
De Rham-Witt Cohomology and Displays

Andreas Langer and Thomas Zink

February 27, 2007

1 Introduction

Displays of formal p-divisible groups were introduced in [Z2]. They are one
possible extension of classical Dieudonné theory to more general ground rings.
In [LZ] we gave a direct construction of a display for an abelian scheme by
the relative de Rham-Witt complex. In the case where the p-divisible group
of the abelian scheme is local the construction leads to the display of [Z2].

We define here a more general notion of display over a ring R, where a
given prime number p is nilpotent. If R is a perfect field a display is just a
finitely generated free W (R)-module M endowed with an injective Frobenius
linear map F : M →M , while a display of [Z2] is a Dieudonné module, where
V acts topologically nilpotent. Our category of displays is an exact tensor
category which contains the displays of [Z2] as a full subcategory. There
is also a good notion of base change for displays with respect to arbitrary
ring morphisms R → R′. Neither the construction of the tensor product
nor the construction of base change is straightforward. Special types of
tensor products are related in [Z2] to biextensions of formal groups. Other
operations of linear algebra as exterior products and duals up to Tate twist
may be performed but we don’t discuss them here, since we don’t use them
essentially and their construction requires just the same ideas. We add that
the exact category of displays is Karoubian [T] and has a derived category.

In many examples we have a display structure on the cohomology of
a projective and smooth scheme which arises as follows: Let p be a fixed
prime number and let R be a ring such that p is nilpotent in R. We denote
by W (R) the ring of Witt vectors and we set IR = VW (R). Let X be a
projective and smooth scheme over R. Let WΩ·X/R be the de Rham-Witt
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complex. We define for m ≥ 0 the Nygaard complex NmWΩ·X/R of sheaves

of W (R)-modules:

(WΩ0
X/R)[F ]

d→ . . .
d→ (WΩm−1

X/R)[F ]
dV→ WΩm

X/R
d→ WΩm+1

X/R

d→ . . . .

Here F indicates restriction of scalars with respect to the Frobenius F :
W (R) → W (R). We remark that N 0WΩ·X/R = WΩ·X/R. These complexes

were considered by Nygaard, Illusie and Raynaud [I-R], and Kato [K] if R is
a perfect field.

Let m be a nonnegative integer and consider the hypercohomology groups

Pi = Hm(X,N iWΩX/R)

for i ≥ 0. The structure of the de Rham-Witt complex gives naturally three
sets of maps (compare: Definition 2.2):

1) A chain of morphisms of W (R)-modules

. . .→ Pi+1
ιi→ Pi → . . .→ P1

ι0→ P0.

2) For each i ≥ 0 a W (R)-linear map

αi : IR ⊗W (R) Pi → Pi+1.

3) For each i ≥ 0 a Frobenius linear map

Fi : Pi → P0.

The composition of ι and α is the multiplication IR ⊗ Pi → Pi. Moreover we
have the equation:

Fi+1(αi(
V η ⊗ x)) = ηFix, η ∈ IR, x ∈ Pi (1)

We will call a set of data P = (Pi, ιi, αi, Fi) with the properties above a
predisplay. The predisplays form an abelian category. The equation (1)
implies:

Fi(ιi(y)) = pFi+1(y)

i.e. the Frobenius F0 becomes more and more divisible by p if it is restricted
to the Nygaard complexes.

We are interested in predisplays, which are obtained by the following
construction. We start with a set of data which are called standard:
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A sequence L0, . . . , Ld of finitely generated projective W (R)-modules.

A sequence of Frobenius linear maps for i = 0, . . . d:

Φi : Li → L0 ⊕ . . .⊕ Ld

We require that the map ⊕iΦi is a Frobenius linear automorphism of
L0 ⊕ . . .⊕ Ld.

From these data one defines a predisplay P = (Pi, ιi, αi, Fi), with

Pi = (IR ⊗ L0)⊕ . . .⊕ (IR ⊗ Li−1)⊕ Li ⊕ . . .⊕ Ld

for i ∈ Z, i ≥ 0. The definition of the maps ιi, αi, Fi (compare Definition 2.2)
is not obvious, but we skip it for the moment. We should warn the reader
that the Pi for i > d are obviously isomorphic, but these isomorphisms are
not canonical, i.e. they depend on our construction and not only on the
predisplay P .

Definition: A predisplay is called a display if it is isomorphic to a pre-
display associated to standard data.

A decomposition P0 = L0⊕L1⊕ . . .⊕Ld which is given by standard data
is called a normal decomposition.

If we start with standard data for d = 1 we obtain exactly the 3n-displays
of [Z2], which are called displays in [Me]. In this work we call them 1-displays.

