Blatt 9 - Aufgabe 4

Sophiane Yahiatene

Sei $\mathbb{K} = \mathbb{C}$ und $h \in \text{End}(V)$. Weiter seien $N, D \in \text{End}(V)$ der nilpotente und der diagonalisierbare Endomorphismus wie in der Vorlesung.

- (a) Zeige, dass $N \circ D = D \circ N$ gilt.
- (b) Sei \tilde{N} ein weiterer nilpotenter Endomorphismus und \tilde{D} ein weiterer diagonalisierbarer Endomorphismus von V so, dass gilt

$$h = \tilde{D} + \tilde{N}$$
 und $\tilde{D} \circ \tilde{N} = \tilde{N} \circ \tilde{D}$.

Dann ist $D = \tilde{D}$ und $N = \tilde{N}$.

Proof:

- (a) Nach Vorlesung existieren Polynome $f_i, g_i \in \mathbb{K}[X]$ und Eigenwerte $a_i \in \mathbb{K}$ für $1 \leq i \leq r$, sodass $D = \sum_{i=1}^r a_i f_i(h) g_i(h)$ und N = h D gilt. Nach Aufgabe 3b) vom selben Übungsblatt mit $p(X) = \sum_{i=1}^r a_i f_i(X) g_i(X), \ q(X) = X p(X)$ folgt die Behauptung.
- (b) Sei $a \in \sigma(\tilde{D})$, so gilt für $v \in \text{Eig}(\tilde{D}, a)$

$$(\tilde{D} - a \ Id) \circ \tilde{N}(v) = (\tilde{D} \circ \tilde{N} - a\tilde{N})(v) = \tilde{N} \circ (\tilde{D} - a \ Id)(v) = 0,$$

d.h. $\tilde{N}|_{\mathrm{Eig}(\tilde{D},a)}:\mathrm{Eig}(\tilde{D},a)\to\mathrm{Eig}(\tilde{D},a)$ ist wohldefiniert.

Da $K=\mathbb{C}$ ist, ist der Endomorphismus $\tilde{N}|_{\mathrm{Eig}(\tilde{D},a)}$ triangulierbar und somit existiert eine geordnete Basis $B(a)=\{b_1,\ldots,b_{n_a}\}$ von $\mathrm{Eig}(\tilde{D},a)$ bzgl. der $\tilde{N}|_{\mathrm{Eig}(\tilde{D},a)}$ in oberer Dreicksgestalt ist. Im Folgenden zeigen wir, dass die Darstellungsmatrix bzgl. B(a) sogar eine echte obere Dreicksmatrix ist. Sei hierfür $b_k\in B(a)$, so gilt $\tilde{N}(b_k)=\sum_{i=1}^k a_i\cdot b_i+\sum_{i=k+1}^{n_a} 0\cdot b_i$, d.h. die k-te Spalte der Darstellungsmatrix besteht aus den Koeffizienten der obigen Gleichung, wobei a_k der entsprechende Diagonaleintrag ist. Da $\tilde{N}|_{\mathrm{Eig}(\tilde{D},a)}$ nilpotent der Stufe t_a ist, gilt

$$0 = \tilde{N}|_{\mathrm{Eig}(\tilde{D},a)}^{t_a}(b_k) = a_k^{t_a}b_k + \underbrace{\dots}_{\text{Lin. Komb. der }b_1,\dots,b_{k-1}}.$$

Also gilt $a_k^{t_a} = 0$ und somit ist das Diagonalelement $a_k = 0$.

Insgesamt existiert wegen $V=\bigoplus_{a\in\sigma(\tilde{D})}\mathrm{Eig}(\tilde{D},a)$ eine Basis bzgl. derer \tilde{N} in echte obere Dreiecksgestalt ist.

Nun gilt mit obigem (was man einfach aus der Gestalt der Matrizen ablesen kann), dass

$$\prod_{a \in \sigma(h)} (X - a)^{n_a} = f_h(X) = \det(X \operatorname{Id} - h) = \det(X \operatorname{Id} - (\tilde{D} + \tilde{N})) = \det(X \operatorname{Id} - \tilde{D}).$$

Die Endomorphismen h, D, \tilde{D} besitzen also dieselben Eigenwerte und algebraischen Vielfachheiten.

Sophiane Yahiatene 2

Die Nilpotenzstufe von $\tilde{N}|_{\mathrm{Eig}(\tilde{D},a)}$ für $a \in \sigma(h)$ ist gerade der Exponent vom Faktor $(X-a)^{m_a}$ des Minimalpolynoms m_h , denn angenommen die Stufe betrüge $t < m_a$, so wäre

$$\operatorname{Ker}(h-a\ Id)^{m_a} = \operatorname{Ker}(\tilde{N}|_{\operatorname{Eig}(\tilde{D},a)}^{m_a}) = \operatorname{Ker}(\tilde{N}|_{\operatorname{Eig}(\tilde{D},a)}^{t}) = \operatorname{Ker}(h-a\ Id)^{t},$$

was im Widerspruch zum Exponenten des Faktors $(X - a \ Id)^{m_a}$ des Minimalpolynoms m_h steht.

Es gilt $\operatorname{Eig}(\tilde{D}, a) = \operatorname{Ker}(h - a \operatorname{Id})^{m_a}$ für $a \in \sigma(h)$. Sei $v \in \operatorname{Eig}(\tilde{D}, a)$, so gilt (induktiv) und mit obigem

$$(h - a \ Id)^{m_a}(v) = (\tilde{N} + \tilde{D} - a \ Id)^{m_a}(v) = (\tilde{N} + \tilde{D} - a \ Id)^{m_a - 1} \circ \tilde{N}(v) = \tilde{N}^{m_a}(v) = 0,$$

d.h. v ist ein Element von $\operatorname{Ker}(h-a\ Id)^{m_a}$ und somit gilt $\operatorname{Eig}(\tilde{D},a)\subseteq\operatorname{Ker}(h-a\ Id)^{m_a}$. Die andere Inklusion folgt aus der Zerlegung $V=\bigoplus_{a\in\sigma(h)}\operatorname{Eig}(\tilde{D},a)=\bigoplus_{a\in\sigma(h)}\operatorname{Ker}(h-a\ Id)^{m_a}$. Also stimmen D und \tilde{D} auf $\operatorname{Eig}(\tilde{D},a)=\operatorname{Ker}(h-a\ Id)^{m_a}$ für alle $a\in\sigma(h)$ überein, woraus $\tilde{D}=D$ und damit auch $\tilde{N}=N$ folgt.