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Throughout the last decade, Grassmannian complexes have been playing an impor-
tant role in the investigation of the homology of general linear groups. (See, for
example, [5] and also [6], where complexes similar to Grassmannians play a cru-
cial role.) It can be explained by both their quite geometric structure (these are
complexes constructed by considering rational points of an open subset of Grass-
mannian variety over given field) and the fact that their homology is a coproduct of
the relative homology of GLn’s. The natural generalization of Grassmannian com-
plexes are bi-Grassmannian complexes (G(�; �)). These are also being used rather
widely in research related to the theory of motivic cohomology and polylogarithms
(see [2]). However, their homology was still uncalculated.

The following conjecture was formulated by A. Suslin several years ago. Let F
be an infinite field and G(�; �) be bi-Grassmannian complex over F . Then

Hk(G(�; �)) =
a

06p6(k�1)=2

Hk�2p�1(GL(F )):

Subsequently, Suslin found that this conjecture doesn’t hold for homology with
integral coefficients.

This paper is devoted to the proof of this assertion with rational coefficients.
Also, we prove a similar formula for a truncated complex consisting only of the

several bottom rows of bi-Grassmannian complex up to the nth one. This formula
is valid in the case where n! is invertible in a coefficient ring.

I’d like to thank Professor A. Suslin who introduced me to this problem and
gave a lot of very valuable advice during my work.
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278 S. YAGUNOV

1. Definition of Bi-Grassmannian Complexes

Consider an infinite field F . Denote by Gr(p; q) the set of all planes of dimension p
in F p+q. Denote by eG(p; q) the subset of Gr(p; q) consisting of planes V � F p+q

defined by the following equivalent conditions:

(a) V intersects any coordinate plane of codimension 6 p properly.
(b) The intersection of V and any coordinate plane of codimension p is 0.
(c) If �:F p+q � F p is any coordinate projection then the image of V coincides

with F p.

Let us verify the equivalence of these conditions.
(b), (c) There is an one-to-one correspondence between coordinate projections

F p+q � F p and the coordinate planes of codimension p:� $ W = Ker(�).
On the other hand, we have dim�(V ) = dimV � dim(V \ Ker(�)), therefore
�(V ) = F p , V \W = 0.

(a)) (b) Evidently.
(b)) (a) Let U be a coordinate subspace of codimension k 6 p. Choose on U

p� k coordinate functions x1; x2; : : : ; xp�k and let

W = fu 2 U : x1(u) = x2(u) = � � � = xp�k(u) = 0g:

Then W is a coordinate subspace in F p+q and codim W = p. Therefore, 0 =
V \W = V \ U jxi=0, implies

dim(V \ U) 6 p� k = p+ (p+ q � k)� (p+ q)

= dimV + dimU � dimF p+q:

Thus, the intersection of V and U has the right dimension. 2

Introduce two families of maps between the sets eG(p; q). The first ones are
projection operators di: eG(p; q)! eG(p; q� 1), where di is the projection onto the
ith coordinate plane of codimension 1. The other family consists of the ‘intersection
operators’ @j : eG(p; q)! eG(p� 1; q). More precisely, consider the linear maps

F p+q�1 �i
,! F p+q �i

� F p+q�1;

�i(x1; : : : ; xp+q�1) = (x1; : : : ; xi�1; 0; xi; : : : ; xp+q�1);

�i(x1; : : : ; xp+q) = (x1; : : : ; xi�1; xi+1; : : : ; xp+q):

If V 2 eG(p; q), then set di(V ) = �i(V ); @i(V ) = ��1
i (V ).

The previous discussion shows that these operators are well-defined.

LEMMA 1.1.

