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Abstract We prove that for a large class of Al-representable theories including all
orientable theories it is possible to construct transfer maps and to prove rigidity the-
orems similar to those of Gabber for algebraic K-theory. This extends rigidity results
of Panin and Yagunov from algebraically closed fields to arbitrary infinite ones.

0 Introduction

The aim of this paper is to establish rigidity results for graded cohomology type func-
tors E on smooth varieties over an infinite base field k. This paper generalizes the
results of [14] and [24] where the special case of orientable theories E resp. stably
Al-representable theories on smooth varieties over algebraically closed fields have
been studied.

Consider some category of schemes (spaces) S over a base scheme (space) B
together with a cohomology theory E*: S°P — Ab. Then we say that E* satisfies

rigidity if for every irreducible scheme X % B, any two sections og,01: B — X of the
structure morphism y induce the same homomorphism o = o;: E*(X) — E*(B).
In classical topology, the rigidity property is an obvious consequence of homotopy
invariance of cohomology theories. However, in algebraic geometry Al-invariance
does not always imply rigidity. It only holds under certain restrictions on S and the
cohomology theory E*. In particular, rigidity fails for K; with integral coefficients.
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438 J. Hornbostel, S. Yagunov

Rigidity results for finite coefficients have been established for algebraic K-theory by
Suslin, Gabber, and others (see [3,4,18]), for hermitian K-theory by [7,9], and for Witt
groups by [10,16, p. 208]. The rigidity theorem and one of its corollaries in Gabber’s
paper [3] are the following:

Theorem 0.1 Suppose that R is a henselian local ring and ¢ € Z is invertible in R,
f: M — SpecR is a smooth affine morphism of (pure) relative dimension 1. Let
50,51: Spec R — M be two sections of f such that so(P) = s1(P), where P is the closed
point of Spec R. Then for every homomorphism R — F, where F is any field, the two

composed maps K.(M,7/¢) 2 K.(R,2/0)—K,(F,Z/¢) are equal (i = 0,1).

The second morphism is known to be injective in many cases at least with integral
coefficients if R is regular. In particular, if ¥ = Frac(R) and R contains a field, this
is the Gersten conjecture for algebraic K-theory as proved by Quillen [15] and Pa-
nin [13] in this case. See Proposition 2.3 for a proof of the Gersten conjecture with
finite coefficients.

Corollary 0.2 Let M be a smooth scheme over a field k with € invertible in k, P € M (k)
a k-rational point of M, and R = Oﬁxz, p the henselization of the corresponding local
ring. Then the map

K.(R,Z/t) 5 K.(k,7/0)

induced by R — k is an isomorphism.

The proof of Theorem 0.1 relies on the existence of transfer maps fulfilling cer-
tain properties and on homotopy invariance [i.e. K,(X) = K,(X x Al) if X smooth]
whereas the Corollary 0.2 uses moreover that K, commutes with colimits. Throughout
this paper we will always assume that our cohomology functor (also called “cohomol-
ogy theory”) E commutes with filtered colimits (as all interesting examples do) and
extend the domain of E accordingly. In [20, p. 227], Suslin says that the above theo-
rem should hold for other homotopy invariant functors E having transfers for finite
flat maps satisfying “the usual properties”. A first axiomatic set of the transfers and
their required properties that yield a rigidity statement is published in [21]. (Compare
also an unpublished manuscript of Jannsen from 1995 which is now available [6].)
A different choice of axioms is proposed in [14]. Panin and Yagunov show that the
axioms are satisfied for any orientable theory over algebraically closed fields, and
deduce a rigidity theorem for orientable theories with finite coefficients. Moreover,
they show that base change with respect to an extension of algebraically closed fields
is then an isomorphism. In [24], Yagunov shows that these results carry over to all
theories that are representable in the stable A!-homotopy category of [22]. Examples
include hermitian K-theory, Balmer Witt groups assuming char(k) # 2, and stable
cohomotopy groups. Stable Al-representability allows Yagunov to construct alge-
braic “Becker-Gottlieb transfers” with respect to a class of morphisms Ciy, Which
is rather small but still large enough to conclude. We will review these transfers in
Sect. 1.

