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On the Homology of GLn and Higher
Pre-Bloch Groups
Serge Yagunov

Abstract. For every integer n > 1 and infinite field F we construct a spectral sequence converging to the
homology of GLn(F) relative to the group of monomial matrices GMn(F). Some entries in E2-terms of these
spectral sequences may be interpreted as a natural generalization of the Bloch group to higher dimensions.
These groups may be characterized as homology of GLn relatively to GLn−1 and GMn. We apply the machinery
developed to the investigation of stabilization maps in homology of General Linear Groups.

Introduction

The purpose of the present work is to extend an approach used for the investigation of the
homology of GLn by Suslin, Sah, and others. Studying of groups H∗(GLn) seems rather im-
portant, in particular, because of their close relation to algebraic K-theory. Unfortunately,
these groups are much too big and complicated to be computed explicitly [12]. There-
fore, all results allowing to compare groups H∗(GLn) for different values of n become quite
important.

Almost all known methods of getting information about the homology of GLn (see,
for example, [4], [7], [8], [10], [11], [13], [14], [15], [17]) are based on the following ap-
proach. We choose some GLn-resolution of the coefficient ring such that the corresponding
hyperhomology spectral sequence has a desired form. This spectral sequence converges to
H∗(GLn) and we usually want to build the GLn-resolution which, after passing to coinvari-
ants, has first nontrivial homology in high enough dimension. This allows us to analyze
the relative homology group in corresponding dimensions. In [10], [14] the authors use a
complex constructed from points in general position of the affine space. This proves the
coincidence of groups Hn

(
GLn(F),GLn−1(F)

)
and KM

n (F).
In [11], [15] we see a complex cooked up from distinct points of the projective line

P1(F). After applying to this complex the functor of GLn-coinvariants, we get a complex,
whose first non-trivial homology group lies in dimension 3. This group ℘ (F) (we call it
pre-Bloch group) coincides with H3

(
GL2(F),GM2(F)

)
.

The extension of this method to the n-dimensional projective space Pn would be quite
powerful tool for the investigation of Hn+1(GLn,GMn). Unfortunately, differentials in cor-
responding spectral sequences are very hard to compute.

One possible approach to eliminate computational difficulties, at least in low dimen-
sions, is presented in this paper. For any natural n we construct a complex of GLn-
modules such that the corresponding hyperhomology spectral sequence converges to
H∗(GLn,GMn). From these spectral sequences we obtain the sequence of groups ℘ n(F)
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which serves as some generalization of the pre-Bloch group to higher dimensions. We ex-
pect the following conjectures to be true:

Conjecture 0.1 Assume that the field F is infinite, n > 1 is an integer, and n! is invertible
in the coefficient ring A. Then we have the following natural isomorphism:

℘ n(F) =
⊕
i≥0

Hn+1−2i(GLn−2i , {GMn−2i ,GLn−2i−1})ind,

where “ind” means the indecomposable part of the homology.

Conjecture 0.2 Let us assume in addition that the field F is algebraically closed. Then the
groups ℘ n(F) are divisible.

In the present paper we prove the first conjecture for small dimensions (n < 5). For
n = 2 Conjecture 0.2 is proven in [11], [15]. Nothing seems to be known about this
conjecture for bigger n.

In order to clarify the intuitive meaning of these conjectures, let us make one step down
in dimension. In [10], [14] it was shown that there exists a sequence of groups Sn(F) ex-
plicitly given by generators and relations such that

(0.1) Sn(F) =
⊕
i≥0

Hn−2i(GLn−2i ,GLn−2i−1).

These groups may be decomposed as a direct sum of certain Milnor K-groups. There-
fore, Milnor K-theory becomes an obstruction for the injectivity of the map Hn(GLn) →
Hn(GLn+1). Over an algebraically closed field the Milnor K-groups are, obviously, divisi-
ble. This consideration closely relates to the well known Friedlander-Milnor Isomorphism
Conjecture. (See, for example, [11], [14], [18] for more details. The case of number fields
is exposed in [2].) Here I just allow myself to retype one relevant paragraph from [11].

4.13. Problem (Suslin). Let F be an infinite field. Is it true that Hi

(
GL(n, F)

)
→

Hi

(
GL(n + 1, F)

)
is injective modulo torsion for all i and n?

By using the general stability theorem of Suslin (. . . ), we can assume i > n > 1 in
Problem 4.13. (. . . ) provides an affirmative answer for the first case of i = 3 and
n = 2. Dupont’s work suggests than an affirmative answer is available for i = 4 and
n = 2.

It seems that now, a decade after the cited paper appeared, the things are still almost in
the same position. Proving of Conjectures 0.1, 0.2 would imply a significant breakthrough
in the case i = n + 1. And, at least we know that the case i = 4 and n = 3 follows from
Conjecture 0.2 for ℘ 4(F).
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Remarks on Notation Everywhere in this paper F denotes an infinite field. All appearing
vectors, matrices, etc., are assumed to be over F. We denote by ei the i-th standard basis
n-column (0, 0, . . . , 1, . . . , 0)T . Symbol E denotes the n-column (1, 1, . . . , 1)T . We use Σn

for the group of n-permutations or a subgroup of GLn naturally isomorphic to the group
of n-permutations. GMn denotes a group of non-degenerated monomial matrices of size
n× n, i.e., GMn(F) = (F∗)n

o Σn.
Unless the opposite mentioned all the homology groups are assumed to have coefficients

in some ring A. This ring should satisfy the condition of invertibility of n!, where n is
defined in each concrete case.

All the induced modules are implicitly over the ring A. Namely, if H is a subgroup of a
group G, then

IndG
H M

def= A[G]⊗A[H] M.

If M∗ is a complex of H-modules and N∗ is a G-complex, we denote by Cone(M∗ → N∗)
the Cone of morphisms of complexes IndG

H M∗ → N∗ over G.
We also use the nonstandard notation Fq/q−1 for the factor-filtration Fq/Fq−1.

1 Complexes Related to Groups GMn

We are beginning to construct the desired spectral sequence. Let n be a fixed positive in-
teger. We call an n-column over F “monomial” if it has exactly one nonzero entry and
“affine” if all its entries are nonzero.

Definition 1.1 We say that an (n×k)-matrix M has columns in general position (or satis-
fies GP-condition) if either rank M = k if k ≤ n, or any n-minor of M is nonzero (if k > n,
respectively).

Definition 1.2 We say that a certain matrix satisfies the strong general position condition
(SGP-condition) if any minor of any size of this matrix is non-zero.

Denote by D̃n
m the set of all n× (m + 1) matrices of the form

(1.1) (v0, v1, . . . , v j ,w j+1, . . . ,wm),

where vi are monomial columns with nonzero entries in pairwise different positions, w j are
affine columns, and such that the submatrix (w j+1, . . . ,wm) satisfies the SGP-condition.
(Both monomial and affine parts of this matrix are allowed to be empty.) The positions
of nonzero entries in the monomial part of a matrix from D̃n

∗ uniquely define an ordered
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subset of {1, . . . , n}. Two matrices of D̃n
m are said to be D-equivalent if they have the same

affine parts and the same corresponding ordered subsets. Denote by Dn
m a free A-module

generated by all classes of equivalence formed by matrices of D̃n
m. Let us define a differ-

ential operator d : Dn
m → Dn

m−1 as an alternating sum of face operators di , which throw
away the i-th column of matrix. One can easily see that the complex Dn

∗ is acyclic in pos-
itive dimensions. The natural action of the group GMn on Dn

∗ supplies the complex Dn
∗

with the structure of GMn-module. Let us now calculate the hyperhomology of GMn with
coefficients in Dn

∗. First we compute the homology of the coinvariant complex (Dn
∗)GMn .

Proposition 1.3

Hi

(
(Dn
∗)GMn

)
=

{
A for i = 0

0 for 0 < i < n + 1

and there exists a natural epimorphism A ⊗ (F∗)[n/2] � Hn+1

(
(Dn
∗)GMn

)
.