@j di =

(
di�1@j ; if j < i

di@j+1; if j > i:
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HOMOLOGY OF BI-GRASSMANNIAN COMPLEXES 279

Proof. Let W = @j diV , then W = ��1
j (�i(V )) and for any w 2 W there

exists such y 2 V so that

(w1; : : : ; wj�1; 0; wj ; : : : ; wp+q�2)

= (y1; : : : ; yi�1; yi+1; : : : ; yp+q) (�j(w) = �i(y)):

The last equality implies that

yj = 0; if j < i;

yj+1 = 0; if j > i:

Omitting yj in the vector y in the first case or yj+1 in the second one, we get a
vector z such that �j(z) = y (respectively, �j+1(z) = y). On the other hand, we
have �i�1(z) = w(�i(z) = w), therefore w 2 �i�1(�

�1
j (V )) (w 2 �i(�

�1
j+1(V ))),

i.e. @j di(V ) � di�1@j(V ) (resp. @j di(V ) � di@j+1(V )). But dimensions of these
spaces are the same, therefore, both inclusions are equalities. 2

Further, we will denote by A a commutative ring with unit. We often denote the
groups H(: : : ; A ) by H(: : :). We also will denote by G(p; q) a free A -module
A [ eG(p; q)] generated by elements of eG(p; q). Supply the bigraded module G(�; �)
by two operations

d:G(p; q)! G(p; q � 1); d =
X
i

(�1)i di

and

@:G(p; q)! G(p� 1; q); @ =
X
i

(�1)i@i;

where di and @i are induced by the corresponding maps on eG(p; q).
LEMMA 1.2. The following equalities hold: d2 = 0; @2 = 0; d@ = �@ d.

Proof. We will verify only the last one. The others can be checked in the same
way, using the fact that @i and di satisfy the simplicial relations.

@d =
p+q�1X
j=1

p+qX
i=1

(�1)i+j@j di

=
X

16i6j<p+q

(�1)i+j di@j+1 +
X

16j<i6p+q

(�1)i+j di�1@j

=
p+q�1X
i=1

p+qX
j=i+1

(�1)i+j�1 di@j +
p+q�1X
i=1

iX
j=1

(�1)i+j+1 di@j = �d@: 2
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280 S. YAGUNOV

DEFINITION 1.3. We call the following bicomplexG(�; �) the ‘bi-Grassmannian
complex’.

: : : : : : : : :

G(2; 1)

@

?

�
d

G(2; 2)

@

?

�
d

G(2; 3)

@

?

�
d

� � �

G(1; 1)

@

?

�
d

G(1; 2)

@

?

�
d

G(1; 3)

@

?

�
d

� � �

G(0; 1)

@

?

�
d

G(0; 2)

@

?

�
d

G(0; 3)

@

?

�
d

� � �

Here differentials d and @ are defined as above. Further, we fix some integer n > 0
and consider the n-truncated bi-Grassmannian complex Gn(�; �) consisting of
rows of G(�; �) from the 0th up to the nth one.

Now we can formulate the main result of the paper.

THEOREM 1.4 (The Main Theorem). Let F be an infinite field, and Gn(�; �) be
the n-truncated bi-Grassmannian complex over F . Assume that n! is invertible in
A . Then

Hk(G
n(�; �); A ) =

a
06p6n=2

Hk�2p�1(GLn�2p(F ); A ):

COROLLARY 1.5. In the same notation,

Hk(G(�; �);Q) =
a
06p

Hk�2p�1(GL(F );Q):

The bicomplex defined above being quite geometrical is absolutely inconvenient
for any calculations. In the next section, we introduce some algebraic objects and
a purely algebraically defined bicomplex which is quasi-isomorphic to the bi-
Grassmannian complex.

2. Some Auxillary Objects

Let A = (v1; v2; : : : ; vn) be a m � n matrix over an infinite field F and let
k 6 min(m;n) be a nonnegative integer. We will say that A is W (k)-matrix if any
set of min(m;n) columns of A containing the columns vn�k+1; vn�k+2; : : : ; vn is
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HOMOLOGY OF BI-GRASSMANNIAN COMPLEXES 281

linearly independent. If such a matrix is a W (0)-matrix, then we say that it has
columns in the general position. Note also that if m > n, then A is a W (k) matrix
iff the columns of A are linearly independent (so that, in particular this condition
does not really depend on k).