If we assume that the Li are free the map ⊕Φi is represented by a block
matrix (Aij), where Aij is the matrix of the Frobenius linear map Lj → Li
induced by ⊕Φi, where 0 ≤ i, j ≤ d. Conversely any block matrix (Aij) from
GL(W (R)) defines standard data for a display. Over a local ring R it would
be possible to define the category of displays in terms of matrices.

We note that the maps ιi for a display P are generally not injective unless
the ring R is reduced. In this case the whole display is uniquely determined
by the Frobenius module (P0, F0). Indeed the display property implies that:

Pi = {x ∈ P0 | F0(x) ∈ piP0} (2)

One has Fi = (1/pi)F0. This makes sense because p is not a zero divisor in
W (R) if R is reduced. Therefore over a reduced ring a display is a special
kind of Frobenius module.
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If R = k is a perfect field a display is just the same as a Frobenius
module (P0, F0). Indeed, consider the map F0 : P0⊗Q→ P0⊗Q. We obtain
inclusions of W (k)-modules:

P0 ⊂ F−1
0 P0 ⊂ P0 ⊗Q.

By the theory of elementary divisors we find a decomposition by W (R)-
modules P0 = L0 ⊕ L1 ⊕ . . .⊕ Ld, such that

F−1
0 P0 = L0 ⊕ p−1L1 ⊕ . . .⊕ p−dLd.

Therefore the restriction of p−iF0 to Li defines a map Φi : Li → P0, for
i = 0, . . . , d. These are the standard data for the display associated to the
Frobenius module (P0, F0).

If pR = 0 Moonen and Wedhorn [MW] introduced the structure of an
F -zip. It is defined in terms of the de Rham cohomology of the scheme X/R.
As one should expect any display gives rise to an F -zip (compare the remark
after Definition 2.6.).

For an arbitrary projective and smooth variety X/R we can’t expect that
the crystalline cohomology Hm

crys(X/W (R)) has a display structure. There-
fore we consider the following assumptions: There is a compatible system
of smooth liftings X̃n/Wn(R) for n ∈ N of X/R such that the following
properties hold:

(*) The cohomology groups Hj(X̃n,Ω
i
X̃n/Wn(R)

) are for each n, i and j

locally free Wn(R)-modules of finite type.

(**) The de Rham spectral sequence degenerates at E1

Eij
1 = Hj(X̃n,Ω

i
X̃n/Wn(R)

)⇒ Hi+j(X̃n,Ω
·
X̃n/Wn(R)

).

Theorem: Let X be smooth and projective over a reduced ring R, such
that the assumptions (*) and (**) are satisfied. Let d be an integer 0 ≤ m <
p. Consider the Frobenius module P0 = Hm

crys(X/W (R)) and define Pi by the
formula (2).

Then the Pi form a display and Pi coincides with the hypercohomology of
the Nygaard complex N iWΩ·X/R.

It would follow from the general conjecture made below that this theorem
holds without the restriction m < p.
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Finally we indicate how to proceed if the ring R is not reduced. In order
to overcome the problem with the p-torsion in W (R) we use frames [Z1]. A
frame for R is a triple (A, σ, α), where A is a p-adic ring without p-torsion,
σ : A → A is an endomorphism which lifts the Frobenius on A/pA, and
α : A → R is a surjective ring homomorphism whose kernel has divided
powers. Let us assume that X admits a lifting to a smooth formal scheme Y
over Spf A, which satisfies assumptions analogous to (*) and (**). We define
“displays” relative to A which we call windows (see [Z1]). Theorem 5.5 says
that under the conditions made Hm

crys(X/A,OX/A) has a window structure
for m < p . There is a morphism A→ W (A)→ W (R) which allows to pass
from windows to displays. We remark that because of this morphism the
assumptions (*) and (**) for A are stronger than the original assumption for
W (R). In equal characteristic we obtain e.g. the following:

Theorem Let X be smooth and projective over a ring R, such that pR =
0. Let us assume that there is a frame A → R and a smooth p-adic lifting
Y/ Spf A of X, which satisfies the conditions analogous to (*) and (**).

Then there is a canonical display structure on Hm
crys(X/W (R)) for m < p,

which does not depend on the lifting Y nor on the frame A.

We discuss three examples where the assumptions (∗) and (∗∗) hold. In
these examples the assumptions made on X in the two preceding theorems
are fullfilled.

