Lineare Algebra II: Präsenzübung 4 -Sophiane Yahiatene-

Sei R ein Ring.

<u>Definition</u>: Eine Menge $I \subseteq R$ heißt linksseitiges Ideal, wenn folgende Eigenschaften gelten:

- 1. I ist eine additive Gruppe
- 2. Für alle $a \in R$ gilt $a \cdot I \subseteq I$

Bemerkung: In der Sprache der Linksmoduln bedeutet dies, dass I ein Untermodul von R ist, wobei R als R-Modul aufgefasst wird.

Aufgabe 1 Sei R ein unitärer Ring, d.h. ein Ring mit 1 Element und sei $I \subseteq R$ ein Ideal. Zeige: $I = R \iff 1 \in I$.

Aufgabe 2 Sei $R = \mathbb{Z}$.

- 1. Zeige, dass die Ideale (2) := $2\mathbb{Z}$, (3) := $3\mathbb{Z}$ und (5) := $5\mathbb{Z}$ paarweise teilerfremd sind.
- 2. Gebe mit Hilfe des Chinesischen Restsatzes einen Isomorphismus $\phi: \mathbb{Z}/30\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ an.
- 3. Wie lautet ϕ^{-1} ?
- 4. Löse das System:

$$x \equiv 1 \mod 2$$
$$x \equiv 2 \mod 3$$
$$x \equiv 4 \mod 5$$

Ist die Lösung eindeutig?

Aufgabe 3 Berechne den größten gemeinsamen Teiler G der folgenden Polynome

$$P_1(x) = x^3 - x^2 + x - 1$$

$$P_2(x) = x^4 + 2x^3 + 2x^2 + 2x + 1$$

in $\mathbb{Z}[x]$.

Aufgabe 4 Zeige, dass $\mathbb{R}[X]/(X^2+1) \cong \mathbb{R}[i] := \{f(i)|f \in \mathbb{R}[X]\}$. Also ist $\mathbb{R}[X]/(X^2+1) \cong \mathbb{C}$. (Tipp: Betrachte die surjektive Auswertungsabbildung $ev_i : \mathbb{R}[X] \to \mathbb{R}[i]$; $f \mapsto f(i)$ und $\ker(ev_i) = (X^2+1)$ ist ein Ideal)