For any k 6 min(p; q) set WP (k)(p; q) to be a free A -module generated by
all p � q W (k)-matrices. Consider a complex WP (k)(p; �) having the modules
WP (k)(p; q) in dimensions q > p and 0 elsewhere. A differential operator d(k) is
given by the formula

d(k):WP (k)(p; q)! WP (k)(p; q � 1);

d(k)(A) =
q�kX
i=1

(�1)i(v1; v2; : : : ; bvi; : : : ; vq):

The general linear group GLp(F ) acts on WP (k)(p; q) by left multiplication. This
action commutes with the differential d(k) and gives each group WP (k)(p; q)
a structure of a left GLp-module. Therefore, we can consider a factor complex

GLpWP (k)(p; �). There is a canonical morphism of complexes

�k: GLp+kWP (k)(p+ k; �)[k]!GLp WP (0)(p; �)

given as follows. In each orbit U of action of GLp+k on the basis set of the module
WP (k)(p + k; q + k) (the set of all (p + k) � (q + k) W (k)-matrices), we can
choose an element having the form

 
Mp�q 0

� Ik

!

Moreover, it’s clear that the GLp-orbit of M depends only on U , so that we can
define a map �k using the formula �k(U) =M mod GLp.

THEOREM 2.1. The map �k: GLp+kWP (k)(p + k; �)[k] ! GLpWP (0)(p; �) is a
quasi-isomorphism.

LEMMA 2.2. Denote the complex

0 WP (k)(p+ k; k)
d(k)
 � � � �

d(k)
 �WP (k)(p+ k; p+ k)

byR(k)(p+k; �). This complex is cyclic up to dimension p+k�1 and the complex
WP (k)(p+ k; �)[1] is a free GLp+k-resolution of the complex R(k)(p+ k; �).
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282 S. YAGUNOV

Proof. Obviously, GLp+k-modules WP (k)(p + k; q) are free provided that
q > p+ k. Thus, we should just check that the sequence

0 WP (k)(p+ k; k)
d(k)
 � � � �

d(k)
 �WP (k)(p+ k; p+ k)

d(k)
 �

d(k)
 �WP (k)(p+ k; p+ k + 1) d(k)

 � � � �

is exact. Letw = �jaj(v1j ; : : : ; vqj) 2WP (k)(p+k; q) be a cycle. Since the field
F is infinite we can choose a general enough vector v0 such that

y = �
X
j

aj(v0; v1j ; : : : ; vqj) 2WP (k)(p+ k; q + 1):

Then

dy =
X
j

aj(v1j ; : : : ; vqj) +
X
j

aj

�

q�kX
i=1

(�1)i+1(v0; v1j ; : : : ; bvij; : : : ; vqj) = w: 2

Proof of Theorem 2.1. Consider a map :WP (0)(p; q)! WP (k)(p+ k; q+ k)
given by the formula

M 7!

 
M 0

0 Ik

!
:

We want to show that this map induces an isomorphism


�
:Hl(GLpWP (0)(p; �)) ' Hl+k(GLp+kWP (k)(p+ k; �)):

To do so, note that the same map  also defines a homomorphism of complexes
:R(0)(p; �) ! R(k)(p; �)[k]. Furthermore, the groups GLp and GLp+k act on
R(0) andR(k), respectively, and the map  is compatible with the group embedding
GLp ,! GLp+k. Thus,  induces a homomorphism of spectral sequences :E !
E[0; k], where E (resp. E) is a hyperhomology spectral sequence corresponding
to the action of GLp on R(0) (resp. GLp+k on R(k)).

