) which are associated to A-modules
form a closed GL(a)-invariant subvariety V,(a) and thus the quotient
Vai(a)/(GL(a), xs) is a quasi-projective variety whose points are in
natural one-one correspondence with the S-equivalence classes of 6-
semistable A-modules. We shall denote this variety by #,(a, 8) and refer
to it as the ‘moduli space of 8-semistable A-modules of dimension a’.
The justification for using the term ‘moduli space’ will be given in the
next section.

ProposiTiON 4.3. The space M,(«, 0) is a projective variety.

Proof. As observed near the beginning of Section 2,
Va(a)I(GL(a), x¢) will be projective over the ordinary quotient
V.(a)//GL(a). But the points of V,(a)//GL(a) correspond to GL(a)
orbits which are closed in V,(a), which in turn correspond to semisimple
A-modules. The quiver Q is chosen so that there is a unique semi-simple
A-module with dimension vector a. Hence V,4(a)//GL(a) consists of a
single point and thus V,(a)//(GL(a), xs)is projective.
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In addition, standard geometric invariant theory implies that #,(a, 6)
contains an open set 4((a, ), whose points correspond to isomorphism
classes of O-stable A-modules. All other properties of #,(a, 8), e.g.
normality, irreducibility, even nonemptiness, will depend on the pro-
perties of the affine variety V,(a) and thus on A. The most special case is
when A is a hereditary algebra, i.e. when all the representations of Q
correspond to A-modules. In this case, we can say that #,(a, 8) is
irreducible and normal and that 45 (a, 8) is smooth. We can also give a
precise criterion for when A((a, ) is non-empty.

PRropPosITION 4.4. If A is a finite dimensional hereditary algebra, then
there is some 0 for which M (a, ) is nonempty if and only if a is a Schur
root.

Proof. We need to know when #(Q, a) has a y,-stable point for some
6. For this, it is clearly necessary for some (and hence the generic) point
to have a zero-dimensional stabiliser in the group GL(a)/A. (This
actually means that the stabiliser is trivial because it is always connected.)
Now, it turns out that, by a result of Van den Bergh ([3] Proposition 6),
this condition is also sufficient. The result states that, if there is a point
with zero-dimensional stabiliser, then there is an invariant affine open set
in which the generic orbit is closed. This open set will be defined by the
non-vanishing of a relative invariant function of some weight x, and so
the generic point will be y4-stable.

A point has trivial stabiliser if and only if the endomorphism algebra of
the corresponding module is just k. Such a module is called Schurian and
a dimension vector, for which some (and hence the generic) module is
Schurian, is called a Schur root [9].

Remark 4.5. The determination of the Schur roots was a problem
posed by Kac and solved recently by Schofield [20]. The solution is based
on giving a procedure for calculating the ‘generic subvectors’ of «, i.e.
those dimension vectors 8 such that (i) every representation of dimension
a has a subrepresentation of dimension 8 and (ii) the generic representa-
tion of dimension « has subrepresentations of no other dimension
vectors. One could, in principle, apply Proposition 4.4 in reverse to
determine the Schur roots. However, Schofield actually proves something
rather stronger ([20] Theorem 6.1), namely that « is a Schur root if and
only if the generic representation of dimension a is ©,-stable, i.e.
0.(B) >0 for all generic subvectors B. Here 8, is a ‘canonical character’
associated to a, given by 8,(B8) = £(B, a) — €(a, B), where ¢ is the Euler
inner product ’

E(Cl, ﬂ): 2 auﬁu_ 2 amﬁha

vaQo aaQ,
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which is the natural bilinear form on Ky(mod-A) induced by
e(M, N) = dim Hom (M, N) — dim Ext' (M, N).
(Note: A is hereditary so the higher Ext’s vanish.)

Remark 4.6. The notions of generic representation and generic subvec-
tor, described in the previous remark, are very useful. They also allow us
to calculate when A,(a, 8) is non-empty and show that, when it is, the
generic representations form a dense open subset. Hence, the birational
equivalence class of #,(a, 8) is independent of 0. The birational
transformations which occur as 6 varies have been studied in more
general contexts in [5] and [8]. -

5. Families of A-modules and representations of Q

To justify using the term ‘moduli space’ to describe A,(a, 8) we must
show that it has a suitable universal property with respect to families of
A-modules. The appropriate notion of family is as follows.

DEFiNITION. 5.1. A family of A-modules over a connected variety (or
more generally scheme) B is a locally-free sheaf & over B together with a
k-algebra homomorphism A — End (%¥). On the other hand, a family of
representations of Q is simply a representation of Q in the category of
locally free sheaves over B, i.e. a locally free sheaf %,, for each v € Q,,
together with the appropriate sheaf maps, for each arrow.

