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Abstract. Frank Adams introduced the notion of a complex oriented cohomology
theory represented by a commutative ring spectrum and proved the Poincaré Duality The-
orem for this general case. In the current paper we consider oriented cohomology theories
on algebraic varieties represented by symmetric commutative ring T-spectra and prove the
Duality Theorem, which mimics the result of Adams. This result is held, in particular, for
Motivic Cohomology and Algebraic Cobordism of Voevodsky.

0. Introduction

In certain cases a commutative ring spectrum E can be equipped with a distinguished
element c A E2ðPyÞ called a complex orientation of E (see [1]). The pair ðE; cÞ is called a
complex oriented ring spectrum. Given a complex orientation c of E, every smooth com-
plex projective variety X can be equipped with a homological class ½X � A E2dðX Þ called the
fundamental class of X (here d stays for the complex dimension of X ). This class has the
property that the cap-product

_ ½X � : E �ðXÞ ! E2d��ðXÞ

conducts an isomorphism of cohomology and homology groups of X . This isomorphism is
often called the Poincaré Duality isomorphism.

From the modern point of view it looks pretty interesting to obtain an analogue of
this result in the context of Algebraic Geometry. It is reasonable in this case to choose
and fix a field k and consider a symmetric commutative ring T-spectrum A in the sense of
Voevodsky [13] (for the concept of symmetric T-spectrum see Jardine [4]). The T-spectrum
A determines bi-graded cohomology and homology theories (A�;� and A�;�) on the cate-
gory of algebraic varieties (see [13], p. 595). (We also assume the spectrum A to be a ring
spectrum i.e. be endowed with a multiplication m : A5A!A, which induces product
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structures in (co)homology.) In some cases A can be equipped with a distinguished ele-
ment g A A2;1ðPyÞ, which Morel calls an orientation of A. Following him, the pair
ðA; gÞ is called an oriented symmetric commutative ring T-spectrum. The orientation g

equips both cohomology A�;� and homology A�;� with trace structures ([8], [11]). The
latter means that for every projective morphism f : Y ! X of smooth irreducible varieties
over k with d ¼ dimðXÞ � dimðYÞ there are two operators f! : A

�;�ðYÞ ! A�þ2d;�þdðX Þ
and f ! : A�;�ðXÞ ! A��2d;��dðY Þ satisfying a list of natural properties. Define now a fun-
damental class of a smooth projective equi-dimensional variety X=k of dimension d as
½X � :¼ p!ð1Þ A A2d;dðXÞ, where p : X ! pt is the structure morphism. Our main result
claims that the map

_ ½X � : A�;�ðXÞ !F A2d��;d��ðX Þ

is a grade-preserving isomorphism (Poincaré Duality isomorphism).

There are at least two interesting examples of oriented symmetric commutative ring
T-spectra. The first one is a symmetric model MGL of the algebraic cobordism T-spectrum
MGL of Voevodsky [13], p. 601. This symmetric commutative ring T-spectrum MGL to-
gether with an orientation g A MGL2;1ðPyÞ is described in Proposition B.4. So that, every
smooth irreducible projective variety X=k of dimension d has the fundamental class
½X � A MGL2d;dðXÞ and the cap-product with this class

_ ½X � : MGL�;�ðXÞ !F MGL2d��;d��ðX Þ

is an isomorphism.

The second example is the Eilenberg-Mac Lane T-spectrum H (it is intrinsically a
symmetric T-spectrum representing the motivic cohomology). This T-spectrum H is con-
structed in [13], p. 598, and we briefly describe its orientation here. Recall that for a smooth
variety X=k the first Chern class of a line bundle with value in the motivic cohomology
determines a functorial isomorphism PicðXÞ ¼ H2;1

M ðXÞ. Thus, Z ¼ H2;1
M ðPyÞ and the class

of the line bundle Oð1Þ over Py is a free generator of H2;1
M ðPyÞ. This class provides the

required orientation of H. Similarly to the case of algebraic cobordism, one has the funda-
mental class ½X � A HM

2d;dðXÞ in Motivic homology and the isomorphism:

_ ½X � : H�;�M ðXÞ !
F

HM
2d��;d��ðX Þ:

To embellish this result, let us mention that unlike the topological context in the algebraic-
geometrical case the canonical pairing H�;�M ðXÞnHM

�;�ðX Þ ! H�;�M ðptÞ is generally degener-
ated even with rational coe‰cients [14].

The paper is organized as follows. Section 1 is devoted to product structures in ex-
traordinary cohomology and homology theories. In section 2 we formulate Poincare Dual-
ity Theorem and derive it from two projection formulas, which are proven in sections 3 and
4. Finally, in Appendices A and B we display some useful properties of orientable theories.
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Notation. Throughout the paper we use Greek letters to denote elements of coho-
mology groups and Latin for homological ones;

� Sm=k is a category of smooth quasi-projective algebraic varieties over a field k.

� D always denotes a diagonal morphism.

� Symbol 1 denotes trivial one-dimensional bundle.

� For a vector bundle E over X we write sðEÞ for its section sheaf.

� For a vector bundle E over X we write E4 for the dual to E.

� PðEÞ :¼ Proj
�
Symm�

�
sðE4Þ

��
is the projective bundle of lines in E.

� Typically Pn is regarded as a hyperplane in Pnþ1.

� T :¼ A1=ðA1 � f0gÞ in the category Spc of [13].

� Py :¼ colim
n
ðPnÞ in the category Spc of [13].

� pt :¼ Spec k.

For the convenience of perception we usually move indexes up and down oppositely to the
predefined positions of � or !.

1. Some products in (co)homology

Consider a symmetric T-spectrum A ([4], p. 505), endowed with a multiplication
m : A5A!A making A a symmetric commutative ring T-spectrum. Then the spectrum
A determines bigraded cohomology and homology theories on the category of algebraic
varieties ([13], p. 595). A ring structure in cohomology is then given by the cup-product
satisfying the following commutativity law. For a A Ap;q and b A Ap 0;q 0 , one has:

a ^ b ¼ ð�1Þpp
0
eqq

0 ðb ^ aÞ;ð1:1Þ

where e : A�;� ! A�;� is the involution described in Appendix B.

Definition 1.1. Let A be endowed with an element g A A2;1ðPyÞ satisfying the fol-
lowing two conditions:
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(i) gjP0 ¼ 0 A A2;1ðP0Þ.