Proof Let us consider a filtration:

(1.2) 0 = F−1 ⊂ F0 ⊂ · · · ⊂ Fn = Dn
∗,

where FkDn
∗ is the subcomplex of Dn

∗ generated by matrices having at most k monomial
columns. One can easily check that this filtration is compatible with differential. Since the
action of GMn doesn’t change the number of monomial columns, the introduced filtration
induces a filtration on the complex of coinvariants (Dn

∗)GMn for which we also use F. Let
E∗∗,∗ be the spectral sequence associated to the latter filtration. Its first term has the form

E1
p,q = Hp+q

(
Fq/q−1

(
(Dn
∗)GMn

))
.

Let us note that for p ≥ 0 any generator of Fq/q−1

(
(Dn

p+q)GMn

)
can be written uniquely

as the following class of matrices:

(1.3)


w11 w12 · · · w1,p

e1 e2 · · · eq E w21 w22 · · · w2,p
...

...
...

wn1 wn2 · · · wn,p


Σn−q

where the group Σn−q acts on a matrix permuting its last n − q rows. For p = −1 (i.e., in
the lowest nontrivial dimension q−1) the corresponding term of this complex equals to A.
One can easily see that the differential in the factor-complex Fq/q−1 acts only in the affine
part throwing away the columns successively. Therefore, we can forget about the monomial
part of matrix.

Lemma 1.4 Suppose that n! is invertible in the coefficient ring A. Then

E∞p,q = E2
p,q =

{
Ker(Hp+nFn/n−1

d1−→ Hp+n−1Fn−1/n−2); if q = n

0 otherwise.
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Sketch of the proof We are going to show that the spectral sequence corresponding to the
considered filtration degenerates at term E2. For this purpose we construct the following
homotopy operator. Let us denote for a moment the matrix

a11 · · · a1m
...

. . .
...

e1 · · · ek E ak1 · · · akm
...

. . .
...

an1 · · · anm

 by



A1
...

Ak

−−
...


k

.

We will also need a function ψk : Σk → N defined as follows. Every permutation σ ∈ Σk

can be considered as the permutation {i1, i2, . . . , ik} of the standard ordinal {1, 2, . . . , k}.
We put ψk(σ) = min{k, { j : i j > i j+1}}. Now we are ready to write down the necessary
homotopy operator.

(1.4) h0


−−
A1
...

An


0

=
1

n

n∑
i=1



Ai

−−
...

Âi
...


1

,

and for k > 0, we set:

(1.5) hk



A1
...

Ak

−−
...

An


k

=
(1− n)(n− k− 1)!

n!

∑
σ∈Σk

sgn(σ)Pn
ψk(σ)

n∑
i=k+1



Aσ−1(1)
...

Aσ−1(k)

Ai

−−
...

Âi
...


k+1

where sgn(σ) is just the usual sign of a permutation and Pn
k is given by the following rela-

tions:

Pn
1 = 1,(1.6)

Pn
k = (k− n− 1)Pn

k−1 −
k−2∑
i=1

Pn
i .

One can easily verify that these operators give us a contracting homotopy which commutes
with the differential in the factor-filtration and, therefore, define a contracting homotopy



On the Homology of GLn and Higher Pre-Bloch Groups 1315

on E1-term of the spectral sequence associated to the introduced filtration. Lemma now
follows. Formulas above are the result of tedious combinatorial computations which we
prefer to omit here. The interested reader can follow [18] and [19] for more details.

Let us now finish the computation of the E2-term.
Consider a complex of A-modules

(1.7) A ←− A[F0]←− A[F1]←− · · ·

where A[Fi] are free A-modules generated by sets Fi of all n × (i + 1)-matrices satisfying
the SGP-condition. The differential operator is defined in the standard way. This complex
gives us a free (F∗)n-resolution of A. One can easily verify that

(1.8) Fn−1/n−2

(
(Dn
∗)GMn

)
[n− 1] ' Fn/n−1

(
(Dn
∗)GMn

)
[n] ' A[F∗](F∗)n ,

where the last term is the complex of (F∗)n-coinvariants of A[F∗]. These isomorphisms
imply that

(1.9) Hp+nFn/n−1 ' Hp+n−1Fn−1/n−2 ' H1(A[F∗](F∗)n ) ' A ⊗ (F∗)n.

The map d1 : A ⊗ (F∗)n → A ⊗ (F∗)n looks now as follows:

(1.10) d1

(
1⊗ (a1, a2, . . . , an)

)
= 1⊗

(a2

a1
, 1,

a4

a3
, 1, . . . ,

an

an−1
, 1
)

provided that n is even and

(1.11) d1

(
1⊗ (a1, a2, . . . , an)

)
= 1⊗

(
a2, a2, a4, a4, . . . , a n−1

2
, a n−1

2
,

n∏
i=1

a(−1)i+1

i

)
if n is odd.

Therefore, the desired kernel is generated by elements of the form

(1.12) (x1, x1, x2, x2, . . . , x n
2
, x n

2
)

for even n and

(1.13)
(

x1, 1, x2, 1, . . . , x n−1
2
, 1,

(n−1)/2∏
i=1

x−1
i

)
for odd one.

In both cases the group (F∗)[n/2] covers the kernel that completely proves Proposi-
tion 1.3.

Let us now find the homology of GMn with coefficients in Dn
m.
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Proposition 1.5 Let p > 0 and let n! be invertible in the coefficient ring. Then

Hp(GMn,D
n
q) =

{
Hp

(
(F∗)q+1 × GMn−q+1

)
0 ≤ q ≤ n− 1

0 otherwise.

Proof The Shapiro lemma reduces the problem to the computation of the homology of
stabilizers for each orbit of GMn-action onto Dn

q .
The considered action splits the module Dn

q into three types of orbits. The first of them
consists of an orbit defined by matrices without affine part. Such an orbit appears only if
q < n and its stabilizer is (F∗)q+1 × GMn−q+1.

The second type consists of matrices with only one affine column. There is only one or-
bit of this type, presented by the matrix (e1, . . . , eq, E). The stabilizer of this matrix is Σn−q.
This orbit is nonempty iff q ≤ n. Since the order of Σn−q is invertible in the coefficient ring,
we have Hp(Σn−q) = 0 for p > 0. (See [3, Corollary 10.2].)

The third type includes all the orbits consisting of matrices having more than one affine
column. One can easily see that the stabilizer of such a matrix is trivial.

Therefore, only the summand corresponding to the orbit of the first type really appears
in homology.

2 Complexes Related to Groups H∗(GLn,GMn)

In this section we are going to introduce a GLn-complex Cn
∗ constructed using a mixture

of points in general position of projective and affine spaces. For the induced complex
IndGLn

GMn
Dn
∗ of GLn-modules we construct a natural morphism of complexes IndGLn

GMn
Dn
∗ →

Cn
∗, which happens to be an epimorphism.

The kernel of this map Kn
∗ will be an object of our main interest. Hyperhomology spec-

tral sequence of GLn with coefficients in Kn
∗ converges to the relative homology of the pair

(GLn,GMn) and is exactly the spectral sequence mentioned in the introduction.
Let us start with the following construction. Let C̃n

0 ← C̃n
1 ← · · · be a complex which

has the free A-module generated by n× (m + 1) matrices with columns in general position
in dimension m. The differential operator d is given by the formula

(2.1) d(a0, a1, . . . , aq) =
q∑

i=0

(−1)i(a0, a1, . . . , âi , . . . , aq).