The association between A-modules and representations of Q extends
naturally to families. In particular, all the A-modules in a family, i.e. all
the fibres %, have the same dimension vector, given by the ranks of the
locally free sheaves %,.

ProposiTION 5.2. Mu(a, 8) is a coarse moduli space for families of
0-semistable modules of dimension vector a, up to S-equivalence.

Proof. If all the modules in a family % are 6-semistable, then there is a
uniquely defined set-theoretic map B — #,(a, 8), taking a point x to the
point representing the S-equivalence class of the fibre %,. The content of
the proposition is that this map is algebraic. If we associate to % the
corresponding family of representations of , then, about any point
x € B, there is an affine open neighbourhood U on which each locally
free sheaf W, is (algebraically) trivial. Choosing particular trivialisations,
we thus obtain an algebraic map U — ®R5(Q, a) whose image is in V,(a).
Composing this map with the quotient map, gives the map B — #,(a, 6)
described above. This map is thus algebraic on U and the sets U cover B.
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The second question to ask is whether the moduli space itself carries a
universal family, i.e. whether it is a ‘fine’ moduli space. One would expect
obstructions to the existence of such a family to arise from semistable
poinis and from the fact that GL(a) always acts with a kernel A. If we
ignore the semistable points, then we can get around the second problem
in some cases.

ProrosiTioN 5.3. When a is an indivisible vector, M;(a, 8) is a fine
moduli space for families of 0-stable A-modules.

Proof. There is a tautological family of representations of Q over
R(Q, a) given by the trivial sheaves with fibre W,. Each total space
R(Q, a) X W, carries an action of GL(a) in which A acts with weight 1
along the fibre, i.e. the W, factor. In the open set R, Q, a) of -stable
representations, the stabiliser of each orbit is just A. Hence, to make the
tautological family descend to the geometric quotient &(Q, a)/GL(a),
we need to multiply the GL(a)-action on R(Q, a) X W, by a homo-
morphism GL(a)— A (note that A is in the centre of GL(a)) so that A
now acts trivially along the fibre. Choosing such a homomorphism
amounts to choosing a character which has weight —1 when restricted to
A. Such a character is determined by ¢ € Z9° such that ¥ ¢,a,=—1

ve Qo
and for such a ¢ to exist it is necessary and sufficient for a to be
indivisible, i.e. not a non-trivial multiple of another integer vector. The
universal representation of Q thus constructed restricts to the subvariety
“(a, 8) of RYQ, @)/GL(a) and induces the required universal family
of A-modules.

Remark 5.4. If a is indivisible then for a set of values of 8 € R?” which
is open (and dense in the set of values for which 4,(a, 8) is nonempty)
there will be no strictly semistable points. For such values of 8, we see
that A,(a, 0) = M(a, 8) and hence is a projective variety. When A is
hereditary then it is also smooth. It is then natural to ask how much of
the cohomology of this smooth projective variety comes from the Chern
classes of (the summands of) the universal bundle—and natural to
conjecture that the cohomology ring is generated by these Chern classes.*

6. The symplectic quotient construction of the moduli space

In this section, the base field k = C. We give an analytic criterion for
determining which representations of a quiver  are direct sums of
0-stable representations, i.e., by Proposition 3.2(i), correspond to closed

* This conjecturc has been proved by the author and C. Walter in *“On Chow Rings of Fine
Moduli Spaces of Modules™.
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GL(a) orbits in Rg(Q, a). This enables us to give an alternative
construction of the moduli space #,(a, 8) as a ‘symplectic quotient’.

We present the initial result in the more general context of Section 2
and as such it generalises a celebrated result of Kempf & Ness [11], which
is the special case y = 0. Thus, let &, G and yx be as in Section 2. Let K be
a maximal compact subgroup of G (since G is reductive, it is isomorphic
to the complexification of K), let f be the Lie algebra of K and let (,) be
a Hermitian inner product on &, preserved by K. Let u: ®— (il)*,
where * denotes the real linear dual, be the ‘moment map’ for the action
of K, given by u,(A) = (Ax, x) for A € if, and let dy be the restriction to
it of the derivative of y at the identity in G (which takes real values as
required).

THEOREM 6.1. The set u~'(dy) meets each G-orbit, which is closed in
R, in precisely one K-orbit and meets no other G-orbit.

COROLLARY 6.2. The natural map p~'(dy)/K — R//(G, x) is a bijection.