(ii) gjP1 ¼ STð1Þ A A
2;1
f0gðP

1Þ is the T-suspension of the unit element 1 A A0;0ðptÞ.

Then the pair ðA; gÞ is called an oriented symmetric commutative ring T-spectrum. If A can
be endowed with an element g A A2;1ðPyÞ satisfying the conditions (i) and (ii) then A is
called an orientable symmetric commutative ring T-spectrum.

For an orientable T-spectrum e ¼ id by Lemma B.3 and the commutativity law is

reduced to a ^ b ¼ ð�1Þpp
0
ðb ^ aÞ. In this case it is convenient to set A0 ¼

L
p;q

A2p;q,

A1 ¼
L
p;q

A2p�1;q, A0 ¼
L
p;q

A2p;q, and A1 ¼
L
p;q

A2p�1;q, where A�;� (resp. A�;�) are

(co)homology theories represented by the T-spectrum A. The functors
A� ¼ A0lA1 : Sm=k ! Z=2-Ab and A� ¼ A0 lA1 : Sm=k ! Z=2-Ab are (co)homol-
ogy theories taking values in the category of Z=2-graded abelian groups. Although all our
duality results hold for bigraded (co)homology groups, we shall work, for simplicity, with
the Z=2-grading just introduced.

Multiplicativity of the T-spectrum A gives a canonical way ([12], 13.50) to supply the
functors A� and A� (contravariant and covariant, respectively) with a product structure
consisting of two cross-products

� : ApðXÞnAqðYÞ ! ApþqðX � YÞ;

� : ApðXÞnAqðYÞ ! ApþqðX � Y Þ

and two slant-products

= : ApðX � YÞnAqðYÞ ! Ap�qðXÞ;

n : ApðX ÞnAqðX � YÞ ! Aq�pðY Þ:

One also defines two inner products

^ : ApðXÞnAqðXÞ ! ApþqðXÞ;

_ : ApðXÞnAqðXÞ ! Aq�pðXÞ;

as a ^ b :¼ D�ða� bÞ and a _ a :¼ anD�ðaÞ, correspondingly. The cup-product makes the
group A�ðXÞ an associative skew-commutative Z=2-graded unitary ring and this structure
is functorial. (Skew-commutativity is not obvious and implied by the orientability of A
as it is shown in Appendix B). The cap-product makes the group A�ðXÞ a unital A�ðXÞ-
module (1 _ a ¼ a for every a A A�ðXÞ) and this structure is functorial in the sense that
a _ f�ðaÞ ¼ f�

�
f �ðaÞ_ a

�
.

Below we shall need the following associativity relations, which are completely anal-
ogous to ones existing in the topological context (see, for example, [12], 13.61). For
a A A�ðX � YÞ, b A A�ðYÞ, h A A�ðXÞ, a A A�ðYÞ, and b A A�ðX Þ, we have:

(AR.1) a=ðb _ aÞ ¼
�
a ^ p�Y ðbÞ

�
=a,
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(AR.2) h ^ ða=aÞ ¼
�
p�X ðhÞ^ a

�
=a,

(AR.3) ða=aÞ_ b ¼ pX
�
�
a _ ða� bÞ

�
,

where pX and pY denote the corresponding projections.

We shall also need the following functoriality property of the =-product (comp. [12],
13.52.iii). For morphisms f : X ! X 0, g : Y ! Y 0, and elements a A A�ðX 0 � Y 0Þ and
a A A�ðY Þ, one has: ð f � gÞ�ðaÞ=a ¼ f �

�
a=g�ðaÞ

�
.

For the final object pt in Sm=k one, clearly, has A�ðptÞ ¼ A�ðptÞ. This provides us
with a distinguished element ½pt� A A0ðptÞ (fundamental class of the point) such that for
any smooth X and arbitrary a A A�ðXÞ, one has: a=½pt� ¼ a. (Here we assume the stan-
dard identification X � pt ¼ X .) One can easily verify that the canonical isomorphism
A�ðptÞ ¼ A�ðptÞ may be written as a 7! a _ ½pt�. Throughout the paper we implicitly use
this construction and usually denote ½pt� by 1.

2. Poincaré Duality Theorem

Let ðA; gÞ be an oriented symmetric commutative ring T-spectrum. Then the in-
volution e from (1.1) coincides with the identity as explained in Appendix B. So that
the commutativity law is reduced to a ^ b ¼ ð�1Þpp

0
ðb ^ aÞ. Setting A0 ¼

L
p;q

A2p;q,

A1 ¼
L
p;q

A2p�1;q, we see that the functor A� :¼ A0lA1 takes value in the category of

skew-commutative Z=2-graded rings. The orientation g assigns a Chern structure in the co-
homology theory A� in the sense of [9], Definition 3.2, and a commutative Chern structure
in the homology theory A� (see [11], Definitions 2.1.1, 2.2.12).

To describe this Chern structure, consider a functor isomorphism

j : Picð�Þ !F Mor
HA1 ðkÞð�;P

yÞ

on the category of smooth varieties, produced in [6], Proposition 4.3.8. Here Picð�Þ is the
Picard functor and HA1ðkÞ is the A1-homotopy category of [6]. For a line bundle L over a
smooth variety X one sets

cðLÞ :¼ jðLÞ�ðgÞ A A0ðX Þ:ð2:1Þ

We claim that the assignment L 7! cðLÞ is a Chern structure on A�. In fact, the element
cðLÞ depends only on the isomorphism class ofL, it is functorial with respect to pull-backs
of line bundles, and cð1Þ vanishes, since gjP0 ¼ 0. Finally, by Lemma B.1, for a smooth
variety X and the projection p : P1 � X ! P1 the elements 1 and p�ðgjP1Þ A A0ðP1 � X Þ
form a free basis of the A�ðX Þ-bimodule A�ðP1 � X Þ. Hence, the assignment L 7! cðLÞ
is a Chern structure. It is also worth to notice that g ¼ c

�
OPyð1Þ

�
in A0ðPyÞ.