Denote by Cn;p
∗ a subcomplex of C̃n

∗ generated by elements

(2.2) (x0, x1, . . . , xp, xp+1, . . . , xm)− (α0x0, α1x1, . . . , αpxp, xp+1, . . . , xm)

in dimension m if m > p and by

(2.3) (x0, x1, . . . , xm)− (α0x0, α1x1, . . . , αmxm)

otherwise. The coefficients αi above are arbitrary elements of F∗.
Now, we set Cn

∗ = C̃n
∗/C

n;n−1
∗ . One can easily verify that the complex Cn

∗ has no nontriv-
ial homology in positive dimensions.
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Consider the hyperhomology spectral sequence of GLn with coefficients in Cn
∗. The

group GLn acts on Cn
m transitively for m < n and freely for m ≥ n. The canonical generator

in dimension m has the form (e1, e2, . . . , em+1) if m < n and (e1, e2, . . . , en, E) in dimension
m = n. Its stabilizer is the affine group

(2.4) Affn−m−1,m+1 =


F∗ 0

. . . ∗
0 F∗

0 · · · 0 GLn−m−1


if m < n and trivial if m ≥ n.

Now we can compute the E1-term of the spectral sequence under consideration. The
Shapiro lemma together with an easy modification of [14, Theorem 1.8] gives us the fol-
lowing

Lemma 2.1

E1
p,q = Hp(GLn,C

n
q ) =

{
Hp

(
(F∗)q+1 × GLn−q−1

)
for q < n

0 otherwise.

(We set GL0 to be the trivial group.)

Let us compute also some entries in the 0-th row of the E2-term. We have E2
0,q =

Hq

(
(Cn
∗)GLn

)
. Since GLn acts transitively in low dimensions, the corresponding coinvariant

groups are A and differentials are alternatively trivial and identical. Therefore, we can see
that

(2.5) E2
0,q =

{
A for q = 0

0 for 0 < q ≤ n.

Consider a GLn-complex obtained from Dn
∗ by the extension of scalars.

Lemma 2.2 The map ϕ : IndGLn
GMn

Dn
∗ → Cn

∗, sending a ⊗ g to ag is an epimorphism (of
complexes).

Proof For any (n×q)-matrix B satisfying GP-condition we can find such a matrix G ∈ GLn

that GB = (e1, e2, . . . , en, b1, b2, . . . , bq−n). (If q < n the result just needs to be cut at
the point eq.) Let us note now that the submatrix (b1, b2, . . . , bq−n) should satisfy SGP-
condition, i.e., the matrix GB belongs to D̃n

∗. Therefore, B = ϕ(G−1 ⊗ GB).

Denote the kernel of the map ϕ by Kn
∗ . Now we want to compute the hyperhomology of

GLn with coefficients in Kn
∗ .

Proposition 2.3 Hp(GLn,Kn
∗) = Hp+1(GLn,GMn).
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Proof Consider the epimorphism of GLn-modules IndGLn
GMn

A → A, where GLn acts trivially

on A. Denote its kernel by K̃n. Since complexes IndGLn
GMn

Dn
∗ and Cn

∗ are GLn-resolutions of

modules IndGLn
GMn

A and A, respectively, the complex Kn
∗ is a resolution of the module K̃n as

well. Therefore, H∗(GLn,Kn
∗) = H∗(GLn, K̃n). Standard homological algebra shows that

Hp(GLn, K̃n) = Hp+1(GLn,GMn).

Now we can find out the E1-term of the hyperhomology spectral sequence of GLn with
coefficients in Kn

∗ .

Notation 2.4 From now on we often denote the pair (GLk×X,GMk×X) by
(GLk,GMk)× X.

Proposition 2.5 If p > 0, then

E1
p,q = Hp(GLn,K

n
q ) = Hp+1

(
(GLn−q−1,GMn−q−1)× (F∗)q+1

)
.

Proof The short exact sequence of coefficients

(2.6) 0 −→ Kn
q −→ IndGLn

GMn
Dn

q −→ Cn
q −→ 0

and calculations of the homology of GLn with coefficients in IndGLn
GMn

Dn
q and Cn

q makes the
proof similar to one of Proposition 2.3.

Let us look at short exact sequence (2.6). It gives us a long exact sequence of GLn-
homology groups. Consider its final terms. Since the map H1

(
GMn−q×(F∗)q

)
→

H1

(
GLn−q×(F∗)q

)
is an epimorphism for any q, we have the following short exact se-

quence:

(2.7) 0 −→ H0(GLn,K
n
q ) −→ (Dn

q)GMn −→ (Cn
q )GLn −→ 0.

Assembling together these sequences for all q we obtain the short exact sequence of com-
plexes.

(2.8) 0 −→ H0(GLn,K
n
∗) −→ (Dn

∗)GMn −→ (Cn
∗)GLn −→ 0.

The homology long exact sequence corresponding to (2.8) together with (2.5) and Propo-
sition 1.4 gives us the following

Lemma 2.6

E2
0,q = H0(GLn,K

n
q ) =

{
0 q < n

Coker
(
Hn+1(Dn

∗)GMn → Hn+1(Cn
∗)GLn

)
q = n.
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Definition 2.7 We define an A-module ℘ n(F) (or ℘ n for shortness) as

Coker
(
Hn+1(Dn

∗)GMn −→ Hn+1(Cn
∗)GLn

)
.

Let us mention that in even dimensions the considered module is generated by symbols
(a1, . . . , an), where ai ∈ F∗ and ai 6= a j for i 6= j. In odd dimensions it is generated by
linear combinations of these symbols, lying in the kernel of augmentation map.

We are now ready to prove the Theorem mentioned in the introduction.

Theorem 2.8 Assume that the base field F is infinite and n! is invertible in the coefficient
ring A. Then there exists a naturally defined first quadrant spectral sequence converging to
E∞p = Hp+1(GLn,GMn) and with the E1-term, which has the following form for p > 0:

E1
p,q =

{
Hp+1

(
GLn−q−1×(F∗)q+1,GMn−q−1×(F∗)q+1

)
if q < n− 2

0 otherwise.

Moreover,

E2
0,q =

{
0 for q < n

℘ n(F) for q = n.

Proof One can easily see that almost everything was already proven above. We just need to
check vanishing of the E1-term of the considered spectral sequence in columns n−1 and n.
But in these columns the E1-term should have the homology of pairs (GL1,GM1)×(F∗)n−1

and (GL0,GM0)× (F∗)n, which are obviously trivial.

Remark 2.9 From now on we will call the constructed above spectral sequence “The Main
Spectral Sequence”.

3 Structure of ℘ n(F)

The main purpose of this section is to measure the deviation between A-modules ℘ n(F)
defined above and A⊗ ℘ n(F)cl, where ℘ n(F)cl denotes the “classical” pre-Bloch group. We
will abuse the notation and define these modules by ℘ n(F)cl as well.

Really, it seems that only the group ℘ 2(F)cl appeared in publications (see [1], [11], [15])
so, we need to clarify what we do mean under “classical” for n > 2.

Let us fix some integer n ≥ 2 and an infinite field F. Consider a complex

(3.1) Pn
∗(F) : Pn

0 (F)
d←− Pn

1 (F)
d←− · · ·

where Pn
k (F) is the free abelian group spanned by (k + 1)-tuples of rational points of the

projective space Pn−1(F), which are in general position (i.e., the matrix built from these
points satisfying GP-condition). The differential operator d is defined in the standard way.

The complex Pn
∗(F) has a canonical structure of GLn-module and clearly acyclic since

the field F is infinite. One can easily check that the lowest nontrivial homology group (in
positive dimension) of the complex

(
Pn
∗(F)

)
GLn

appears in dimension n + 1.
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Definition 3.1 We set ℘ n(F)cl = Hn+1

(
Pn
∗(F)GLn

)
.

Remark 3.2 The definition above is the most natural generalization of the definition
which can be found, for example in papers of Suslin [15] and Sah [11] for dimension 2.
We hope it gives us enough motivation to call the groups of this family “classical”.

We shall also introduce one auxiliary object.

Definition 3.3 Let us define ℘̂ n(F) as Hn+1

((
Cn
∗(F)

)
GLn

)
, where Cn

∗(F) is the complex

defined in the previous section.