This paper generalizes the above results. Assuming certain additional hypotheses
that can be checked in many cases of interest (see Corollary 0.5 below), we can get
rid of the condition that our base field is algebraically closed, construct transfers and
establish the following generalization of Theorem 0.1 and Corollary 0.2 above:
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Theorem 0.3 Let k be an infinite field and let R be a henselian local ring essentially
smooth over k with field of fractions Frac(R) = F. Assume that E = E** is a contra-
variant bigraded functor on the category Sm/k of smooth schemes of finite type over k
that is representable in the stable A'-homotopy category and satisfies (E = 0 for £ € 7.
invertible in R. Assume, moreover, that E is normalized with respect to the field F(see
Definition 1.3). Let f: M — Spec R be a smooth affine morphism of (pure) relative
dimension d, and sg,s1: Spec R — M two sections of f such that so(P) = s1(P), where

P is the closed point of Spec R. Then the two maps' E(M) % E(Spec R) are equal
i=0,1).

Corollary 0.4 Let E and k be as in Theorem 0.3, V a smooth variety over k, P € V (k)
a k-rational point of V, and R = O{’,’P. Then

E(Spec R) 3 E(Spec k)
is an isomorphism.

We will see that the proof for a general E is considerably more complicated than
in the special case of K-theory.

Given a representable theory E, there is a standard way to construct an associated
theory E( ,¢) with £2E = 0, see Sect. 2.

The above hypotheses will hold for orientable theories, but also for Balmer Witt
groups W* in certain degrees, see Sect. 4. For example, we have:

Corollary 0.5 Let X € Sm/k with k as above, V a smooth variety over k, P € V(k),
and F = Frac(O{‘,’ p)- Let also (as in Theorem 0.3) E be a representable cohomology

theory such that LE = 0 for some { € Z invertible in F. If the map E(]P’%(L) — E(]P’}(L)

induced by one of the standard inclusions P' < P? is an epimorphism for every finite
separable field extension L/F (e.g. E = MGL, Hot, or K), then the map

E(X Xgpeck Spec O p) — E(X)

is an isomorphism. If E is represented by a commutative motivic ring spectrum, then it
is sufficient to check the epimorphism condition for X = Spec k.

This article is organized as follows: In Sect. 1 we recall the definition of Becker—
Gottlieb transfers and some results from [14] and [24]. Cohomology theories with
finite coefficients are introduced in Sect. 2. Section 3 contains the proof of Theo-
rem 0.3 and Corollary 0.4. In Sect. 4 we discuss for which theories E the hypotheses
of Theorem 0.3 and Corollary 0.4 hold, which will prove, in particular, Corollary 0.5.
This includes a short discussion of Witt groups.

Notation remarks Throughout this paper, E will always denote a bigraded cohomol-
ogy theory which is representable in the stable A'-homotopy category and thus, in
particular, homotopy invariant.

We use the standard “support” notation for cohomology of pairs and denote
E(X,U) by Ez(X), provided that U is an open subscheme of X and Z = X — U.

If F is a field we often write E(F) instead of E(Spec F).

1 Recall that here and below we extend the domain of E and set, for example, E(Spec R) := lgnE (XD,
as Spec R = li(r_nX,', Xi € Sm/k.
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440 J. Hornbostel, S. Yagunov

T denotes the Tate object in the stable A'-homotopy category. 7 denotes both
T-suspension morphism and the suspension isomorphism induced in cohomology.
We omit grading of cohomology groups whenever it is possible. However, to make
the T-suspension isomorphism compatible with the usual notation, we write E% for
cohomology shifted by d. More precisely, if £ denotes a cohomology theory E**
represented by a T-spectrum, we set El4] = fr+2d#+d

1 Transfers

Denote by Cyiv a class of equipped morphisms (f, v, ®) where f is decomposed as

fiX < ¥ x A" & ¥ such that 7 is a closed embedding with trivial normal bundle
Nyxan x, p is the projection morphism, and ©: Ny, an/x = X x AN is a trivialization
isomorphism. Abusing the notation we often omit  or ® if the decomposition or the
trivialization is clear from the context.