Any Chern structure in A� (resp. on A�) determines a trace structure in the coho-
mology (resp. homology), see [8], Theorem 4.1.2 (resp. [11], Theorem 5.1.4). Namely, to
every projective morphism f : Y ! X of smooth varieties over k one assigns two grade-

5Panin and Yagunov, T-spectra and Poincaré duality
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preserving operators f! : A
�ðY Þ ! A�ðXÞ and f ! : A�ðXÞ ! A�ðYÞ satisfying a list of natu-

ral properties. Precise definitions of trace structures in a ring (co)homology theory is given
in [8], [11]. The operators f! and f ! are called trace operators. (For historical reasons they
called them integrations in [8].) The trace structures f 7! f! and f 7! f ! are explicit and
unique up to the following normalization condition. For a smooth divisor i : D ,! X :

i!i
� ¼ i!ð1Þ^ : A�ðXÞ ! A�ðX Þ;ð2:2Þ

i�i
! ¼ i!ð1Þ_ : A�ðX Þ ! A�ðXÞ;ð2:3Þ

and i!ð1Þ ¼ c
�
LðDÞ

�
.

For a projective morphism f : Y ! X the map f! : A
�ðYÞ ! A�ðX Þ is a two-side

A�ðX Þ-module homomorphism, i.e.

f!
�
f �ðaÞ^ b

�
¼ a ^ f!ðbÞ;

f!
�
a ^ f �ðbÞ

�
¼ f!ðaÞ^ b:

ð2:4Þ

Definition 2.1. Let ðA; gÞ be an oriented symmetric commutative ring T-spectrum.
For a smooth projective variety X with the structure morphism p : X ! pt we call
p!ð1Þ A A0ðXÞ the fundamental class of X in A� and denote it by ½X �.

Remark 2.2. Definitely, the class ½X � depends on the pair ðA�; gÞ rather than on the
T-spectrum A itself. However, we often omit mentioning the orientation, since one chosen
and fixed orientation g is always kept in mind for the spectrum A.

With the notion of fundamental class in hands, one can define duality maps

D� : A�ðX Þ ! A�ðX Þ as D�ðaÞ ¼ a _ ½X �ð2:5Þ

and

D� : A�ðXÞ ! A�ðX Þ as D�ðaÞ ¼ D!ð1Þ=a:ð2:6Þ

Theorem 2.3 (Poincaré Duality). Let ðA; gÞ be an oriented symmetric commutative

ring T-spectrum. Then for every smooth projective variety X the maps D� and D� are mutu-

ally inverse isomorphisms.

If X is equi-dimensional of dimension d then ½X � A A2d;dðXÞ. In this case the isomor-
phism D� identifies Ap;q with A2d�p;d�q. One can extract the following nice consequence of
the Poincaré Duality Theorem, which enables us to interpret trace maps in a way topolo-
gists like to do.

Corollary 2.4. For projective varieties X ;Y A Sm=k and a morphism f : X ! Y , one
has:

f! ¼ DY
� f�D

�
X and f ! ¼ D�X f

�DY
� ;

where DX and DY are the above introduced duality operators for varieties X and Y , respec-
tively.
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Proof. To proof the first equality, one should just check that f�D
�
X ¼ D�Y f!. Taking

into account that ½X � ¼ f !½Y �, one immediately derives the desired relation from the First
Projection Formula below (Theorem 2.5). The second statement can be proven in a similar
way, but requires the ‘‘dual’’ projection formula that we do not consider here. r

The proof of Theorem 2.3 is based on two projection formulae for cap- and slant-
products.

Theorem 2.5 (First projection formula). For X ;Y A Sm=k, a projective morphism

f : Y ! X , and any elements a A A�ðY Þ and a A A�ðX Þ, the relation

f�
�
a _ f !ðaÞ

�
¼ f!ðaÞ_ að2:7Þ

holds in the group A�ðXÞ.

We need a few simple corollaries of this theorem.

Corollary 2.6. Let t : X � X ! X � X be the permutation morphism. Then for any

elements a A A�ðXÞ, b A A�ðX � XÞ, and a A A�ðX � XÞ, we have:

D!ðaÞ_ a ¼ D!ðaÞ_ t�ðaÞ;(a)

D!ðaÞ^ b ¼ D!ðaÞ^ t�ðbÞ(b)

in A�ðX � XÞ (A�ðX � X Þ, respectively).

Proof. Consider the Cartesian square

X ���!D X � X

id

???y
???yt

X ���!D X � X :

ð2:8Þ

Since the map t is flat, the square is transversal due to [2], B.7.4. By the base change prop-
erty A.2, one has: D!t� ¼ D!. By Theorem 2.5, one has:

D!ðaÞ_ a ¼ D�
�
a _ D!ðaÞ

�
¼ D�

�
a _ D!

�
t�ðaÞ

��
¼ D!ðaÞ_ t�ðaÞ

that implies (a). To get (b) one uses cohomological projection formula (2.4) instead. r

Theorem 2.7 (Second projection formula). Let f : Y ! X be a projective morphism

of smooth varieties. Let also W A Sm=k. Then for every a A A�ðW � Y Þ and a A A�ðXÞ, one
has (in A�ðW Þ):

a=f !ðaÞ ¼ F!ðaÞ=a;ð2:9Þ

where F ¼ id� f .
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Corollary 2.8. Let X be a smooth projective variety. Then in A�ðX Þ, we have:

D!ð1Þ=½X � ¼ 1:ð2:10Þ

Proof. Denote by p : X ! pt the structure morphism and let

P ¼ id� p : X � X ! X

be the projection. By Theorem 2.7, one has:

D!ð1Þ=½X � ¼ D!ð1Þ=p!ð1Þ ¼ P!

�
D!ð1Þ

�
=1 ¼ 1: rð2:11Þ

Now we derive the main result as an easy consequence of Corollaries 2.8 and 2.6.

Proof of Theorem 2.3. Let p1; p2 : X � X ! X denote corresponding projections.
Observe that for every b A A�ðX � XÞ one has the relation D!ð1Þ^ b ¼ b ^ D!ð1Þ. (In
fact, the element D!ð1Þ is of degree zero, because the map D!ð1Þ is grade-preserving.) Thus,
one has:

D!ð1Þ=ða _ ½X �Þ ¼ðAR:1Þ �
D!ð1Þ^ p�2ðaÞ

�
=½X � ¼2:6ðbÞ

�
D!ð1Þ^ p�1 ðaÞ

�
=½X �ð2:12Þ

¼
�
p�1 ðaÞ^ D!ð1Þ

�
=½X � ¼ðAR:2Þ

a ^
�
D!ð1Þ=½X �

�
¼ a:

On the other hand, using 2.6(a), one has:

�
D!ð1Þ=a

�
_ ½X � ¼ðAR:3Þ

p�
�
D!ð1Þ_ ða� ½X �Þ

�
¼ p�

�
D!ð1Þ_ ð½X � � aÞ

�
ð2:13Þ

¼ðAR:3Þ �
D!ð1Þ=½X �

�
_ a ¼ a: r

To complete the prove of Theorem 2.3 one needs to check formulas (2.7) and (2.9).