Let a = (a1, . . . , an)T be an n-column such that a1, . . . , an ∈ F∗ and ai 6= a j for i 6=
j. (From now on and up to the end of this section we consider only n-tuples satisfying
this condition.) We reserve a notation [a] for the element of

(
Cn

n+1(F)
)

GLn
given by the

matrix (e1, e2, . . . , E, a). The module ℘̂ n(F) is generated by elements of the form [a] in
even dimensions and by [a] − [b] in odd ones. (Abusing the notation we use the symbol
[a] to denote the corresponding element of ℘̂ n(F) as well.)

We start from the following commutative diagram:

(3.2) Hn+1(Dn
∗)GMn

β

��

F∗
χ
// ℘̂ n(F)

ϕ2

//

ϕ1

��

℘ n
cl

//

ψ

tt

ν
zzttttttttttt

0 .

℘ n

��
0

Let us define all the maps above. The map ϕ1 was introduced in the definition of ℘ n(F),
ϕ2 is the “projectivization” mapping induced by the projection An(F) \ {0} → Pn−1(F)
with center at the coordinate origin. To define the map ψ we just set: ψ([a]) = [a−1

1 a]. We
also set ν = ϕ1ψ. In order to construct χ we need to prove one auxiliary result.

Lemma 3.4 For any n > 1, k ∈ F∗, and an n-columns a, b the following relation holds in
℘̂ n(F):

[a]− [ka] = [b]− [kb]
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Proof Without loosing of generality we can assume that the triple (E, a, b) satisfies SGP-
condition. Let

(3.3) X =


1 0 · · · 0 1 ka1 kb1

0 1 0 1 ka2 kb2
...

. . .
...

...
...

...
0 0 · · · 1 1 kan kbn

−


1 0 · · · 0 1 a1 b1

0 1 0 1 a2 b2
...

. . .
...

...
...

...
0 0 · · · 1 1 an bn

 .

Consider d(X) =
∑n+2

i=0(−1)idi(X), where di is the face operator throwing away the i-th
column.

It can be easily checked that for 0 ≤ i < n + 1

(3.4) di

(
(e1, e2, . . . , en, E, a, b)

)
= [fi(a, b)],

where fi : F∗n × F∗n → F∗n are homogeneous rational functions of a, b such that dega fi =
−1 and degb fi = 1. This implies that all these terms annihilate in d(X). Thus, we have
d(X) = (−1)n+1

(
dn+1(X)− dn+2(X)

)
. This shows that the element

(3.5) ([ka]− [a])− ([kb]− [b]) ∈ Cn
n+1(F)GLn

belongs to the image of the differential d and therefore, vanishes in the homology group
℘̂ n(F).

Definition 3.5 We set χ(k) = [a]− [ka].

Now one can easily verify that the row in Diagram 3.2 is exact and the map ϕ2 split by
ψ. Thus, we have the following fact.

Lemma 3.6 ℘̂ n(F) = ℘ n(F)cl ⊕ Imχ.

In case of odd n we can prove even a stronger result.

Lemma 3.7 If n is odd, then χ = 0.

Proof Let k, l ∈ F∗. Consider

(3.6) d
(
(e1, e2, . . . , en, E, la, kb)− (e1, e2, . . . , en, E, a, b)

)
.

The proof of the previous lemma tells us that this expression equals to

(3.7) χ(k/l)− χ(k/l) + · · · − χ(k/l)︸ ︷︷ ︸
n+1 times

+ χ(k)− χ(l).

Therefore, in ℘̂ n(F) we have χ(k) = χ(l). Since χ is a homomorphism, this completes the
proof.

Corollary 3.8 If n > 1 is odd, then the map ℘̂ n(F)
ϕ2−→ ℘ n(F)cl is an isomorphism.
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Let us now consider the case of even n.

Lemma 3.9 Let n > 0 be an even integer. Then for any k ∈ F∗ the element 2
n
2ϕ1

(
χ(k)

)
vanishes in ℘ n(F).

Proof Let us consider the group ring Z[Σn]. The following construction supplies Cn
n+1 with

a structure of Z[Σn]-module. Let [x] = (e1, . . . , en, E, x) ∈ Cn
n+1 and Ξ =

∑
i ciξi ∈ Z[Σn].

(x here is an n-column and ξi are n-permutations acting on x.)
We set

(3.8) Ξ[x] =
∑

i

ci(e1, e2, . . . , en, E, ξix) ∈ Cn
n+1.

Now, we construct a product map Z[Σk] ⊗ Z[Σl]
×−→ Z[Σk+l] in the following way. Let

σ ∈ Σk and τ ∈ Σl be permutations acting on sets {1, . . . , k} and {1, . . . , l}, respectively.
Then σ × τ ∈ Σk+l acts on the set {1, . . . , k + l} by the formula

(3.9) σ × τ (i) =

{
σ(i) for i ≤ k

k + τ (i − k) for i > k.

We extend this definition to the group rings by linearity. Let now γ be only nontrivial
permutation in Σ2. Set Γ = 1 + γ ∈ Z[Σ2] and consider Γm = Γ×Γ× · · · ×Γ ∈ Z[Σ2m].
The following lemma can be easily checked by direct calculation.

Lemma 3.10 Let n be a positive even. Then for any n-tuple x an element Γ
n
2 [x] belongs to

the image of the canonical map Dn
n+1 → Cn

n+1 and its Z-augmentation is 2
n
2 .

Consider now the element Γ
n
2 [kx]−Γ

n
2 [x] ∈ ℘̂ n(F). Since it comes from Dn

n+1, its image
in ℘ n(F) is 0. On the other hand it should be equal to 2

n
2χ(k).

Proposition 3.11 Assume that n is a positive integer. If n is even we should also assume
that 2 is invertible in the coefficient ring. In this case the map ν : ℘ n(F)cl → ℘ n(F) is an
epimorphism.

Proof It is just an obvious corollary of Lemmas 3.8 and 3.9.

Let us, finally, consider the case n = 2.

Proposition 3.12 Assume that 2 is invertible in the coefficient ring. Then ℘ 2(F) = ℘ 2(F)cl.

Proof Mention, first, that in the case under consideration ϕ2β = 0. Really, the image of
ϕ2β is generated by classes

[
a
b

]
+
[

b
a

]
. Using the notation of [15] it equals to [a/b]+[b/a] =

〈a/b〉 and from the proof of [15, Lemma 1.2] we have 2〈a/b〉 = 0.
This, together with Proposition 3.11, shows that the map ϕ2 can be pushed down to the

factor-group ℘ n and the resulting map is inverse to ν.

Remark 3.13 Using the proofs given above, one can easily check that the map ν:
℘ 2(F)cl → ℘ 2(F) is an isomorphism for quadratically closed field F even with Z-coeffi-
cients.
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4 Application to Low Dimensional Cases

Now we have introduced all the players and are ready to get some applications of the devel-
oped machinery. The main objectives of this section is to give a homological interpretation
of groups ℘ n(F) and to show some of their possible applications to the investigation of
groups H∗(GLn). The most important properties of groups ℘ n(F) are summarized in Con-
jectures 0.1, 0.2 above.

Remark 4.1 In case of algebraically closed field F the assertion of Conjecture 0.2 easily
follows from the divisibility of groups ℘ n(F)cl which look more geometrically motivated.

In this section we shall prove Conjecture 0.1 for n < 5. (For n = 4 we will have to
assume, in addition, that the field F is algebraically closed.) Conjecture 0.2 was proven for
n = 2 in [11], [15]. Unfortunately, we do not know how to prove 0.2 for n > 2. Rather, we
are going to show the importance of this conjecture for the investigation of the homology
of linear groups.

Before proceeding, let us make some remarks concerning the definition of a product
on homology and the “indecomposable part of the homology” which appears in Conjec-
ture 0.1.