E1
mn = Hm(GLp; R

(0)(p; n))) Hm+n(GLp; R
(0)(p; �));

E
1
mn = Hm(GLp+k; R

(k)(p+ k; n))) Hm+n(GLp+k; R
(k)(p+ k; �)):

Lemma 2.2 shows that the homomorphism under consideration coincides with the
induced map on E1-terms


�
:E1l = Hl(GLp; R

(0)(p; �)) ' Hl+1(GLpWP (0)(p; �))

! Hl+k+1(GLp+kWP (k)(p+ k; �))

' Hl+k(GLp+k; R
(k)(p+ k; �)) = E

1

l+k:
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HOMOLOGY OF BI-GRASSMANNIAN COMPLEXES 283

It’s sufficient now to show that  induces an isomorphism on E1-terms. Namely,
let us show that for n 6 p

Hm(GLp; R
(0)(p; n)) ' Hm(GLp�n) ' Hm(GLp+k; R

(k)(p+ k; n+ k)):

The group GLp+k acts transitively on the canonical basis ofWP (k)(p+ k; n+ k).
The stabilizer of the element (ep�n+1; ep�n+2; : : : ; ep+k) is the affine subgroup

Affp�n;n+k
def
=

 
GLp�n 0

� In+k

!
:

Using Shapiro’s lemma (see, for example, [1]), we get an isomorphismHm(GLp+k;

R(k)(p + k; n + k)) ' Hm(Affp�n;n+k), but the Theorem 1.11[5] asserts that
this group is isomorphic to Hm(GLp�n). (Setting k = 0, we have Hm(GLp;

R(0)(p; n)) ' Hm(GLp�n):) It is easy to verify that the resulting isomorphism
Hm(GLp; R

(0)(p; n)) ' Hm(GLp+k; R
(k)(p + k; n + k)) is induced by the map

. The isomorphism of E1-terms of the spectral sequences gives the required
isomorphism on the limits. Since �k = id and  is a quasi-isomorphism, we
conclude that �k is a quasi-isomorphism as well. 2

Introduce a right action of the symmetric group�k on the complexWP (k)(p; �).
Let

v = (v1; : : : ; vq�k; vq�k+1; : : : ; vq) 2WP (k)(p; q) and � 2 �k:

We set

v� = (v1; : : : ; vq�k; vq�k+��1(1); vq�k+��1(2); : : : ; vq�k+��1(k)):

Evidently, this action commutes with the left action of the group GLp. We will say
that vectors vq�k+1; vq�k+2; : : : ; vq are on the right-hand side of the matrix v and
sometimes separate these vectors in formulas by the sign ‘j’. Note that the group

�k acts exclusively on the right-hand vectors, whereas the face operators @(k)i act
only on vectors on the left-hand side. This allows us to consider factor complexes
WP (k)(p; �)�k and GLpWP (k)(p; �)�k .

LEMMA 2.3. If k! is invertible in A , then the map �k induces a canonical quasi-
isomorphism

�
�k

: GLp+kWP (k)(p+ k; �)�k [k]! GLpWP (0)(p; �):
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284 S. YAGUNOV

Proof. One can easily see that if g 2 GLp+kWP (k)(p + k; q + k) and � 2 �k

then �k(g) = �k(g�). Therefore, the following diagram commutes

GLp+kWP (k)(p+ k; �)[k]
�k
- GLpWP (0)(p; �)

GLp+kWP (k)(p+ k; �)�k [k]

?

��k
- GLpWP (0)(p; �)�k

wwwwwwwwww

The second row is the result of application of �k- coinvariant functor to the first
one. This functor is exact in the category of A -modules because Hi(�k; A ) = 0,
provided that i > 0 (see [1]). Theorem 2.1 tells us that �k is a quasi-isomorphism.
Therefore, �

�k
is a quasi-isomorphism too. 2

From now on, we assume that n is a fixed nonnegative integer and that n! is
invertible in the ring A . Set

S(p; q)
def
=

(
WP (n�p)(n; q)�n�p ; 0 6 p 6 n; p+ q > n;

0; otherwise:

Consider a bigraded module S(�; �) which has S(p; q) in dimension (p; q) if q > n

and 0 elsewhere. Supply it by two operators d and @, where d:S(p; q)! S(p; q�1)
is induced by the differential operator d(n�p) above and the operator @:S(p; q)!
S(p� 1; q) is given by the formula @ = �p+q�n

i=1 (�1)i@i, where

@i(v1; : : : ; vp+q�njvp+q�n+1; : : : ; vq)

= (v1; : : : ; bvi; : : : ; vp+q�njvp+q�n+1; : : : ; vq; vi):

LEMMA 2.4. S(�; �) is a bicomplex.
Proof. We have to verify that @2 = 0; d@ = �@ d and d2 = 0. We will

check the first equality. The other ones can be checked in the similar way. Let
x = (v1; v2; : : : ; vq) 2 S(p; q). We have

@2(x) =
q+p�n�1X

i=1

(�1)i@i

0
@q+p�nX

j=1

(�1)j(v1; : : : ; bvj ; : : : j : : : ; vq; vj)
1
A

=
X

16i<j6q+p�n

((�1)i+j(v1; : : : ; bvi; : : : ; bvj ; : : : j : : : ; vq; vj; vi)
+(�1)i+j�1(v1; : : : ; bvi; : : : ; bvj ; : : : j : : : ; vq; vi; vj)) = 0: 2
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HOMOLOGY OF BI-GRASSMANNIAN COMPLEXES 285

Let us come back to the bi-Grassmannian complexes. We are going to con-
struct a quasi-isomorphism between GLnS(�; �) and the bi-Grassmannian complex
Gn(�; �). First, consider a map  :WP (0)(p; p+ q)! G(p; q)

 

0
BBB@
a11 : : : a1;p+q

...
...

ap1 : : : ap;p+q

1
CCCA

= [plane with basis (a11; : : : ; a1;p+q); : : : ; (ap1; : : : ; ap;p+q)]:

(Recall, that WP (0)(p; p+ q) is generated by matrices having columns in general
position.) One can easily see that this map  defines an isomorphism

GLpWP (0)(p; p+ q)
 
�

�! G(p; q):

Combining it with �
�n�p we get a map:

GLnS(p; n+ q)
��n�p

- GLpWP (0)(p; p+ q)
 
�

�! G(p; q):

PROPOSITION 2.5. The composition map  �
�n�p defines a quasi-isomorphism

of bicomplexes GLnS(�; �)[0; n]
�

�! Gn(�; �).

The proof is straightforwardly implied by Lemma 2.3 and will be omitted.
The previous proposition shows that we can calculate the homology of GLnS(�; �)
instead of the homology of the complexGn(�; �). The following section is devoted
to this calculation.

3. Proof of the Main Theorem

LEMMA 3.1. If i > 0; q > n, then Hi(GLn; S(p; q)) = 0.
Proof. The group S(p; q) has a canonical basis consisting of the orbits of action

of �n�p on n� q W (n� p)-matrices. The group GLn acts on the canonical basis
of S(p; q) by permutations. In each orbit � of its action, we can choose an element
which can be presented by the matrix

A� =

0
BBBBB@

a11 : : : a1;q�n 1 0 : : : 0

a21 : : : a2;q�n 0 1 : : : 0
...

...
...

. . .
...

an1 : : : an;q�n 0 0 : : : 1

1
CCCCCA :
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286 S. YAGUNOV

Shapiro’s Lemma tells us that

Hi(GLn; S(p; q)) '
a

all orbits

Hi(Stab A�):

But for any �, Stab A� is isomorphic to a subgroup of �n�p. Since the order of
this group is a divisor of n!, we conclude that each groupHi(Stab A�) is trivial. 2

COROLLARY 3.2. The natural map

H
�
(GLn;Hn+1S(p; �))! H

�
(GLnS(p; �))[n+ 1]

is an isomorphism.
Proof. Consider two hyperhomology spectral sequences of GLn with coeffi-

cients in the complex S(p; �). TheE2-term of the first spectral sequence is concen-
trated in the p+ 1th column and has the form E2

l;p+1 = Hl(GLn;Hp+1(S(p; �))).