3. Proof of the first projection formula

It is convenient to introduce a class V of projective morphisms f : Y ! X for which
the relation

f�
�
a _ f !ðaÞ

�
¼ f!ðaÞ_ að3:1Þ

holds in A�ðXÞ for every elements a A A�ðYÞ and a A A�ðX Þ.

Obviously, this class is closed with respect to composition.

We prove Theorem 2.5 in several stages showing consequently that the following
classes of morphisms are contained in the class V.

� Zero-section morphisms of line bundles: s : Y ,! Pð1lLÞ.

� Closed embeddings i : D ,! X of smooth divisors.
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(AutoPDF V7 11/10/07 16:32) WDG Tmath J-1708 CRELLE, PMU: A1(A1) 30/09/2007 pp. 1–21 1708_5499 (p. 8)



� Zero-sections of a finite sum of line bundles:

s : Y ,! Pð1lL1 lL2 l � � �lLnÞ:

� Zero-sections of arbitrary vector bundles: s : Y ,! Pð1lVÞ.

� Closed embeddings i : Y ,! X .

� Projections p : X � Pn ! X .

Lemma 3.1. Let L be a line bundle over a smooth variety Y. Then the zero-section

s : Y ,! Pð1lLÞ belongs to V.

Proof. The map s is a section of the projection map p : Pð1lLÞ ! Y . Let
a A A�ðY Þ and a A A�

�
Pð1lLÞ

�
. The desired relation follows from (2.3) and (2.2):

s�
�
a _ s!ðaÞ

�
¼ s�

�
s�p�ðaÞ_ s!ðaÞ

�
¼ p�ðaÞ_ s�s

!ðaÞð3:2Þ

¼ p�ðaÞ_
�
s!ð1Þ_ a

�
¼ s!

�
s�p�ðaÞ

�
_ a ¼ s!ðaÞ_ a: r

Proposition 3.2. Let X ;Y A Sm=k, i : Y ,! X be a closed embedding with a normal

bundle N. If the zero-section morphism s : Y ,! Pð1lNÞ belongs to V then i belongs to

V.

Proof. Consider the following deformation diagram, in which B is the blowup of
X �A1 at Y � f0g. This diagram has transversal squares.

B� Y �A1

kB

???y
Pð1lNÞ K��!

k0
B  ��L

k1
X

s

 
��L t

 
��L i

 
��L

Y K��!
j0

Y �A1  ��L
j1

Y

ð3:3Þ
p

One can easily see that the left-hand part of our diagram satisfies the conditions of
Lemma A.5.

First, we shall show that the morphism t in diagram (3.3) belongs to the class V. Let
a A A�ðY �A1Þ and a A A�ðBÞ. Using Lemma A.5 we can rewrite a as kB

� ðaBÞ þ k0
� ða0Þ,

where a0 A A�
�
Pð1lNÞ

�
and aB A A�ðB� Y �A1Þ. From the Gysin exact sequence, we

have:

t!kB
� ¼ 0ð3:4Þ

and

k�Bt! ¼ 0:ð3:5Þ
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Therefore, t�
�
a _ t!kB

� ðaBÞ
�
¼ 0 and t!ðaÞ_ kB

� ðaBÞ ¼ 0. (The second relation yields from
(3.5): t!ðaÞ_ kB

� ðaBÞ ¼ kB
�
�
k�Bt!ðaÞ_ a

�
¼ 0.) Thus, one has:

t�
�
a _ t!ðaÞ

�
¼ t�

�
a _ t!k0

� ða0Þ
�
:ð3:6Þ

Applying Lemma A.3 to the left-hand-side square of diagram (3.3) and denoting j �0 ðaÞ by
a0, one has:

t�
�
a _ t!k0

� ða0Þ
�
¼ k0

� s�
�
a0 _ s!ða0Þ

�
:ð3:7Þ

Similarly

t!ðaÞ_ a ¼ k0
�
�
s!ða0Þ_ a0

�
:ð3:8Þ

By the proposition assumption, we have the relation s�
�
a0 _ s!ða0Þ

�
¼ s!ða0Þ_ a0. Com-

bining this with equalities (3.6), (3.7), and (3.8), one gets:

t�
�
a _ t!ðaÞ

�
¼ t!ðaÞ_ a:ð3:9Þ

We now move the desired relation one more step further to the right in diagram (3.3) and
show that i A V. Observe that k1

� is a monomorphism. Therefore, it su‰ces to check that
for every elements a1 A A�ðY Þ and a1 A A�ðXÞ we have:

k1
� i�

�
a1 _ i!ða1Þ

�
¼ k1

�
�
i!ða1Þ_ a1

�
:ð3:10Þ

Setting a ¼ ð j �1 Þ
�1ða1Þ A A�ðY �A1Þ, a ¼ k1

� ða1Þ A A�ðBÞ, and applying Lemma A.3 to the
right-hand side square of diagram (3.3), one has: k1

� i�
�
a1 _ i!ða1Þ

�
¼ t�

�
a _ t!ðaÞ

�
. In the

same way: k1
�
�
i!ða1Þ_ a1

�
¼ t!ðaÞ_ k0

� ða0Þ ¼ t!ðaÞ_ a. Combining these two relations
with (3.9), one sees that i A V. r

Corollary 3.3. For a smooth divisor i : D ,! X the morphism i lies in V.

Corollary 3.4. Let W ¼L1 l � � �lLn be an n-dimensional vector bundle over

a variety Y which splits in the sum of line bundles. Then the zero-section morphism

s : Y ,! Pð1lWÞ belongs to the class V.