Following [24], one can construct transfer maps with respect to Ciiy. More pre-
cisely, for any morphism (f: X — Y, t,®) € Cyiv of codimension d Yagunov defines a
Becker—Gottlieb transfer map (f, t, ®),: E(X) — El¥l(Y), sometimes also denoted by
(f,®), or 7. In [24] the base field is assumed to be algebraically closed. But this is not
needed in the construction and neither in the proof of the following two properties:

Proposition 1.1 (Base change property) Consider a commutative diagram of Cartesian
squares
f/

Xy Sy
T
XS Yy x A" ——>Y

f

where f € Cuiy is of codimension d, and the morphisms t, t’ are closed embeddings
such that the left-hand-side square is transversal (see [14, Definition 1.1]). Assume that
®' is a base change of © in the sense that the square:

X' x adtn <2 Nyran x —— Nyxan/x X X’ (1.1)
g’xidi lN(g’)
X x Adtn <2 Nyamx
is Cartesian. Then, the diagram:
Exy LTO% gy

g,ﬁ gﬁ
Ex) LEO pldyy,

commutes.
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Rigidity for Henselian local rings and Al -representable theories 441

Proposition 1.2 (Additivity) Let X = Xou X, € Sm/k be a disjoint union of subvari-
eties Xo and X1, e : Xy — X (m = 0, 1) be the corresponding embedding morphisms,
and (f: X — Y,7,0) € Cyiy (codim f = d). Setting fin1 = (f o em, T 0 em, Olx,, )1, we
have:

foseg + frel = fi.

There is a third property which will be necessary for proving our rigidity theorem:

Definition 1.3 (Normalization) We say that a cohomology functor E: Sm/k — Ab sat-
isfies the normalization property for a separable field extension K /k if for any A € K*
the automorphism E}lk*ZT: E(K) — E(K) induced by the A-homothety of A}< is
the identity [here T1: E(K) — E[(l)]} (Ag) is the suspension isomorphism). We call the
functor E normalized with respect to the field k if it satisfies the normalization property
for every finite separable extension of the field k.

By [24, Proposition 3.3] the following proposition holds for normalized theories.

Proposition 1.4 For any decomposition Spec K < A% — Spec K of the morphism
(id, ®), the resulting transfer map (id, v, ®),: E(K) — E(K) is the identity.

Remark 1.5 From the proof of [24, Lemma 3.5], one can easily derive that Proposi-
tion 1.4 holds for a graded theory E in a certain degree i if and only if the normalization
condition of Definition 1.3 holds for E'. So, from now on we call both these statements
normalization property.

The normalization property is fulfilled for algebraically closed fields, see loc.cit. In
general, we have the following convenient criterion.

Lemma 1.6 Assume that the map i*: E(IP’%{) — E(P}{) induced by one (and thus all)

of the standard inclusions P}( — IP’% is surjective. Then E satisfies the normalization
property for K.

Proof As in [24, pp. 38-39], it is sufficient to check that the action of the matrix
d = diag(), 1) induces the identity automorphism on E (P1). Consider the embeddings
ip and ij of P! into P? given by mapping (x:y) to (x:0:y) resp. (0:x:y). The induced
maps i and if (both denoted by i* above) from E(P?) to E(P') are equal because E
is homotopy invariant and H': P! x Al — P2 given by H((x:y),t) = ((1 — Hx:tx:y)
is a homotopy between iy and i;. The diagonal matrix D = diag(2,1,1) induces an
automorphism D* of E(P?). We have ipd = Dig and iy = Dij, hence ifD* = d*ij
Zild l’l‘cll)* = ij. As iy = i} is surjective by hypotheses, the equality d*ij = i} implies

=1d. ]

Any orientable theory is normalized with respect to any field, since the projective
bundle theorem E(P%) = E(Spec K)[x]/ (x"*1) holds. On the other hand, in the case
of the analytic topology over R, the action induced by —1 [i.e. diag(—1,1)] on the real
projective line RP! = S! is not the identity on the fundamental group 7y (RP') = Z
and the same holds for the cohomology group H'(RP!, Z).