The eE1-term of the second one is concentrated in the 0th row and has the formeE1
0l = H0(GLn; S(p; l)) =GLn S(p; l) (l > n). Computation of the eE2-term gives

the assertion of the corollary. 2

LEMMA 3.3. For any 0 6 p 6 n the sequence

0 S(p; 0) S(p; 1) � � �  S(p; n) S(p; n+ 1) � � �

is exact.
Proof. It follows from Lemma 2.2 and exactness of the �n�p-coinvariant func-

tor in our conditions. 2

Let us introduce a bicomplex S(�; �) given as follows:

0 � S(n; 0) � d
S(n; 1) � d

� � � �
d

S(n; n)

0
?

� S(n� 1; 1)

@

?

�
d

� � � �
d

S(n� 1; n)

@

?

0
?

� � � � �
d

S(n� 2; n)

@

?

...
...

0 � S(0; n)

0
?
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HOMOLOGY OF BI-GRASSMANNIAN COMPLEXES 287

The differentials d and @ are defined here in the same way as in the bicomplex
S(�; �). There is a canonical morphism of bicomplexes S(�; �)[0; 1] ! S(�; �)
induced by the differential d. Using Lemma 3.3, it is easy to verify that this map is
a quasi-isomorphism. This fact, together with Corollary 3.2, gives us the following
proposition:

PROPOSITION 3.4.

H
�
(GLnS(�; �))[1] ' H�(GLn; S(�; �)) 2

THEOREM 3.5. For any q 6 n the complex

0 S(n� q; q)
@
 � � � �

@
 � S(n� 1; q) @

 � S(n; q)

is acyclic up to dimension n� 1.
Proof. Consider some fixed ordered set V = fv1; : : : ; vqg of linearly indepen-

dent vectors. Let CV (p) be the submodule of S(p; q) generated by matrices

(v��1(1); v��1(2); : : : ; v��1(q));

where vj 2 V and � 2 �q. Since the face operators @j change only the order of
columns in a matrix, we can rewrite the complex S(�; q) in the form

S(�; q) '
a

V=fv1;v2;:::;vqg
vi linearly independent

CV (�):

All summands on the right-hand side are isomorphic to each other. It is sufficient
to verify that the complex CV (�) is acyclic for some set V . Let T q(p) be the set of
all ordered subsets of f1; : : : ; qg having cardinality p. Consider the complex

Dq
�
= (A [T q (q)]

d
�! A [T q (q � 1)] d

�! � � �
d
�! A [T q (1)] d

�! A );

where d(fx1; : : : ; xpg) = �p
i=1(�1)ifx1; : : : ; bxi; : : : ; xpg. Obviously, CV (�)[n �

q] ' Dq
�, where q = #(V ). Let us prove thatHpD

q
� = 0 for p < q. We will make an

induction on q. The case q = 1 is trivial. Assume thatHpD
q
� = 0 for p < q 6 k�1.

Consider the following filtration on the complexDk
�

.
Set FlDk

m to be a free A -module denerated by all elements fx1; : : : ; xmg 2

T k(m) satisfying the condition: if 1 2 fx1; : : : ; xmg, then 1 = xi with 1 6 i 6 l,
in particular, F0 is generated by all subsets which don’t contain 1.

The term Fl=l�1D
k
m of factor filtration is generated by sets

fx1; : : : ; xl�1; 1; xl+1; : : : ; xmg:

kthe287.tex; 17/10/1997; 8:49; v.7; p.11



288 S. YAGUNOV

In the factor complex Fl=l�1D
k operators di are trivial for i 6 l, so we have a

canonical decomposition

Fl=l�1D
k
�
[l] =

a
T k�1(l�1)

Dk�l
�

:

Using the induction hypothesis, we get HpFl=l�1D
k = 0 for p < k. Consider a

spectral sequence of the filtered complex converging to the homology ofDk=F0D
k.