Proof. Apply Corollary 3.3 to each step of the filtration

Y ,!i1 Pð1lL1Þ ,!
i2 � � � ,!in Pð1lWÞ;ð3:11Þ

where the morphisms ij are zero-sections of Lj. r

In order to proceed with the case of an arbitrary vector-bundle, we need the homo-
logical analogue of the splitting principle. Consider a vector bundle E! Y of constant
rank n over a smooth irreducible variety Y . Let GLn be the corresponding principal GLn-
bundle over Y , Tn HGLn be the diagonal tori, and Y 0 ¼ GLn=Tn be the orbit variety with
the projection morphism p : Y 0 ! Y . Finally, we denote by E 0 ¼ E�Y Y 0 the pull-back of
the vector bundle E.
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Proposition 3.5. The bundle E 0 splits in a direct sum of line bundles and the map

p� : A�ðY 0Þ ! A�ðYÞ is a universal splitting epimorphism (i.e. for any base-change Z ! Y

the induced map A�ðZ �Y Y 0Þ ! A�ðZÞ is a splitting epimorphism).

Proof. The projection GLn ! Y 0 and the natural Tn-action on GLn makes it a prin-
cipal Tn-bundle over Y

0. Moreover, if GL 0
n ¼ GLn �Y Y 0 is the pull-back of GLn, there is

a natural isomorphism of principal GLn-bundles

GLn �Tn
GLn ! GL 0

nð3:12Þ

over Y 0. The bundle E 0 over Y 0 corresponds exactly to the principal GLn-bundle GL 0
n.

Thus, the mentioned isomorphism of principal GLn-bundles over Y
0 shows that the bundle

E 0 splits in a direct sum of line bundles (say corresponding to the fundamental characters
w1; w2; . . . ; wn of the tori Tn). This proves the first assertion of the proposition.

To prove the second one, consider a Borel subgroup Bn in GLn (say the subgroup of
all upper triangle matrices) and let Un be the maximal unipotent subgroup of Bn (the group
of upper triangle matrices with 1’s on the diagonal). Let F ¼ GLn=Bn (this is just the flag
bundle over Y associated to E). The bundle F comes equipped with projections q : F! Y

and r : Y 0 !F, where the projection r is induced by the inclusion Tn HBn. Using the nat-
ural Un-action on GLn, it is easy to check that there is a tower of morphisms:

GLn ¼ Sm ! Sm�1 ! � � � ! S1 ¼F;ð3:13Þ

which has a principal Ga-bundle on each level (each level is a torsor over the trivial rank
one vector bundle). By the strong homotopy invariance property [9], 2.2.6, the induced map
on homology r� : A�ðY 0Þ ! A�ðFÞ is an isomorphism.

As it was already mentioned, F is a full flag bundle over Y associated to the bundle
E. Thus, there is a tower of morphisms

F ¼ Zs ! Zs�1 ! � � � ! Z1 ¼ Yð3:14Þ

in which each level is a projective bundle associated to a vector bundle. By the Projective
Bundle Theorem (PBT) A.6, we have a split epimorphism in homology induced on each
floor. Therefore, the map q� : A�ðFÞ ! A�ðY Þ is a split epimorphism as well.

These proves that the map p� : A�ðY 0Þ ! A�ðYÞ is also an epimorphism.

One can easily check that all necessary properties of the morphisms p, q, and r are
base-change invariant. Therefore, the constructed splitting epimorphism is universal. r

Proposition 3.6. Let s : Y ,! Pð1lVÞ be the zero-section of the finite-dimensional

vector bundle V. Then s A V.

Proof. Letting Y 0 be as above, denote by V 0 the pull-back of the bundle V with
respect to the morphism p. Then by Proposition 3.5 the bundle V 0 splits in a direct sum
of line bundles and the induced map
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p� : A�
�
Pð1lV 0Þ

�
! A�

�
Pð1lVÞ

�
ð3:15Þ

is an epimorphism.

Let s : Y ! Pð1lVÞ and s : Y 0 ! Pð1lV 0Þ be morphisms induced by zero-
sections of the corresponding vector bundles. Then the diagram

Pð1lV 0Þ ���!p Pð1lVÞ

s

x??? s

x???
Y 0 ���!p Y

ð3:16Þ

is transversal.

Let a A A�ðY Þ and a A A�
�
Pð1lVÞ

�
. Choosing b A A�

�
Pð1lV 0Þ

�
such that

a ¼ p�ðbÞ and applying Lemma A.3, one gets:

s�
�
a _ s!ðaÞ

�
¼ p�s�

�
p�ðaÞ_ s!ðbÞ

�
ð3:17Þ

and

s!ðaÞ_ a ¼ p�
�
s!p
�ðaÞ_ b

�
:ð3:18Þ

Two expressions on the right-hand sides coincide by Proposition 3.4. r

Corollary 3.7. Let i : Y ,! X be a closed embedding. Then i A V.

Proof. Applying Proposition 3.2 we reduce the question to the case of the zero-
section morphism s : Y ,! Pð1lNÞ of the normal bundle N ¼NX=Y . The morphism s

belongs to V by Proposition 3.6. r

In order to check that projection morphisms p : X � P� ! X belong to V we need a
few auxiliary results (3.9–3.11).

Notation 3.8. For a projective morphism f we denote, from now on, the map f� f
!

by f � and f! f
� by f�.

Lemma 3.9. (a) id� ¼ id.

(b) (Left distributivity) Let a, b, c, and p be projective morphisms. If a� ¼ b� þ c� then
ðpaÞ� ¼ ðpbÞ� þ ðpcÞ�, provided that both sides of the equality are well defined.

(c) Given a transversal square with projective morphisms f and g

X �Z Y ���! Y

F

???y
???yf

X ���!
g

Z

::::::::::::::::::

b

h

one has the following equalities: h� ¼ g�f � ¼ f �g�.
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(d) In the square above: g�F
� ¼ f �g�.

(e) Let si be the standard embedding Pn�i ,! Pn and pn : P
n
X ! X be the projection

map. Let ci be the same as in the Projective Bundle Theorem (see A.6). Then pn
� s
�
i ¼ ci.

Proof. Parts (a), (b) immediately follow from the definition of the operation �, (c)
and (d) are trivial corollaries of the transversal base-change property, (e) easily follows
from the PBT. r

Fix now a variety X A Sm=k and take the n-dimensional projective space Pn
X over X .

(Up to the end of the proof of Lemma 3.10 all the schemes are considered over the base
scheme X and the product is implicitly taken over X . In particular, Pn means Pn

X and P0

means X .) Due to the PBT, the element D!ð1Þ A A�ðPn � PnÞ may be decomposed as

D!ð1Þ ¼ 1r�zn þ zn r�1þ
Pn

i; j¼1
aijz

i r�z j;ð3:19Þ

where z ¼ e
�
Oð1Þ

�
is the canonical generator of A�ðPnÞ as an A�ðX Þ-algebra and

aij A A�ðXÞ (see [7], Lemma 1.9.3).