We can rephrase Yagunov’s theorem on the existence of transfers as follows:

Theorem 1.7 Let E be a graded functor on Sm/k which is representable by a T-spec-
trum in Voevodsky’s stable A'-homotopy category SH (k). Then for every f: X — Y €
Cuiv thereis a transfer map f,: E(X) — E(Y), which satisfies additivity and base change.
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442 J. Hornbostel, S. Yagunov

2 Cohomology theories with finite coefficients

We refer the reader to [8,22] for the construction of the motivic stable homotopy
category SH (k) and its basic properties. In particular, we have a motivic spectrum
St = §i=1 A G, which is the motivic suspension spectrum associated to the corre-
sponding simplicial sheaf. For any positive integer ¢, the motivic sphere spectrum § has
a self map of degree ¢ (take the map of degree ¢ on S!, for instance). The homotopy
cofiber of ¢£: § — S is denoted by S/¢ and is called the motivic Moore space mod £.
As in topology, we can now define cohomology theories with integral and with finite
coefficients.

Definition 2.1 Let E be a Pl-spectrum in the homotopy category of motivic spectra
SH (k). Then for every scheme X € Sm/k, £ € N, and i,m € 7Z, we set:
E¥™(X) = Homgp ) (EF X4, ™™ A E)
E¥(X,€) = Homgp o (S X 4, S /€ A E)
In particular, we have K 09X, 0) = K;(X,Z/¢) for the motivic spectrum K = BGL

introduced in [22, 6.2], and the proof is the same as the one given in loc. cit. for integral
coefficients. As in topology, one obtains a long exact sequence

o ECY (X0 > EN(X) 2SN X) > EPNXL ) —

and one deduces:

Lemma 2.2
(a) There is a natural short exact sequence

0— E"(X)QZ/t — E"(X,0) =4 EFY(X) — 0.
(b) Any element in E¥" (X, £) is annihilated by €.

Proof The exactness of (a) is immediate from the long exact sequence. To prove (b),
observe that by (a) any E—divis_ible element in E“"*(X, £) maps to zero in (EFLm X))
and thus lies in the image of E""(X) ® Z/¢. O

By the definition above, if E is representable in SH(k), then so is E( ,£). Hence
the following version of the Gersten conjecture also applies to theories with finite
coefficients.

Proposition 2.3 If k is infinite, the Cousin complex (see e.g. [2, section 1)) for E yields
a resolution of the Zariski sheaf associated to X +— E(X). In particular, if R is local
and essentially smooth over k, then the map

0 - E(R) — E(Frac(R))
is a monomorphism.
Proof Setting Ez(X):= E(cone((X — Z) — X))) and E,(X): = colimysyEznu(U),
this is established in [5, Corollary 2.9]. The proof given there for KO is valid for any

motivic spectrum E using (as £ commutes with colimits by assumption) the isomor-
phism E,(R) = E(Frac(R)) where 7 is the generic point of Spec R. m]

Remark 2.4 Note that we can not eliminate the hypothesis that & is infinite as done
in [2, Theorem 6.2.5] as we cannot prove the formula in COH6 of loc. cit. for our
transfer morphisms in general.
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3 Proofs

The main purpose of this section is to prove the following theorem which implies The-
orem 0.3 thanks to Proposition 2.3. Corollary 0.4 follows from Theorem 0.3 exactly as
it does in [3, p. 66].

Theorem 3.1 Let R be a henselian local ring over k with an infinite field of fractions
Frac(R) = F. Assume that E = E** is a contravariant bigraded functor on the category
Sm/k representable in the stable A'-homotopy category, LE = 0, and { € 7 is invert-
ible in R. Assume, moreover, that E is normalized (see Definition 1.3) with respect to
F. Let f: M — Spec R be a smooth affine morphism of (pure) relative dimension d,
50,51: Spec R — M two sections of f such that so(P) = s1(P) where P is the closed
point of Spec R. Then the two composed maps s, s7: E(M) = E(R) — E(F) are equal.

Proof Parts of the proof follow the one of Gabber [3, pp. 67-69] for algebraic K-the-
ory. As Gabber observes [3, Remark, p. 67], it is enough to consider the case that f
is of relative dimension one. We first get rid of local rings and reduce the question
to some form of the rigidity theorem for fields. For this, denote by M the generic

fiber of M, that is the fibered product M x Spec F with respect to the canonical
Spec R

morphism p: Spec F — Spec R. Then the maps s; induce maps s/ : Spec F — M via
base change, so it suffices to show that (sg ) = (s{7 )*.