For integers i, j > 0 we can define a homology product

(4.1) Hi(GLn,GMn)⊗H j(F∗)
`−→ Hi+ j(GLn+1,GMn+1)

as a composition of the external homological product and the natural map induced by the
inclusion

(4.2) F∗ × GLn 7→
(

F∗ 0
0 GLn

)
⊂ GLn+1 .

One can easily check that this product is well-defined. The same construction defines a
product on birelative homology groups as well.

We call the factor-group

Hk(GLn, {GMn,GLn−1})
/(⊕

i+ j=k

Hi(GLn−1, {GMn−1,GLn−2}) ` H j(F∗)
)

the indecomposable part of homology Hk(GLn, {GMn,GLn−1})ind.

4.1 The Case n = 2

Theorem 2.8 implies the following fact as an immediate corollary.

Theorem 4.2

Hi(GL2,GM2) =

{
0 i < 3

℘ 2(F) i = 3.

Proof Actually, if n = 2, then the E1-term of The Main Spectral Sequence has no nonzero
entries except for the 0-th row.
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4.2 The Case n = 3

In this case the E1-term of The Main Spectral Sequence is transgressive. Theorem 4.2 and
the relative version of the Künneth formula [16] allow us to write down its E2-term in terms
of relative homology groups.

(4.3)

H4(GL2,GM2)⊕ ℘ 2 ⊗ F∗

℘ 2 Z E R O
0 0
0 0 0 ℘ 3 · · · .

This implies the following long exact sequence:

(4.4) · · · −→ E2
0,q

d(q)

−→ Hq

(
(GL2,GM2)× (F∗)

)
−→ Hq(GL3,GM3) −→ · · · .

The statement of Conjecture 0.1 for n = 3 read as follows.

Theorem 4.3 ℘ 3(F) = H4(GL3, {GM3,GL2})ind.

Proof We want to construct the following commutative diagram with exact columns.

(4.5)

H4(GL2,GM2) −−−−→ H4(GL2,GM2)⊕ (℘ 2 ⊗ F∗)y y
H4(GL3,GM3) H4(GL3,GM3)y y

H4(GL3, {GM3,GL2}) −−−−→ ℘ 3(F)y y
H3(GL2,GM2)

∼−−−−→ ℘ 2(F)y y
H3(GL3,GM3) H3(GL3,GM3)y y

0 0.

Let us remind that we denoted by K̃n the kernel of map IndGLn
GMn

A → A and by Kn
k the kernel

of map IndGLn
GMn

Dn
k → Cn

k . Let us also denote by i : GLn ↪→ GLn+1 the standard embedding:
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A 7→
(

1 0
0 A

)
. Consider the diagram:

(4.6)

0 0y y
IndGL3

GL2
K̃2 K3

0y y
IndGL3

GL2
IndGL2

GM2
A

ϕ−−−−→ IndGL3
GM3

D3
0y y

IndGL3
GL2

A
ψ−−−−→ C3

0

where ϕ(g1⊗ g2⊗1) = g1i(g2)⊗ e1 and ψ(g⊗1) = g⊗ e1. Since the group GL2 doesn’t act
on the vector e1, one can easily check that these maps are well-defined, the diagram above

commutes and has exact columns. Maps ϕ and ψ induce the map on kernels IndGL3
GL2

K̃2 ξ→
K3

0 .
This map ξ (together with the identity map in the lowest degree) induces the morphism

of two-term complexes:

(4.7)

(K̃3 ←−−−− IndGL3
GL2

K̃2)

id

y ξ∗

y
(K̃3 ←−−−− K3

0 ).

Consider the hyperhomology H∗
(
GL3, (K̃3 ← IndGL3

GL2
K̃2)
)
. Using the standard machinery

of homological algebra one can check that the corresponding spectral sequence converges
to H∗(GL3, {GM3,GL2}).

The E1-term of one of associated spectral sequences has only two nontrivial rows. It has
groups H∗(GL3,GM3) in the 0-th row and groups H∗(GL2,GM2) in the first one.

Let us now look at the hyperhomology spectral sequence of GL3 with coefficients in the
complex (K̃3 ← K3

0 ). The map K3
0 → K̃3 is an epimorphism. Consider the following GL3-

resolution of Ker(K3
0 → K̃3) : K3

1 ← K3
2 ← · · · . Since Hi(GL3,K3

q ) = 0 for i > 0, q > 0,
we have:

(4.8) Hq

(
GL3, (K̃3 ←− K3

0 )
)
' H0(GL3,K

3
q−1).

The E1-term of the other spectral sequence associated to the latter two-term complex has
two nonzero rows

(4.9)
· · · H∗

(
(GL2,GM2)× F∗

)
· · ·

· · · H∗
(
(GL3,GM3)

)
· · · .

Evidently, the map of corresponding spectral sequences induced by ξ is a canonical isomor-
phism in the 0-th rows and is induced by the inclusion (GL2,GM2) ↪→ (GL2,GM2)×F∗ in
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the first rows. We have constructed all the maps in Diagram (4.5). Desired properties now
follow from functoriality.

Standard diagram chasing in (4.5) gives us the exact sequence

(4.10) ℘ 2 ⊗ F∗
γ−→ H4(GL3, {GM3,GL2}) −→ ℘ 3(F) −→ 0.

Now we want to check that γ is a product map. The homomorphism γ is induced by the
augmentation map K3

0 → K̃3 sending any column to 1. One can easily verify that this map
defines the morphism of stabilizers

(4.11) StabGL3 e1 = F∗ × GL2 −→ StabGL3 1 = GL3,

given as follows:

(4.12) F∗ × GL2 7→
(

F∗ 0
0 GL2

)
.

The latter morphism induces the desired product on homology. This fact, together with
Diagram (4.5), finishes the proof of Theorem 4.3.

Before proceeding with the case n = 4 we shall prove the following theorem.

Theorem 4.4 The natural embedding (GL2,GM2) ↪→ (GL3,GM3) induces the isomor-
phism ℘ 2 = H3(GL2,GM2) ' H3(GL3,GM3), provided that 3! is invertible in the coefficient
ring.

Proof Let us look at the end terms of long exact sequence (4.4) associated to the case n = 3:

(4.13) ℘ 3 d−→ ℘ 2 −→ H3(GL3,GM3) −→ 0.

This proves that the map under consideration is an epimorphism. We shall now prove that

the map d is zero, which requires more work. First of all, we introduce a new complex Cn|k
∗

defined as follows. We set Cn|k
q = Cn

q and

(4.14) dn|k(a0, . . . , ak−1|ak, . . . , aq) =
q∑

i=1

(−1)i(a0, . . . , ak−1|ak, . . . , âi , . . . , aq).

(Since the differential doesn’t affect first k columns we will separate them by “ | ”.) We also

define a complex D̄n|k
∗ as the following modification of Dn

∗. We let D̄n|k
l be the free A-module

generated by all classes of D-equivalence of matrices having the form:

( ∗, . . . , ∗︸ ︷︷ ︸
k times

|m, . . . ,m︸ ︷︷ ︸
p times

, a, . . . , a︸ ︷︷ ︸
q times

).

Here p and q are nonnegative integers, p + q = l; the symbol “m” means a monomial
column, the symbol “a” means an affine column, and the stars denote columns of any
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of these two types. In addition, we assume that the maximal affine submatrix (a, . . . , a)
satisfies SGP-condition.

We introduce also a subcomplex of D̄n|k
∗ denoted by Dn|k

∗ . For any q, we set Dn|k
q =

Dn
q/Fk−1Dn

q . Less formally, generators of Dn|k
∗ are the generators of D̄n|k

∗ , having the form

(m, . . . ,m|m, . . . ,m, a, . . . , a).

Differentials in all of the introduced complexes are given by formula (4.14).