This equality together with the previous lemma gives us the following decomposition
of the identity operator idPn . Taking into account the relation s�ijðxÞ ¼ ðz i r�z jÞ_ x, where
sij : P

n�i � Pn�j ,! Pn � Pn is the standard embedding, we can rewrite the cap-product
with D!ð1Þ operator in the form:

D� ¼
�
D!ð1Þ_

�
¼ s�0n þ s�n0 þ

Pn

i; j¼1
aijs
�
ij:ð3:20Þ

Consider the transversal squares

Pn�i � Pn�j K��! Pn � Pn�j
???y

???yp1; n� j

Pn�i K��!
si

Pn

ð3:21Þ

::::::::::::::::::::::::

bp1; nsij

(where we denote by p1;k the projection map Pn � Pk ! Pn). Applying p1;n to (3.20), by
Lemma 3.9(a), (b), one gets the following equality:

id ¼ ðp1;nDÞ� ¼ ðp1;ns0nÞ� þ ðp1;nsn0Þ� þ
Pn

i; j¼1
aijðp1;nsijÞ�:ð3:22Þ

Once again, by Lemma 3.9(c), taking into account that ðp1;ns0nÞ� ¼ p�1;0s
�
0 ¼ id, one has:

0 ¼ p�1;ns
�
n þ

Pn

i; j¼1
aijp

�
1;n�js

�
i :ð3:23Þ
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Lemma 3.10. For the projection morphism pn : P
n ! P0, we have:

(a) p�n ¼ �
Pn

j¼1
anjp

�
n�j.

(b) pn
� ¼ �

Pn

j¼1
anjp

n�j
� .

Proof. Let us check the first statement. For n ¼ 0 we, trivially, have p�0 ¼ id. Apply-
ing the map pn

� to (3.23) and then employing Lemma 3.9(d) for the transversal squares

Pn � Pn�j ���! Pn�j

p1; n� j

???y
???ypn� j

Pn ���!
pn

P0;

ð3:24Þ

one gets:

0 ¼ p�nðpn
� s
�
nÞ þ

Pn

i; j¼1
aijp

�
n�jðpn

� s
�
i Þ:ð3:25Þ

By 3.9(e), pn
� s
�
i ¼ ci. Hence,

0 ¼ p�ncn þ
Pn

i; j¼1
aijp

�
n�jci:ð3:26Þ

By the PBT, for any x A A�ðXÞ we can choose an element jðxÞ A A�ðPn
X Þ such that

cn

�
jðxÞ

�
¼ x and ci

�
jðxÞ

�
¼ 0 for i < n. Applying operator (3.26) to jðxÞ, we get:

0 ¼ p�n þ
Pn

j¼1
anjp

�
n�j:ð3:27Þ

This finishes the proof of case (a). The cohomological relation (b) may be obtained by
dualization of these arguments or found in [7], Section 1.10. r

Proposition 3.11. Let pn denote, as before, the projection morphism pn : P
n
X ! X.

Then for every element a A A�ðXÞ, one has:

pn
�
�
p!nðaÞ

�
¼ pn

! ð1Þ_ a:

Proof. Rewriting the proposition statement in our notation, we should verify the re-
lation p�nðaÞ ¼ pn

� ð1Þ_ a. We proceed by induction on n. The case n ¼ 0 is trivial. Let the
proposition hold for n < N. Then for pN , by Lemma 3.10, we have:

p�NðaÞ ¼ �
PN

j¼1
aNjp

�
N�jðaÞð3:28Þ
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and

pN
� ð1Þ_ a ¼ �

PN

j¼1
aNjp

N�j
� ð1Þ_ a:ð3:29Þ

By the induction hypothesis the expressions on the right-hand side coincide. The induction
runs. r

Proposition 3.12. For every integer nf 0 the projection morphism p ¼ pn : P
n
X ! X

belongs to the class V.

Proof. Given a A A�ðPn
X Þ and a A A�ðXÞ one should verify that

p�
�
a _ p!ðaÞ

�
¼ p!ðaÞ_ a:ð3:30Þ

Clearly, both sides of (3.30) are A�ðX Þ-linear. By the PBT, A�ðPn
X Þ is generated as an

A�ðX Þ-module by the elements z j. Thus, it su‰ces to check the proposition just for
these elements. From [7], Lemma 1.9.1, we have a relation z j ¼ i

j
! ð1Þ in A�ðPn

X Þ, where
i j : Pn�j

X ,! Pn
X is the standard embedding map and the element z j A A�ðPnÞ is considered

here as lying in A�ðPn
X Þ via the pull-back operator for the projection Pn

X ! Pn. Denote by
pj the projection map P

n�j
X ! X . Since pi j ¼ pj, we have by Corollary 3.7:

p�
�
z j _ p!ðaÞ

�
¼ p�i

j
�
�
1 _ i!j p

!ðaÞ
�
¼ p j

�p
!
jðaÞ:ð3:31Þ

One finishes the proof of Theorem 2.5, using Proposition 3.11:

p j
�p

!
jðaÞ ¼ p

j
! ð1Þ_ a ¼ p!i

j
! ð1Þ_ a ¼ p!ðz jÞ_ a: rð3:32Þ

4. Proof of the second projection formula

The strategy of the proof of Theorem 2.7 is very similar to one used in the previous
section. It is again convenient to introduce a class W consisting of projective morphisms
f : Y ! X such that for any W A Sm=k, a A A�ðW � YÞ, and a A A�ðX Þ the relation

F!ðaÞ=a ¼ a=f !ðaÞð4:1Þ

holds in A�ðWÞ. (Here F ¼ id� f . Below we use similar notation rules.)

We show that the following classes of morphisms lie in W:

� Zero-sections of vector bundles: s : Y ,! Pð1lVÞ.

� Closed embeddings i : Y ,! X .

� Projections p : X � Pn ! X .

Since the class W is closed with respect to composition, this will imply our formula for all
projective morphisms.
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Lemma 4.1. Let V be a vector bundle over a smooth variety Y and let

s : Y ,! Pð1lVÞ be the zero-section of the projection p : Pð1lVÞ ! Y. Then the mor-

phism s belongs to the class W.