For sf: Spec F — MFp, we set P;: = Im(sf). Since the open neighborhoods of the
points Py, P; form an inductive system, the value of (sg )< — (sf )* is independent of
the choice of the containing open neighborhood. So, it is sufficient to establish the
equality (sg )= (sf )* for one special affine neighborhood. Setting M to be a projec-
tive closure of M and C the normalization of the curve (M)r, we can choose an open
neighborhood U of {so(R),s;(R)} in M such that Q,s,/r and thus the tangent bundle is
trivial when restricted to U. [To find such a U first choose a desired neighborhood for
so(R) and then deduce that it also contains s1(R) since both sections coincide on the
closed fiber.] We further set Z := (M — U)yeq, C° := Ur, and Cy, := C — C°; thus the
tangent bundle of C° is also trivial.

Below we identify the invertible sheaf corresponding to the divisor D with its image
in the Picard group Pic(C, C) and denote it by O(D) unless any confusion may
appear. Recall that the relative Picard group Pic(C, C,) is by definition the set of iso-

morphism classes of pairs (L, y) where L is a line bundle on Cand ¥ : L ®0. Oc,, S
Oc,, is a trivialization of L|c, . The relative Picard group Pic(C, C,) can be identified
with H f%t(C . O*C,Coo)‘ This is true for any closed embedding of schemes C, C C, see [3,
p- 67] for more details.

The statement (sOF ) = (sf )* is implied by the following two theorems:

Theorem 3.2 For C,Cy, as above and any integer £ # O coprime to char F the divisor
Oc(Py — Py) is £-divisible in the relative Picard group Pic(C, Cyo).

Theorem 3.3 In the above situation, there exists a bilinear pairing
<,>: Pic(C,Cx) x E(C°) — E(F)
such that for any ¢ € E(C°) and the above F-rational points Py, P1 € C° the equality
< Oc(Po — P1),c >= (s))*(©) = (5)*(©)
holds in E(F).
&\ Springer



444 J. Hornbostel, S. Yagunov

The first theorem is similar to one proven in [3, Corollary p. 68] (see also [4,21]).

Before proving Theorems 3.2 and 3.3, we show how to derive Theorem 3.1 from
them. By Theorem 3.2, there is an element (£, V) in Pic(C, Cy) with £(L,v) =
Oc(Py — Py). Then by Theorem 3.3, for any element ¢ € E(C°) we have: (sg)*(c) —

(31) (¢) =< Oc(Py — Py1),c >= £ < (L,¥),c >= 0 which proves Theorem 3.1. m]

Proof of Theorem 3.2 Consider the following short exact sequence of étale sheaves:
0= jie = O — Ofc =0, (3.1)

where C° N c<L Cc,O and (’)*CC is the sheaf Ker(Of — z*(’)*c ).
Now we write down a fragment of the cohomology long exact sequence associated
to (3.1) in the form:

Pic(C, Coo) > Pic(C, Coo) 25 HZ(C, juse) (3.2)

Using the definition of C, C, one sees that the hypotheses of [3, Proposition 4]
are satisfied (the slightly different version of [21] requires the existence of a good
compactification here). Therefore, in this situation every element of Pic(C, Cy) is of
the form O¢(D) for some D € Div(C, C). Here Div(C, C) denotes the group of
Cartier divisors on C with support disjoint from C. If r(Oc(D)) = 0, the exact
sequence above yields the equality D = £D’ + div(f) in Div(C, C) for a suitable
divisor D" and f a meromorphic function on C which is regular around Cx, and sat-
isfies f |c.,= 1. To establish that §r(Oc(Pp — P1)) = 0 it suffices to show that the
class of sg — 51 : so(Spec R) — s1(Spec R) in the relative Picard group of M lies in
Ker(Pic(M, Z) S o2 t(M Jiwe)), where J: M — Z — M. In fact, the class of Py — P; is
the pull-back of sy — s1 with respect to the restriction to the generic fiber. Finally, we
show, following [3,21], that §(so — s1) = 0. Let M, = M Xspec g @ be the special fiber
of M — Spec R. One has the commutative diagram

Pic(M, Z) ——— H2(M,Jyj0) (33)

! E —
Pic(Mo, Z) — > Hg (Mo Jorite),
where J,,: M, — Z,, — M,,. By the proper base change theorem [17, Corollaire XII.
5.5], [12] the map r is an isomorphism. Since the sections so and s; coincide at the

closed point w, the map « is zero on the class of so — s1. The statement §(sgp — s1) =0
follows, which completes the proof of the theorem. O

Remark 3.4 One can see that the claim of the proper base change theorem
HE (M, Jyee) = Hz (Mo, Jo1e0) (34)

is in fact a particular case of the rigidity theorem for étale cohomology.
In order to prove Theorem 3.3, we need the following auxiliary definitions.