We have E1
lm = Hl+m(Fl=l�1D

k). But as just was proved, it is 0 for l +m < k.
Consider now a long exact sequence:

� � � ! Hp+1(D
k=F0D

k)! Hp(F0D
k)

�
�! Hp(D

k)! Hp(D
k=F0D

k)! � � �

One easily checks that the inclusion F0D
k ,! Dk is homotopic to 0 and, hence,

the above map � is trivial. Thus, Hp(D
k) ,! Hp(D

k=F0D
k) for p < k and since

Hp(D
k=F0D

k) = 0, we conclude that Hp(D
k) = 0. This completes the proof of

the theorem. 2

LEMMA 3.6. Let x 2 S(n; q); 0 6 q 6 n. If @x = 0 then dx = 0.
Proof. There is a homomorphism �:S(n� 1; q)! S(n; q � 1)

�((v1; v2; : : : ; vq�1 j vq)) = (v1; v2; : : : ; vq�1)

satisfying the formula: �@ = d. 2

PROPOSITION 3.7.

H
�
(GLn; S) =

a
06j6n

H
�
(GLn;Ker(S(n; j)! S(n� 1; j)))[�n� j]

Proof. Denote Ker(S(n; j) @
�! S(n� 1; j)) by K(j). There is a natural map

between the complex

0! K(0) d
 � K(1) d

 � � � �
d
 � K(n)

and S[n; 0] induced by @. Theorem 3.5, shows this map is a quasi-isomorphism.
Using Lemma 3.6, we see that the differential of the complex K(�) is trivial.
Because of that, H

�
(GLn; S) = q06j6nH�(GLn;K(j))[�n� j]. 2

LEMMA 3.8. For any 0 6 p; q 6 n and p+ q > n

H
�
(GLn; S(p; q)) ' H�(GLn�q)
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Proof. Since q 6 n, the group GLn acts transitively on the canonical basis of
S(p; q). Shapiro’s lemma tells that the homology under consideration equals the
homology of the stabilizer of an arbitrary basis element. But the stabilizer of the
typical element (en�q+1; en�q+2; : : : ; en) has the form

Stab =

0
BB@

GLn�q 0 0

� Ip+q�n 0

� � b�n�p

1
CCA ;

where b�n�p � GLn�p is a subgroup of permutation matrices. Using Theo-
rem 1.11 [5] and the fact that the group b�n�p doesn’t have homology except
H0, we obtain H

�
(Stab) ' H

�
(GLn�q). 2

LEMMA 3.9. Let 0 6 p; q 6 n and p+ q > n. Then the map

@
�
:H

�
(GLn�q) ' H�(GLn; S(p; q))! H

�
(GLn; S(p� 1; q)) ' H

�
(GLn�q)

is trivial if p+ q � n is even and coincides with the identity map otherwise.
Proof. The map @

�
can be rewritten as @

�
= �(�1)i@i�, where @i� is the

map between homology groups induced by the ith face operator. It is sufficient to
prove that @i� is the identity map. Consider the category of pairs (group, module).
The isomorphism given in the previous lemma is induced by the morphism (i; u),
where i is the canonical embedding and u(1) = (en�q+1; : : : ; en)�n�p . The map
@i acts on the frame (en�q+1; : : : ; en) as some permutation matrix �. This matrix
commutes with i(GLn�q). Therefore, we have (�i��1; �u) = (i; �u). But inner
automorphisms act trivially in homology so we get an equality (i; u)

�
= (i; �u)

�

which completes the proof. 2

PROPOSITION 3.10. For any 0 6 j 6 n, we have

Hk(GLn;K(j)) '

(
0; j is odd

Hk(GLn�j); otherwise

Proof. Let us consider two hyperhomology spectral sequences of GLn with
coefficients in S(�; j). The first one has the form

E2
lk = E1lk =

(
Hk(GLn;K(j)); l = n

0; otherwise:

The second one has the first term eE1
pr = Hp(GLn; S(r; j)) ' Hp(GLn�j) and the

differential d1 has the form (Lemma 3.9)

d1 =

(
0; if r + j � n is even

id; otherwise:
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Therefore,

eE1pr = eE2
pr =

(
Hp(GLn; S(n; j)) ' Hp(GLn�j); j even; r = n

0; otherwise: 2

Proof of Theorem 1.4. Consider the following chain of isomorphisms

a
06i6n
i is even

Hk�i(GLn�i)
(prop: 3:10)
'

a
06j6n

Hk�j(GLn;K(j))

(prop: 3:7)
' Hn+k(GLn; S(�; �))

(prop: 3:4)
' Hn+k+1(GLnS(�; �))

(prop: 2:5)
' Hk+1(G

n(�; �)) 2

Now we consider the behavior of truncated bi-Grassmannian complexes for
different values of n. (Up to the end of the paper, any object related to the complex
Gn will be supplied by superscript n.)

THEOREM 3.11. For any n > 0, the following diagram commutes.

a
06i6n=2

Hk�2i(GLn�2i)
�
- Hk+1(G

n(�; �))

a
06i6(n+1)=2

Hk�2i(GLn+1�2i)

?

�
- Hk+1(G

n+1(�; �)):

?

Here the right vertical arrow is induced by the embedding of bi-Grassmannian
complexes and the left one by the natural embeddings GLn�2i ,! GLn+1�2i.

Proof. Shapiro’s lemma implies that the map induced by the inclusion

�:Kn(n� k)! Kn+1(n� k)

 
�(A) =

 
A

0

!!

makes the diagram

Hi(GLk) - Hi(GLn;K
n(n� k))

Hi(GLk+1)
?

- Hi(GLn+1;K
n+1(n� k))

�

?
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commutative. The map � can be extended to the map of bicomplexes S
n �
�!

S
n+1

[1; 0]. Consider another map of these bicomplexes S
n �
�! S

n+1
[0; 1] given

as follows. For A 2 Sn(p; q) set

�(A) =

0
BB@

A 0
...

0 : : : 0 1

1
CCA 2 Sn+1(p; q + 1):

One can easily see that the map s:S
n
! S

n+1
[1; 1]

A 7!

0
BBBBB@

a11 : : : a1;p+q�n 0
...

...
...

an1 : : : an;p+q�n 0

0 : : : 0 1

�����������

a1;p+q�n+1 : : : a1;q

...
...

an;p+q�n+1 : : : an;q

0 : : : 0

1
CCCCCA

2 Sn+1(p+ 1; q + 1)

gives a chain homotopy between � and �.
The map � can be extended to the map of resolutions Sn

�
�! Sn+1[0; 1] and,

finally, we have a commutative diagram of bicomplexes:

GLnS
n[0; n] - Gn

GLn+1S
n+1[0; n+ 1]

�

?

- Gn+1
?

whose rows are quasi-isomorphisms. (See Proposition 2.5.) 2

Theorem 3.11 shows that we may really pass to direct limits on n and deduce
Corollary 1.5 from Theorem 1.4.

As an immediate application of Theorem 3.11, we can also obtain the following
case of the stabilisation theorem for the linear groups (see [3]). Let us assume that
(n + 1)! is invertible in the coefficient ring A . Consider the natural embedding
Gn ,! Gn+1. This map gives us an isomorphism in homology groups up to degree
n� 1

Hk(G
n; A ) ' Hk(G

n+1; A ) (k < n)

and an epimorphism

Hn(G
n; A ) � Hn(G

n+1; A )
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COROLLARY 3.12. The map Hk(GLn; A ) ! Hk(GLn+1; A ) induced by the nat-
ural embedding GLn ,! GLn+1 is an isomorphism if k < n and epimorphism if
k = n, provided that (n+ 1)! is invertible in the coefficient ring.
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