Proof. Let a A A�ðW � YÞ and a A A�
�
Pð1lVÞ

�
. By functoriality of the slant-

product, relation (AR.1), and formulas (2.4), (2.7), one gets:

a=s!ðaÞ ¼ a=p�
�
s!ð1Þ_ a

�
¼ P�ðaÞ=

�
s!ð1Þ_ a

�
ð4:2Þ

¼ðAR:1Þ �
P�ðaÞ^

�
1� s!ð1Þ

��
=a ¼

�
P�ðaÞ^ S!ð1Þ

�
=a ¼ S!ðaÞ=a:

(Here the relation 1� s!ð1Þ ¼ S!ð1Þ appears from the base-change property applied to the
product with W .) r

Proposition 4.2. Any closed embedding morphism i : Y ,! X of smooth varieties be-

longs to the class W.

Proof. Denote by Pð1lNÞ the projectivization corresponding to the normal bun-
dle N ¼NX=Y . It is endowed with the zero-section morphism s : Y ,! Pð1lNÞ.

As well as in the proof of Theorem 2.5 our arguments are based on the deformation
diagram which we obtained from (3.3) by multiplication with a variety W A Sm=k. For
convenience, we reproduce this diagram here:

W � B�W � Y �A1

KB

???y
W � Pð1lNÞ K��!

K0

W � B  ��L
K1

W � X

S

 
��L It

 
��L I

 
��L

W � Y K��!
J0

W � Y �A1  ��L
J1

W � Y :

ð4:3Þ

First of all, we show that It A W. Namely, we should prove that for any elements
a A A�ðW � Y �A1Þ and a A A�ðBÞ the relation

a=i!tðaÞ ¼ I t! ðaÞ=a:ð4:4Þ

holds in A�ðWÞ.

Exactly as in the proof of Theorem 2.5 one can rewrite a as a sum kB
� ðaBÞ þ k0

� ða0Þ,
where a0 A A�

�
Pð1lNÞ

�
and aB A A�ðB� Y �A1Þ and obtain the equalities:

a=i!tðaÞ ¼ a=i!tk
0
� ða0Þ ¼ a0=s

!ða0Þ;ð4:5Þ

where a0 ¼ J �0 ðaÞ.

Similarly, one gets the relation:
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I t! ðaÞ=a ¼ S!J
�
0 ðaÞ=a0 ¼ S!ða0Þ=a0:ð4:6Þ

By Lemma 4.1, a0=s
!ða0Þ ¼ S!ða0Þ=a0, which proves (4.4).

Since the map J �1 is an isomorphism, we can set a ¼ ðJ �1 Þ
�1ða1Þ A A�ðW � Y �A1Þ

and a ¼ k1
� ða1Þ A A�ðBÞ. Applying Corollary A.3 again, one gets:

a1=i
!ða1Þ ¼ J �1 ðaÞ=i!ða1Þ ¼ a=i!tðaÞð4:7Þ

and

I!ða1Þ=a1 ¼ I!J
�
1 ðaÞ=a1 ¼ I t! ðaÞ=a:ð4:8Þ

Combining these equalities with relation (4.4) proves the proposition. r

Proposition 4.3. Let X ;W A Sm=k, p : X � Pn ! X be the projection morphism, and
P ¼ id� p : W � X � Pn !W � X. Then for every elements a A A�ðW � X � PnÞ and
a A A�ðX Þ, one has in A�ðWÞ:

a=p!ðaÞ ¼ P!ðaÞ=a:ð4:9Þ

Proof. Consider the following commutative diagram with transversal square:

X � Pn  ���i
X � Pn�r  ���q

W � X � Pn�r
???ypr

???yPr

X  ���q
W � X :

ð4:10Þ
��������!p¼p0

Clearly, both sides of (4.9) are A�ðWÞ-linear. So, we may assume that a ¼ zrW�X . Since
zrW�X ¼ I!ð1W�X Þ A A�ðW � X � PnÞ, one has:

zrW�X=p
!ðaÞ ¼ I!ð1W�X Þ=p!ðaÞ ¼ 1W�X=i

!p!ðaÞð4:11Þ

¼ 1=p!rðaÞ ¼ P�r ð1Þ=p!rðaÞ ¼ 1=pr
�p

!
rðaÞ:

By Proposition 3.11 and formula (AR.1):

1=pr
�p

!
rðaÞ ¼ 1=

�
pr
! ð1X Þ_ a

�
¼ q�pr

! ð1Þ=a:ð4:12Þ

Applying the base-change property to the square in the diagram above, we get the desired:

q�pr
! ð1X Þ ¼ Pr

! ð1W�X Þ ¼ P!

�
I!ð1Þ

�
¼ P!ðzrW�X Þ: rð4:13Þ

Appendix A. Some properties of a trace structure

In this Appendix we give a brief description of some useful properties of a trace struc-
ture, which are utilized in the paper. Although we need to work both with cohomological
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and homological contexts, the results here are presented only for homology. The cohomo-
logical variant is ‘‘dual’’ in the obvious sense and may be found in [7]. All the proofs for the
homological case not provided below can be found in [11].

We, first, define a transversal square following A. Merkurjev [5].

Definition A.1. We call a square

Y 0 ���!f X 0

g

???y
???yg

Y ���!
f

X

in the category Sm=k transversal if

(a) it is Cartesian in the category Sch=k of all schemes over the field k;

(b) the following sequence of tangent bundles over Y 0 is exact:

0 ����!TY 0 ����!
dgldf

g�TY l f �TX 0 ����!
dg�df

g�f �TX ����! 0:

It is not hard to check that this definition is accordant to one given in [7], 1.1.2 or [10],
1.1. Let us check, for example, that for a closed embedding f condition (b) implies the iso-
morphism: g�NX=Y FNX 0=Y 0 . The short exact sequence above may be viewed as a total
complex of the bicomplex:

0 ���! g�TY ���!�df g�f �TX

dg

x???
x???dg

0 ���! TY 0 ���!
df

f �TX 0 :

ðA:1Þ

Since (b) is exact, the bicomplex is acyclic. On the other hand, it is quasiisomorphic to the
two-term complex g�NX=Y  NX 0=Y 0 .

Property A.2 (Base-change for transversal squares). For any transversal square as
above with projective morphism f the diagram

A�ðY 0Þ  ���f !