Definition 3.5 Given a finite separable field extension L/F and a closed embedding
F: Spec L — A" = AY, we define a map trf/F: E(L) — E(F) in the following way.
@ Springer
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Choose a trivialization of the normal bundle ®: NA’;/ spec L. = AY. Then we define
triT P = (f, F, @), to be the Becker-Gottlieb transfer map corresponding to the mor-

f
phism f: Spec L < A’ — SpecF.

Remark 3.6 The definition of this map does not depend on the choice of the isomor-
phism ®. To see this, recall [24] that the transfer map is defined by the composition

[}
E(L) = EL(L) > EY} o (A7) S EY Wi 0)—~EVN AL — E(F).

Now two different trivializations differ by an automorphism of A} which induces the
identity map on E[L"]X{O} (A7) by the normalization property (compare [24, Lemma
3.6]). We do not claim that tr is independent of the factorization of f.

First, we construct the desired pairing for a group ISE(C , Cso), Which we shall define
now.

Definition 3.7 Let C be a regular projective curve over a field F. A divisor on C
is called separable if it can be written as > a;D; such that the structure morphisms
D;: Spec L; — Spec F are given by finite separable field extensions L;/F. A separable
divisor having all multiplicities equal to +1 is called unramified. If f is a function such
that div(f) is unramified, we also say that f is unramified.

For a regular projective curve C with dense open subscheme C°,and C, := C—C°,
let us denote by Divg(C, C) C Div(C, Cw) the subgroup of all separable divisors on
C whose support does not meet C,. We also denote by M the (multiplicative) group
of all meromorphic functions taking the value 1 on C,, and we use the same notation
for the corresponding subgroup of Div(C, Cw). Finally, we set

Pic(C, Coo) = Divs(C, Coo)/(Divs(C, Coo) N M). (3.5)
We now define the crucial pairing.

Definition 3.8 For C, C°, and Co, := C — C° as above and a regular closed embedding
F: C° — AY, we define a bilinear pairing <, >7: Divg(C, Coo) ® E*(C°) — E*(F) as

follows. For a divisor D =, a;(Spec Lig C®) and ¢ € E*(C°) we set:

.7:_ . Fox;i *
<D,c> _Za,trLi/F’xi(c),
L

where L;/F are the corresponding finite field extensions.

The pairing is well-defined by Remark 3.6, and the condition < Oc(Py—P1), ¢ >7 =
(sg )Y*(c) — (sllE )*(c) of Theorem 3.3 is satisfied by Proposition 1.4.

Proposition 3.9 For C,C° and C as in 3.8, choose a regular closed embedding
F:C°— Ap Letf: C — ]P’lF be a meromorphic function such that div(f) € Divg(C,
Coo) N M. Then the map < div(f), — >7 is trivial.

Proof First, we assume that f is unramified. Then the proof is similar to the one
of [24, Theorem 1.6.]. Denote by C° the open locus f # 1 on C°. Since the morphism
(F,f): C°— A" x P! is a closed embedding, one has (after the natural identification
Al = P! — {1}) the closed embedding G = (F,f)s: C° — A" x Al. Recall that the
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curve U and consequently C° were chosen in such a way that by Remark 3.10 below
the embedding G: C° — A" x Al has a trivial normal bundle. Thus, the morphism

Co % an s al B pl belongs to Cyiy. Setting D = divy(f) to be the locus of f = 0
and D’ = dive(f) the locus of f = oo, we now show that < D, — >F =< D', — >7,
Consider the square corresponding to the restriction of f to its fiber over the point {0}

which is commutative by the base change and additivity properties:

~ oxf .
E(Co) xiefe—al (O)E(Spec Ll) (36)
; i l &(f1x)!
| EAL x AL) SEAL x {0})
E(Ak) ————— E({0}) === E(Spec F),
)

where the field extensions L;/F correspond to the points x; lying over {0}.
For a pointx € f‘1 (0), one has F|, x {0} = G|,. Therefore, the transfer map on the
right hand side becomes the sum of trz_‘;}, so it does not depend on f.