Proof of Theorem. We introduce the function N: X C— [0, x),
defined by
N(x, 2) = |z| ¥

where | x| is the norm coming from the chosen inner product. (The
function N can be thought of as a norm on the line bundle L™' and, as
such, it is the ‘Kdhler potential’ for the metric on %.)

Let £ = (x, z), for some z # 0, and define, for A e if,

d
m(A) = 5 log N(e"” - £) = (Ax, x) — dy(A)
=0
) d’ A 2
m(A)=—5| logN(e”-£)=2|Ax|
de? |-

Clearly, m, = 0 if and only if N restricted to G - £ has a critical point at
£. The action of K on & X C preserves N, so N induces a function on
G - £/K. The formula for m® shows that this function is strictly convex
(except in directions along the fibres {x} X C, where it is linear). Hence,
any critical point must be a minimum and there can be at most one
critical point. Thus, to prove the theorem, it suffices to show that N is
minimised on an orbit G - £ if and only if that orbit is closed, which, by
Remark 2.3, is equivalent to the orbit G - x being closed in ®3. This we
do in the next two lemmas.

Lemma 6.3. Let V be any closed subvariety of RX C disjoint from
R X {0}. Then the function N restricted to V is proper (and thus achieves its
infimum).

Proof. Since V and R X {0} are closed and disjoint, there is a
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polynomial which takes the value 1 on V and vanishes on & X {0}, i.e. V is
contained in a hypersurface zP,(x)+- - -+ z"P,(x) =1, where P, € k[®R).
Now, N is proper if N7'([0, B]) is compact for all B, i.e. when
N(x, z2)=<B and (x, z) e V, then [z]<R, and | x| <R,, for some R, R,
depending only on B and V. We can clearly take R, = B, so it remains to
bound ||x||. But, if |z| < Be #¥, then

1ZP(x) + - -« + 2P, (x)| < B |P(x)| e ™F + - - - + B [P,(x)| e ",
We can certainly choose R,, depending only on B and {P}, so that, if
x| > R, then |P(x)| <%B"'e”2"°2 for i=1,...,n But we would then
have |zP(x) +-- -+ z"P,(x)|<1l and so (x, z) ¢ V.

LEMMA 6.4. Let O be a G-orbit in R X C disjoint from R X {0}. If the
restriction of N to O achieves its infimum, then O is closed.

Proof. Suppose that the infimum is achieved at a point (x, z). If the
orbit is not closed, then we can find a one-parameter subgroup A such
that lim A(z) - (x, z) exists but is not in O, ie. if we make the

—0

decomposition x = ¥ x, so that A(f)-x= ¥ t"x,, then x,=0 for all
neZ neZ

n <0, x,0 for some n>0 and (y, A) <0. By conjugating A if necessary,
we may also assume that this decomposition of x is orthogonal. But then

N - (x, 2)) = |z] e || =@ Ve Zmmobr beal?

and this will clearly decrease as t— 0, contradicting the assumption that
the infimum of N was achieved at (x, z). Thus the orbit O must have been
closed.

This completes the proof of Theorem 6.1.

We now apply Theorem 6.1 when ®=R(Q, a), G=GL(a) and
X = Xo- In order to define an inner product on R(Q, a), we choose one
on each vector space W, and then use the standard operator inner
product induced on each summand Hom (W, W,,), ie. (¢,, ¢¥,) =
tr (¢,4¥), where * now denotes the adjoint map. The maximal compact
subgroup K of GL(a) which preserves this inner product is U(a)=
IHUW,), so it is @, Herm (W,), where Herm (W,) is the space of

hermitian endomorphisms of W,. The action of A € if on ¢ € R(Q, a) is
(Ad), = Aad, — daA,, and hence the moment map is given by

(Ad, $) = D tr (Audad? — PaArad?)

-y (43 #s2- 3 420.))

vaQo
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On the other hand

dXB(A) = 2 eu tr (Au)

veQp

= 2 tr(4,6,1)
veQo

Thus, the equation p(¢) = dy, becomes

D d.dr— > ¢rd.=6,1 forallve(Q, (M)

ha=v ta=v
Combining Theorem 6.1 and Proposition 3.2(i), we obtain.

PropPosITION 6.5. A representation ¢ € R(Q, a) is a direct sum of
6-stable representations if and only if it satisfies (M) for some choice of
inner products on W,. This choice is unique up to an automorphism of the
representation, i.e. up to a scale factor in each 6-stable summand.

Corollary 6.2 translates into the fact that the moduli space #,(a, 8)
can be constructed by taking the solution space of (M) inside the variety
Vi(a) € R(Q, a) and dividing by U(a). Notice that, by taking the trace
of each equation in (M) and summing over all v e Q,, we recover the
condition X ,a, =0.
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