A�ðX 0Þ

g�

???y g�

???y
A�ðYÞ  ���f !

A�ðXÞ

commutes.

Corollary A.3. Suppose, we are given a transversal square
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X 0 ���!g X

f

x???
x???f

Y 0 ���!
g

Y

with projective morphism f . Let a A A�ðY Þ and a A A�ðX 0Þ. Then the following relations

hold:

(i) f�
�
a _ f !g�ðaÞ

�
¼ g� f �

�
g�ðaÞ_ f

!ðaÞ
�
.

(ii) f!ðaÞ_ g�ðaÞ ¼ g�
�
f !g
�ðaÞ_ a

�
.

Moreover, for a variety W A Sm=k and b A A�ðW � YÞ, we have:

(iii) b=f !g�ðaÞ ¼ G�ðbÞ=f !ðaÞ.

(iv) F!ðbÞ=g�ðaÞ ¼ F !G
�ðbÞ=a.

Proof. All these relations may be easily obtained using the base-change property.
We illustrate it proving the first one:

f�
�
a _ f !g�ðaÞ

�
¼ f�

�
a _ g� f

!ðaÞ
�
¼ f�g�

�
g�ðaÞ_ f !ðaÞ

�
ðA:2Þ

¼ g� f �
�
g�ðaÞ_ f !ðaÞ

�
: r

Property A.4 (Gysin exact sequence). Let i : Y ,! X be a closed embedding
and j : X � Y ,! X the corresponding open inclusion. Then, the sequence
A�ðX � YÞ !j� A�ðX Þ !

i!

A�ðY Þ is exact.

The following lemma is a ‘‘dualization’’ of ‘‘Useful Lemma 1.4.2’’ from [7].

Lemma A.5 (Homological useful lemma). Consider the following diagram with trans-

versal square:

X � Y

k1

???y
V ���!

k0
X

i

x??? q

 
��L

W ���!
j

Y

p

where the morphism p is projective, q is a closed embedding, X � Y is the open complement

of Y in X , k1 is the corresponding open embedding, pi ¼ id, and the morphism j induces an

isomorphism in homology. Then Im k0
� þ Im k1

� ¼ A�ðX Þ.

Proof. Let x A A�ðX Þ. Since the map j� is an isomorphism and i!p! ¼ id, we can,
using the transversal base-change property, lift x up to x ¼ p!ð j�Þ�1q!ðxÞ A A�ðVÞ, such
that q!k0

� ðxÞ ¼ q!ðxÞ. Then, the Gysin exact sequence implies that k0
� ðxÞ � x A Im k1

� . r
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Property A.6 (Projective Bundle Theorem (PBT)). First, we should introduce the
notion of an Euler class. For a line bundle L over X we set eðLÞ :¼ z�z!ð1Þ, where
z : X !L is the zero-section (see [7], 1.1.4 for details).

For X A Sm=k and a rank r vector bundle E!p X set z ¼ e
�
OEð1Þ

�
A A�

�
PðEÞ

�
. Then

the map

Lr�1

i¼0
ci : A�

�
PðEÞ

�
!F

Lr�1

i¼0
A�ðXÞ;

where ci ¼ p� � ðz^i _ �Þ, is an isomorphism.

Appendix B. Orientation, Chern structure, and homothety involution

Let A be a symmetric commutative ring T-spectrum. For l A k� consider a map
l : T ! T sending x to lx. For any space X it determines an involution (see [15]) on the
cohomology groups A�;� as follows:

eðlÞ� ¼ S�1T l�ST : A�;�ðXÞ ! A�;�ðX Þ;ðB:1Þ

where ST : A�;�ðXÞ ! A�þ2;�þ1ðX Þ is the T-suspension isomorphism and S�1T is its inverse.
Set e ¼ eð�1Þ�. The following lemmata show that e ¼ id for orientable T-spectra.

Lemma B.1. A�ðP1 � X Þ is a free A�ðXÞ-module with a free basis f1;STð1Þg.

Proof. For every symmetric commutative ring T-spectrum A the map
A�ðP1ÞnA�ðptÞA

�ðXÞ ! A�ðP1 � X Þ is an isomorphism. So, it remains to show that
f1;STð1Þg form a free A�ðptÞ-basis in A�ðP1Þ. Note that since the morphism P1 ! pt has
a section, one has: A�ðP1Þ ¼ A�ðptÞlA�ðP1=fygÞ. Using excision and homotopy invari-
ance properties, the latter A�ðptÞ-bimodule can be rewritten as:

A�ðP1=fygÞ ¼ A�ðP1=A1Þ ¼ A�
�
A1=ðA1 � f0gÞ

�
ðB:2Þ

¼ A�ðTÞ F
S�1T

A�ðptÞ: r

Remark B.2. It is worth to mention that for an orientable spectrum A the set
f1;STð1Þg also form a free basis of the A0ðptÞ-module A0ðP1Þ.

Lemma B.3. If A is orientable then e ¼ id.

Proof. We show that for any l A k� one has S�1T l�ST ¼ id. By [13], T FP1=pt
and the map l corresponds to the endomorphism of P1 (preserving the distinguished point
0) sending ½x : y� to ½lx : y�. Let i : P1 ! P2 be a linear embedding. Since gjP1 ¼ STð1Þ,
Lemma B.1 implies that the map i� : A�ðP2Þ ! A�ðP1Þ is an epimorphism. Now the state-
ment easily follows from [3], Lemma 1.6, Proposition 4.1. r

Finally, we construct a natural orientation of MGL. In [10], Section 6.5, there
has been constructed an element c A MGL2;1ðPyÞ such that cjP1 ¼ �STð1Þ and cjP0 ¼ 0.
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Clearly, the construction (2.1) being applied to the element c (instead of g in (2.1)) deter-
mines a Chern structure on MGL�. Set g ¼ c

�
OPyð1Þ

�
A MGL0ðPyÞ.

Proposition B.4. The element g is an orientation of the symmetric commutative ring

T-spectrum MGL.

Proof. Obviously, gjP0 ¼ 0. By [9], Lemma 3.6, one has c
�
OP1ð1Þ

�
¼ �c

�
OP1ð�1Þ

�
.

The proposition follows as:

gjP1 ¼ c
�
OP1ð1Þ

�
¼ �c

�
OP1ð�1Þ

�
¼ �cjP1 ¼ STð1Þ: rðB:3Þ
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