The diagram shows that i(”;f!g =2 trzlﬁpx;“ =< D,— >7. Since the same can be

done over the point {oo} and the maps if, i%, are equal by homotopy invariance, the
claim is proven. o

Remark 3.10 Any closed embedding of the curve C° in A}“ has trivial normal bundle
for the following reason: since the tangent bundles of both our curve and A™*! are
trivial, the normal bundle is stably trivial. A stably trivial vector bundle on an affine
curve is already trivial: a rank » bundle £ on a smooth affine curve contains a rank
n — 1 trivial summand, so £ = ©"~! @ £. Now let g be such an integer that the vector
bundle £ @ 01 is trivial. Since det(€ @ O9) = L, £ is stably trivial if and only if £ = O.

We now show that any divisor Q of Divg(C, Cs) N M can be written as a sum of
unramified principal divisors admitting representatives taking value 1 on Cs,. This
follows applying the lemma below to a principal divisor Q = div(f). This completes
the proof of Proposition 3.9.

Lemma 3.11 Every divisor Q € Divs(C, C) can be written in the form Q = 3 ;
div(gi)+Q’, where g; € M, all the divisors on the right-hand-side belong to Divs(C, Co)
and are unramified.

Proof This as an easy modification of the proof of [23, Lemma 3.16]. Let Q0 = >, +P;,
where P; are (not necessary different) closed points on C°. Applying Voevodsky’s
proof to each of these points, one gets equivalences P; ~ Q). All the equivalences can
be obtained by unramified functions g; € M such that the divisors Q; € Divs(C, C)
are unramified. Since there are infinitely many closed points of C° with separable
residue fields, the procedure used enables us to chose the equivalences in such a way
that the supports of Q] are pairwise disjoint. Finally, one just sets Q' = >, 0. O

We thus have constructed the desired pairing for the group Pic(C, Cs). Using
Proposition 3.12 below, one obtains the pairing required in Theorem 3.3.
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Proposition 3.12 The natural map lgivc(C, Coo)— Pic(C, Cwo) is an isomorphism.

Proof The injectivity easily follows from the definitions. The surjectivity follows
by [23, Lemma 3.16]. Observe that the proof in loc. cit. is written for curves hav-
ing a smooth compactification, whereas over fields of finite characteristic one only has
regular compactification in general. Fortunately, this condition is not essential, since
the Riemann—Roch theorem implicitly used there also holds without this assumption,
see e.g. [11, Section 7.3.2]. |

Remark 3.13 Observe that we cannot replace our proof of Theorem 3.3 by the argu-
ment of [4, Lemma 2.2]. As divisors may have multiplicities, this would require
(unique) transfers for finite morphisms Spec L — Spec F even when L is not a field
and hence the normalization property for such L. Moreover, the squares for which
we would need base change are no longer transversal in this case.

4 Examples

We now prove Corollary 0.5. The first claim follows from Corollary 0.4, applied to
the functor E(Y) := E(Y x X). Observe that since E is representable, so is E again
by using an adjoint of AX; (compare [8, p. 459]). Alternatively, one may check this
directly, compare also [14, Proposition 2.17]. The assumptions made on E trivially
imply that E satisfies the normalization property with respect to F.

We note that any orientable theory satisfies the projective bundle theorem and thus
this hypothesis. In particular, this applies to algebraic K-theory, motivic cohomology
H, and algebraic cobordism MG L (which is orientable by [14, Section 6.5]).

We now prove the last claim of Corollary 0.5. Assume that E is represented by
a commutative ring spectrum £. That means by definition that we have a multipli-

cation map £ A & £ & and a unit map S — & such that the standard diagrams
in SH(k) commute. For X,Y € SH(k), consider the cohomology external product
A E(X) ® E(Y) - E(X AY) sending the cohomology classesa: X — £,8: Y — &
to

anB: XAy Yenehe
The coefficient group E(S”) = E becomes a graded commutative bigraded ring with
unit (the class of the unit morphism ¢: S — &). After the natural identifications
SOAX =X = X A S, all groups E(X) become left and right E-modules via the

above external product, and the map E(X) ®f E(Y) 4 E(X AY) becomes a map of
E-modules. The A-product is functorial in the following sense. Let f: U — W. Then
for every V, the following diagram commutes:

EW)®g E(V) 2— E(W A V)

i F*®id l(f/\id)*

E(U) ®g E(V) 2—= E(U A V).