Proposition 4.5 The following list of properties holds for the complexes Cn|k
∗ , D̄n|k

∗ , and Dn|k
∗ :

a) Complexes Cn|k
∗ , D̄n|k

∗ , and Dn|k
∗ are acyclic.

b) They have canonical structure of GLn- (resp. GMn-) modules.
c) The associated hyperhomology spectral sequence converges to 0 and has E1-term coinciding

with the E1-term of the spectral sequence associated to the complex Cn
∗ (resp. Dn

∗).

d) There is the natural epimorphism ϕ : IndGLn
GMn

Dn|k
∗ � Cn|k

∗ .
e) The map ψ, given by the formula

(4.15) ψ(a0, a1, . . . , aq) =
q∑

i=0

(−1)i(ai |a0, a1, . . . , âi , . . . , aq)

induces morphisms of complexes Cn
∗ → Cn|1

∗ and Dn
∗ → D̄n|1

∗ .
f) The diagram

(4.16)

IndGLn
GMn

Dn
∗

ϕ−−−−→ Cn
∗ −−−−→ 0

1⊗ψ
y ψ

y
IndGLn

GMn
D̄n|1
∗

ϕ−−−−→ Cn|1
∗ −−−−→ 0

commutes. This condition shows that ψ defines the morphism of cones

(4.17) Cone(Dn
∗ → Cn

∗)
ψ−→ Cone(D̄n|1

∗ → Cn|1
∗ ).

All the statements above are easy corollaries of the results of Sections 1 and 2.

(Let us remind that we denote by Cone(Dn
∗ → Cn

∗) the Cone of morphism IndGLn
GMn

Dn
∗ →

Cn
∗.) We can also see that from the “homological point of view” there is no difference

between complexes (Dn|1
∗ )GMn and (D̄n|1

∗ )GMn .

Lemma 4.6 If n! is invertible in the coefficient ring, then the natural embedding

(Dn|1
∗ )GMn ↪→ (D̄n|1

∗ )GMn induces an isomorphism

(D̄n|1
∗ )GMn ' (Dn|1

∗ )GMn ⊕ Q∗,

where the complex Q∗ is contractible.
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Proof Decomposition is obvious. The contracting homotopy for Q∗ can be cooked up by
standard methods. (See, for example, [10]).

Corollary 4.7 Under the same conditions as before, we have:

H∗
(
(D̄n|1
∗ )GMn

)
' H∗

(
(Dn|1
∗ )GMn

)
.

Consider the spectral sequence associated to Cone(D̄3|1 → C3|1). The E2-term of this
spectral sequence looks as follows.

(4.18)
H3(GL2,GM2) 0 · · ·

0 0 0 · · ·
0 0 0 ℘ 3|1 · · · .

(We denote by ℘ n|1 an analog of the group ℘ n which appears in the case of n|1-complexes.)

Since the spectral sequence above converges to 0, we obtain an isomorphism d3|1
3 :

℘ 3|1 '→ H3(GL2,GM2). The morphism ψ gives us the morphism of E2-terms of corre-
sponding hyperhomology spectral sequences which is identical on the first columns. So,
we have the following commutative diagram:

(4.19) ℘ 3
d
//

ψ∗

��

H3(GL2,GM2) // H3(GL3,GM3) // 0

℘ 3|1

d3|1
3

'

99sssssssssss

.

We are going to extend this diagram up to the following one:

(4.20) ℘ 3
d
//

ψ∗

��

H3(GL2,GM2) // H3(GL3,GM3) // 0

℘ 3|1

d3|1
3

'

99sssssssssss

π∗

��

℘ 2

'

BB�������������������

and show that the vertical path ℘ 3 → ℘ 3|1 → ℘ 2 is the zero map. Let us first define a map
π∗. This map is induced by the projection map P2(F)

π→ P1(F) with the center at the point
e3. More precisely, in any class of GL3-equivalence we can always choose a matrix A of the
form

(4.21) A =

0
0
1

∣∣∣∣∣∣
w11 · · · w1k

w21 · · · w2k

w31 · · · w3k

 .
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We set

(4.22) π(A) =
(

w11 · · · w1k

w21 · · · w2k

)
.

The same construction works for terms of (D3|1
∗ )GM3 as well. One can easily check that

the constructed map is well-defined. The map just constructed gives us the morphism of
bicomplexes:

(4.23) D3|1
1

π∗

  @@@@@@@@

��

D3|1
2

d3|1

oo

��

π∗

  @@@@@@@@
D3|1

3

d3|1

oo

��

π∗

  @@@@@@@@
· · ·oo

D2
0

��

D2
1

d
oo

��

D2
2

d
oo

��

· · ·oo

C3|1
1

π∗

  @@@@@@@@
C3|1

2

d3|1

oo

π∗

  @@@@@@@@
C3|1

3

d3|1

oo

π∗

  @@@@@@@@
· · ·oo

C2
0 C2

1

d
oo C2

2

d
oo · · ·oo

Comparing the E2-terms of corresponding hyperhomology spectral sequences one can eas-
ily verify that the bottom triangle of Diagram (4.20) commutes.

Lemma 4.8 The map ℘ 3 ψ→ ℘ 3|1 π∗→ ℘ 2 is zero.

Proof We can write down this map explicitly. Let c denote a 2-column. Denoting the
generator (e1, e2, E, c) of ℘ 2(F) by (c)∗, we have:
(4.24)

π∗ψ

1 0 0 1 a1

0 1 0 1 a2

0 0 1 1 a3

 =
(

a2

a3

)∗
−
(

a1

a3

)∗
+

(
a1

a2

)∗
−
(

a3 − a1

a3 − a2

)∗
+

(
a−1

3 − a−1
1

a−1
3 − a−1

2

)∗
.

On the other hand, we have

(4.25)

∂

(
1 0 1 a−1

3 − a−1
1 a3 − a1

0 1 1 a−1
3 − a−1

2 a3 − a2

)
=
(
−a1a2

−a1a3

)∗
−
(
−a1a2

−a2a3

)∗
+

(
−a1a3

−a2a3

)∗
−
(

a3 − a1

a3 − a2

)∗
+

(
a−1

3 − a−1
1

a−1
3 − a−1

2

)∗
.

From the previous section we already know that in ℘ 2(F) there exists a relation

(4.26)

(
x

y

)∗
=
(

ax

ay

)∗
.
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Therefore, the image of π∗ψ is a boundary. This observation finishes the proof of the
lemma and the proof of Theorem 4.4 as well.

We obtain the following fact, proven in [15] with Z-coefficients in a different way, as an
easy corollary of Theorem 4.4.

Corollary 4.9 The kernel of the homomorphism H3(GL2)→ H3(GL3) lies in H3(GM2).

Proof It is clear from the following commutative diagram with exact rows:

(4.27)

H3(GM2) −−−−→ H3(GL2) −−−−→ H3(GL2,GM2)y y '
y

H3(GM3) −−−−→ H3(GL3) −−−−→ H3(GL3,GM3).

The last case when we could get through with direct calculations is the next one.

4.3 The Case n = 4

Throughout this section we shall assume, in addition, that the base field F is algebraically
closed. Using Theorem 2.8 and the relative Künneth formula [16] we can write down terms
of interest in the E1-term of Spectral Sequence (2.8), in the case n = 4.

(For the shortness we will often denote Hm(GLn,GMn) by Hm(n).)

(4.28)

⊕
i+ j=5

(
Hi(3)⊗H j(F∗)

) ⊕
i+ j+k=5

(
Hi(3)⊗H j(F∗)⊗Hk(F∗)

)
H4(3)⊕ F∗ ⊗H3(3) H4(2)⊕ (F∗ × F∗)⊗H3(2)

H3(3) H3(2) Z E R O
0 0
∗ ∗ ∗

(we have E1
p,q = 0 for p > 0 and q > 1).

Remark 4.10 All the Tor-summands in the considered dimensions happen to be zero.
This is implied by vanishing groups Hm(GLn,GMn) for m < 3 and unique divisibility of
the group

H3(GL3,GM3) ' H3(GL2,GM2) = ℘ 2(F)

for algebraically closed field F. (See [15] and also [5], [6].)