From now on, X and P! are unpointed varieties, and ( )4 denotes an added base-point
to an unpointed variety. Recall that Spec k., = S°. We drop X7 from our notation, thus
identifying a pointed variety with its motivic suspension spectrum. The claim above
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follows immediately from the result below as the epimorphism condition implies that
the (induced by a homothety) map d* in the proof of Lemma 1.6 acts as the identity.

Proposition 4.1 Let E be a cohomology theory represented by a commutative motivic
ring spectrum. Let 1: P! — P! be a morphism which induces the identity endomor-
phism A* on the cohomology group E(P}r). Then for every X, the endomorphism
A* = (L x id)*: E((P! x X)4) — E((P' x X)) is the identity, as well.

Proof Recall that IP’}r ANXy = (P! x X)yandsetU =W = IP’L, V=X;,andf = Xxin
the diagram above.

Let us now show that the product map E(PL) ®¢ E(X;) — EPL A Xy) is an
isomorphism of E-modules. Consider the splitting cofiber sequence of pointed spaces
Soéﬂ"ﬂr%ﬂ where T is the Tate object naturally isomorphic to the T-sus-
pension of S. Passing to cohomology, taking the tensor product with E(X ), and the
A-product with X on the other hand, one obtains the following commutative diagram
of splitting short exact sequences of E-modules:

E(T) ®F E(X1) — E(P}) ® E(Xy) — E(S°) ®¢ E(X4)

E(TANXy) ——— EPL AXy) —— ES" A X3)

A

One can check that the map t sending @ € E(T A X3) to t(¢) = 27(1) ® E;l(a) €

E(T) ®¢ E(X;) is an inverse to A. So that, the product map E(T) ®r E(X;) A
E(T A X4) is an isomorphism and the Proposition easily follows as A* = Ao (A* ®
id)o (A™h) =id. |

Graded Witt groups W* are representable by a motivic spectrum KT (see [5,
Theorem 5.8]). Moreover, they are independent of the weight, thatis W = Wi=0 —=
Wi (see [5, Corollary 5.7]). Therefore, the statement about Witt groups is related
to the following result (where the part concerning W' with integral coefficients is
classical, due to Arason) which is a consequence of [5].

Proposition 4.2 For any field K of characteristic # 2 the inclusion ]P’}< — IP’%< induces
epimorphisms

Wi(P%,0) — WiPL,0) for i=2,3.

Proof By Sect. 2 and the fact that Wi(K) =0fori=1,2,3 [1, Theorem 5.6], we have a
short exact sequence W3 (K, ) > WYK) > WIK) > WIK,£) and WI(K,0) =0 =
W2(K, £). Combining this with the long exact sequence associated to the homotopy
fibration Q’KT(K) — KT (P%) — KT(P%) of [5, Proposition 6.2] (in particular KT
is the motivic spectrum representing Witt groups) with finite coefficients, the claim
follows. O

From this, Remark 1.5, and Lemma 1.6, the rigidity theorem follows for Wi(—,0)
if i = 1,2 and X = Speck. But in this case the groups involved are known to be
zero by [1, Theorem 5.6]. If some information on W*(X) was available concerning the
£-torsion part, then these methods would give more general rigidity results for Witt
groups. For instance, if one knows that W*(X, £) = 0, then applying [5, Proposition
6.2] the above methods show that W*(X x, (’)ﬁ,l’ p>0) is still 0.
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We finish this paragraph by pointing out that even if the above rigidity theorems
were available for KO and W in all bidegrees, Gabber’s strategy to deduce from this
a statement similar to [3, Corollary 1] would not carry over immediately. The main
problem when trying to follow Gabber’s strategy with the orthogonal group instead of
GL seems to establish the good analogues of [19, Proposition 1.3 and Corollary 1.6].
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