Theorem 4.4 easily implies vanishing of the differential d1 : E1
21 → E1

20

(
H3(2)→ H3(3)

)
.

In order to investigate other differentials we use complexes C4|2
∗ and D4|2

∗ . Consider homo-

morphisms C4|2
∗

ϕ→ C4
∗ and D4|2

∗
ϕ→ D4

∗ given by the formula

(4.29) ϕ : (a0, a1|a2, . . . , aq) = (a0, a1, a2, . . . , aq) + (a1, a0, a2, . . . , aq).



On the Homology of GLn and Higher Pre-Bloch Groups 1331

They induce the morphism of cones

(4.30) Cone(D4|2
∗ → C4|2

∗ )
ϕ−→ Cone(D4

∗ → C4
∗).

The E1-term of hyperhomology spectral sequence of GL4 with coefficients in Cone(D4|2
∗ →

C4|2
∗ ) looks as follows:

(4.31) E1
p,q =

{
Ẽ1

p,q+1 q > 0

0 q = 0.

Here Ẽ1 denotes the E1-term of the spectral sequence associated to the case n = 4.
(See (4.28).)

One can easily check that the latter spectral sequence converges to zero and has no non-
trivial differentials, but coming out of the 0-th row. Thus, all differentials in (4.28) vanish
on the image of ϕ∗. We can also conclude that every element lying in the image of ϕ∗ be-
longs to the image of corresponding differential (from the 0-th row) and, therefore, goes to
zero in E∞∗,∗. The homomorphism ϕ∗ acts on groups

(4.32)
⊕

i+ j+k=N

(
Hi(GL3,GM3)⊗H j(F∗)⊗Hk(F∗)

)
as an endomorphism id +s, where s swaps two copies of F∗.

Now we apply this discussion to the calculation of differentials in spectral sequence
(4.28).

Lemma 4.11 The group ℘ 2 = H3(GL2,GM2) is a direct summand of ℘ 4, provided that 6 is
invertible in the coefficient ring.

Proof Since ℘ 2 = H3(GL2,GM2) = E2
2,1 ⊂ Imϕ∗, there is no nontrivial differentials in

spectral sequence (4.31) going out of the term of dimension (2, 1) and the map

(4.33) ℘ 4 = E3
0,4

d3−→ E3
2,1 = E1

2,1 = H3(GL2,GM2) = ℘ 2

is an epimorphism. One can easily check that the map

(4.34) H3(GL2,GM2) = ℘ 2 ϕ∗−→ ℘ 2 = H3(GL2,GM2)

is multiplication by 2. (The group on the left-hand side is an entry of the spectral se-
quence, corresponding to the case {4|2}. The right-hand side one is the corresponding
entry of (4.28)).

Thus, we have the following commutative diagram:

(4.35)

℘ 4|2 '−−−−→ H3(GL2,GM2)

ϕ∗

y y×2

℘ 4 d3−−−−→ H3(GL2,GM2),

which gives us the section of differential d3.
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Lemma 4.12 The map

H4(GL2,GM2)⊕ (F∗ × F∗)⊗H3(GL2,GM2)
d1−→ H4(GL3,GM3)⊕ F∗ ⊗H3(GL3,GM3)

is given by the matrix
(

0 0
0 ψ

)
, such that the following sequence

0 −→ Imϕ∗ −→ (F∗ × F∗)⊗H3(GL2,GM2)
ψ−→ F∗ ⊗H3(GL3,GM3)

is exact.

Proof One can easily see that the map

(4.36) d1 :
⊕

i+ j+k=N

Hi(F∗)⊗H j(F∗)⊗Hk(2) −→
⊕

l+m=N

Hl(F∗)⊗Hm(3)

looks as follows

(4.37) d1( f ⊗ g ⊗ h) = f ⊗ (g ` h)− g ⊗ ( f ` h).

This shows immediately that d1

(
H4(GL2,GM2)

)
= 0.

Since i∗ : H3(GL2,GM2) → H3(GL3,GM3) is an isomorphism (see Theorem 4.4), each
of the terms F∗ ⊗ H3(GL2,GM2) maps isomorphically onto F∗ ⊗ H3(3). (These maps are
different by their signs.) Therefore, the cokernel of d1 is H4(GL3,GM3). The map

(4.38) (F∗ × F∗)⊗H3(GL2,GM2)/ Imϕ −→ F∗ ⊗H3(GL3,GM3)

is an isomorphism. This implies the coincidence of Ker d1 and Imϕ∗.

Corollary 4.13 Since Ker(E1
1,3

d1→ E1
0,3) ⊂ Imϕ∗, the natural projection E2

1,3 → E∞1,3 is zero.

Now we are able to draw the E4-term of the spectral sequence associated to the case
n = 4.

(4.39)

⊕
i+ j=5 Hi(3)⊗H j(F∗)/ Im d1 ∗

H4(3) 0 Z E R O

H3(3) 0
...

0 0 0 0 · · ·
0 0 0 0 ℘ 4/℘ 2 . . .

.

This immediately implies two corollaries.

Corollary 4.14 We obtained the following stabilization result:

H3(GL2,GM2) ' H3(GL3,GM3) ' · · · ' H3(GL,GM).



On the Homology of GLn and Higher Pre-Bloch Groups 1333

Corollary 4.15 The following sequence⊕
i+ j=5

Hi(3)⊗H j(F∗) −→ H5(4) −→ ℘ 4/℘ 2 −→ H4(3) −→ H4(4) −→ 0

is exact.

We can, finally, prove the main theorem of this subsection.

Theorem 4.16 Assume that 3! is invertible in the coefficient ring. Then the group
℘ 4(F) is a direct sum of the group H3(GL2,GM2) and the indecomposable component
H5(GL4, {GL3,GM4})ind.

Proof We have already established that the group H3(GL2,GM2) ' ℘ 2(F) is a direct sum-
mand of ℘ 4(F). Let us now consider the following diagram.

(4.40)

H5(GL3,GM3) −−−−→
⊕

i+ j=5 Hi(GL3,GM3)⊗H j(F∗)y µ

y
H5(GL4,GM4) H5(GL4,GM4)y y

H5(GL4, {GL3,GM4}) −−−−→ ℘ 4(F)/℘ 2(F)y y
H4(GL3,GM3) H4(GL3,GM3)y y
H4(GL4,GM4) H4(GL4,GM4)y y

0 0.

Using the technique developed for the case n = 3, we can show that this diagram is com-
mutative, has exact columns, and the map µ coincides with the `-product on one-relative
homology groups. The standard diagram chase gives us the following exact sequence

(4.41)
⊕

i+ j=5
j>0

Hi(GL3,GM3)⊗H j(F∗)
η−→ H5(GL4, {GL3,GM4}) −→ ℘ 4/℘ 2 −→ 0.

The map η here is obtained as a composition of µ and the projection map from the ho-
mology long exact sequence. We should now check that the image of the map η coincides
with the image of the `-product on bi-relative homology groups. Consider the following
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commutative diagram, whose left vertical path is exact:

(4.42)

H4(GL2,GM2)⊗H1(F∗)y
H4(GL3,GM3)⊗H1(F∗)

µ−−−−→ H5(GL4,GM4)y y
H4(GL3, {GM3,GL2})⊗H1(F∗)

`−−−−→ H5(GL4, {GM4,GL3})y
0.

Since the left vertical arrow of the commutative square above is an epimorphism and all ele-
ments coming from H4(GL2,GM2)⊗H1(F∗) go to zero in the group H5(GL4, {GM4,GL3}),
we obtain the desired result.

Proposition 4.17 Assume that the claim of Conjecture 0.2 holds for n = 2, 4. (It is known
only for n = 2. See [5], [15].) Let F be an algebraically closed field and p > n be a prime.
Then the natural mapping H4

(
GL3(F),Z/p

)
→ H4

(
GL4(F),Z/p

)
is a monomorphism.

Proof One can easily show that Conjecture 0.2 implies vanishing of the group
H5(GL4, {GM4,GL3},Z/p). Let us now look at the following commutative diagram with
exact rows:

(4.43) H5(GM4,GM3,Z/p) //

��
��

H4(GM3,Z/p)

��

i∗
// H4(GM4,Z/p)

��
H5(GL4,GL3,Z/p) // H4(GL3,Z/p)

i∗
// H4(GL4,Z/p).

Any class x in H4(GL3,Z/p) belonging to the kernel of i∗ lifts up to some class x ′ in
H5(GM4,GM3,Z/p). It can be easily checked that the map i∗ in the upper row is a mono-
morphism. Therefore, the image of x ′ in H4(GM3,Z/p) and, moreover, H4(GL3,Z/p) are
zero.

The latter proposition shows the significant importance of Conjecture 0.2 for the inves-
tigation of the homology of linear groups. Questions connected to the estimation of kernels
of maps induced by the natural embedding seem to be the most difficult in this field.

5 Construction of Homomorphism ξ : Hn

(
GLn(F)

)
→ ℘ n−1(F)

In this section we generally follow the strategy proposed by Suslin in [15]. Some changes
of the construction make our approach more convenient.
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Remark 5.1 In order to make our computations fully compatible with ones in [15] we’ve
chosen here the different embedding GLn−1 ↪→ GLn, given by the formula GLn−1 7→(

GLn−1 0
0 1

)
∈ GLn. This, of course, doesn’t change the maps induced on homology.

Consider the complex Pn
∗(F) defined in Section 3. Let us define another differential d ′

such that

(5.1) d ′(x0, . . . , xp) =
p−1∑
i=0

(−1)i(x0, . . . , x̂i , . . . , xp).

One can easily prove

Lemma 5.2 The following complexes are acyclic:

0 ←−−−− Z
ε←−−−− Pn

0
d←−−−− Pn

1
d←−−−− · · ·

0 ←−−−− Pn
0

d ′←−−−− Pn
1

d ′←−−−− · · · .

We define the homomorphism ν : Pn
m → Pn

m by the formula:

(5.2) ν(x0, . . . , xp) =
p∑

i=0

(−1)i(x0, . . . , x̂i , . . . , xp, xi).

Direct computation shows that d ′ν = νd. Consider now the following morphism of com-
plexes:

(5.3)

Pn
1

d←−−−− Pn
2

d←−−−− Pn
3

d←−−−− · · ·

ν

y ν

y ν

y
Pn

1
d ′←−−−− Pn

2
d ′←−−−− Pn

3
d ′←−−−− · · ·

and denote its cone by P∗. Let also define the “natural” augmentation τ as the compo-

sition τ : P0 = Pn
1

d ′→ Pn
0

ε→ Z. One can easily check that the complex 0 ← Z
τ← P∗

is acyclic. This complex has a natural GLn-module structure that determines the canon-
ical homomorphism Hn

(
GLn(F)

)
→ Hn

(
(P∗)GLn(F)

)
. The groups (Pn

m)GLn(F) = P̄n
m can

be easily computed. In particular, P̄n
m = Z for m ≤ n, P̄n

n+1 =
∐

Z[a1, . . . , an−1], where
[a1, . . . , an−1] is the orbit of

(5.4)


1

e1 e2 · · · en−1 E a1 en

a2
...

an−1
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and summation is over all vectors [a1, . . . , an−1] for which the matrix above satisfies GP-
condition. In the same way, the group P̄n

n+1 can be written as
∐

Z
[ a1, ..., an−1

b1, ..., bn−1

]
under the

same conditions. Let us define the following homomorphisms:

(5.5) ω1 : (Pn
n)GLn = Z⊕

∐
Z[a1, . . . , an−1]→ (P̄n−1

n ) =
∐

Z[x1, . . . , xn−2]

and

(5.6)

ω2 : (Pn
n+1)GLn =

∐
Z[a1, . . . , an−1]⊕

∐
Z

[
a1, . . . , an−1

b1, . . . , bn−1

]
→ (P̄n−1

n+1 ) =
∐

Z

[
x1, . . . , ax−2

y1, . . . , yn−2

]
setting

ω1(1) = 0(5.7)

ω1([a1, . . . , an−1]) = 〈a1, . . . , an−2〉(5.8)

ω2

([
a1, . . . , an−1

b1, . . . , bn−1

])
=
〈

a1, . . . , an−2

b1, . . . , bn−2

〉
(5.9)

ω2([a1, . . . , an−1]) =

〈
a1, . . . , an−2

a1(1−an−1)
a1−an−1

, . . . , an−2(1−an−1)
an−2−an−1

〉
.(5.10)

The above notation
〈

a1, ..., an−2

b1, ..., bn−2

〉
means the class of the matrix

(5.11)


1 1

e1 e2 · · · en E a1 b1
...

...
an−2 bn−2


in (Pn−1

n+1 )GLn−1 .
Direct computation shows that the following diagram commutes.

(5.12) P̄n
n+1

ν

��

ω2

��

P̄n
n+1

ω1

��

P̄n
n+2

d ′
oo

ω2

��

P̄n−1
n P̄n−1

n+1 .
d

oo
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This gives us the well-defined homomorphism ω : Hn

(
(Pn
∗)GLn

)
→ ℘ n−1

cl .
Combining two homomorphisms obtained in this section with the homomorphism α

constructed in Section 3 we get the following map:

(5.13) ξ : Hn(GLn)→ Hn

(
(Pn
∗)GLn

) ω→ ℘ n−1
cl

α→ ℘ n−1.

Since the action of GLn−1 does not affect the vector en, we obtain a structure of GLn−1-
module on the bottom row of the bicomplex Pn

∗. This defines the canonical homomor-
phism Hn(GLn−1)→ ℘ n−1. On the other hand, the standard GLn−1-resolution of Z maps

to the resolution Pn−1
0

d← Pn−1
1

d← · · · . This gives us an alternative way to define the map-
ping Hn(GLn−1) → ℘ n−1. Repeating almost word by word arguments from the proof of
[15, Lemma 3.4], we can see that both constructions define the same map and the diagram

(5.14) Hn(GLn−1)
i∗

//

$$IIIIIIIII
Hn(GLn)

ξ{{vvvvvvvvv

℘ n−1
cl

commutes.
The homomorphism ξ constructed in this section allows us to make some estimations

of kernels of maps Hn(GLn−1)
i∗→ Hn(GLn). It can be considered as a generalization of [15,

Proposition 3.1] for higher dimensions. (See also Corollary 4.9.) The following proposition
holds.

Proposition 5.3 For 3 ≤ n ≤ 5 the kernel of natural homomorphism Hn(GLn−1)
i∗−→

Hn(GLn) maps into the decomposable part of the group Hn(GLn−1,GMn−1).
(Here i∗ denotes, as usual, the homomorphism induced on homology by the natural group

inclusion.)

Proof Consider the following diagram:

(5.15)

Hn(GMn−1)y
Hn(GLn−1)

i∗−−−−→ Hn(GLn)y yξ⊕
i+ j=n Hi(n− 2)⊗H j(F∗) −−−−→ Hn(GLn−1,GMn−1) −−−−→ ℘̃ n−1(F),

where ℘̃ i denotes ℘ 4/℘ 2 for i = 4 and ℘ i otherwise. Diagram (5.14) and results of
Section 4 imply commutativity of this diagram and exactness of its rows and columns.
Diagram chasing now shows that an element belonging to Ker

(
Hn(GLn−1) → Hn(GLn)

)
should either come from Hn(GMn−1) or map to the decomposable part of
Hn(GLn−1,GMn−1).
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Remark 5.4 One can easily see that for n = 3 there is no nonzero decomposable elements
in H3(CL2,GM2), and our result coincides with Corollary 4.9.
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