Let X be a K3-surface over R. We assume without restriction of gen-
erality that R is noetherian. We denote by TX/R the tangent bundle of X.
The cohomology group H2(X, TX/R) commutes with base change by [M] §5
Cor.3. From the case where R is an algebraically closed field, we deduce
that this cohomology group vanishes. It follows that X has a formal lift-
ing over SpfW (R) resp. Spf A. From the Hodge numbers of a K3-surface
over an algebraically closed field [De1] one deduces that H1(X,OX) = 0,
H0(X,Ω1

X/R) = 0, H2(X,Ω1
X/R) = 0, H1(X,Ω2

X/R) = 0. It follows that the
cohomology of X commutes with arbitrary base change and is therefore lo-
cally free [M] loc.cit.. The degeneration of the de Rham spectral sequence
follows now because the Hodge numbers above are zero, because there is no
room for non-zero differentials.

Let X be an abelian variety over R. In this case the assumptions (∗) and
(∗∗) are fullfilled by [BBM] 2.5.2.

Finally let X be a smooth relative complete intersection in a projec-
tive space over R. Then the conditions (∗) and (∗∗) are fullfilled by [De2]
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Thm.1.5.

Let p be a prime number. Let R be a ring such that p is nilpotent in R. In
[LZ] Thm. 3.5 we proved a comparison between the crystalline cohomology
and the hypercohomology of the de Rham-Witt complex extending a result
of Illusie [I] if R is a perfect field. We show here a filtered version of this
comparison, which is the key to the display structure. We conjecture a more
precise comparison, which would lead to a wide generalization of the theorems
above.

Let Wn(R) be the truncated Witt vectors. We set IR,n = VWn−1(R).
This ideal is 0 for n = 1.

Let X/R be a smooth and projective scheme. We consider the crystalline
site Crys(X/Wn(R)) with its structure sheaf OX/Wn(R). Let us denote by

JX/Wn(R) ⊂ OX/Wn(R) the sheaf of pd-ideals. We denote by J [m]
X/Wn(R) its

m-th divided power. Let

un : Crys(X/Wn(R))∼ −→ X∼zar

be the canonical morphism of topoi.
The comparison isomorphism [LZ] is an isomorphism in the derived cat-

egory D(Xzar) of sheaves of Wn(R)-modules on Xzar:

Run∗OX/Wn(R) −→ WnΩ
·
X/R

We will prove a filtered version of this. Let m be a natural number. Let
ImWnΩ

·
X/R be the following subcomplex of the de Rham-Witt complex:

pm−1VWn−1Ω
0
X/R

d→ pm−2VWn−1Ω
1
X/R . . .

d→ VWn−1Ω
m−1
X/R

d→ WnΩ
m
X/R . . .

The filtered comparison Theorem 4.6 says that for m < p we have an iso-
morphism in the derived category

Run∗J [m]
X/Wn(R) −→ I

mWnΩ
·
X/R (3)

We would like to have a similiar comparison theorem for the truncated Ny-
gaard complex NmWnΩ

·
X/R instead of ImWnΩ

·
X/R:

(Wn−1Ω
0
X/R)[F ]

d→ . . .
d→ (Wn−1Ω

m−1
X/R)[F ]

dV→ WnΩ
m
X/R

d→ WnΩ
m+1
X/R

d→ . . .

The advantage of the Nygaard complex is that the restriction of the Frobenius
from WΩ·X/R to NmWΩ·X/R is in a natural way divisible by pm even if p
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is a zero divisor. For a reduced ring R the Nygaard complex NmWΩ·X/R
is quasiisomorphic to ImWΩ·X/R. Unfortunately in general we don’t know
a definition for the Nygaard complex in terms of crystalline cohomology.
Nevertheless we make the conjecture 4.1:

Conjecture: Assume that X̃/Wn(R) is a smooth lifting of X. Then
the Nygaard complex is in the derived category canonically isomorphic to the
following complex FmΩ·

X̃/Wn(R)
:

IR,n ⊗Wn(R) Ω0
X̃/Wn(R)

pd→ . . .
pd→ IR,n ⊗Wn(R) Ωm−1

X̃/Wn(R)

d→ Ωm
X̃/Wn(R)

d→ . . . .

Assume that we have for varying n a compatible system of smooth liftings
X̃n/Wn(R). We obtain a formal scheme X = lim

−→
X̃n. We set:

FmΩ·X/W (R) = lim
←−

n

FmΩ·
X̃n/Wn(R)

NmWΩ·X/R = lim
←−

n

NmWnΩ
·
X/R

We show the following weak form of the conjecture (Corollary 4.7):

Theorem: Assume that R is reduced and that m < p. Then there is a
natural isomorphism in the derived category of W (R)-modules on Xzar:

NmWΩ·X/R
∼= FmΩ·X/W (R)

Moreover we can show in support of our conjecture, that the complexes
NmWnΩ

·
X/R and FmΩ·

X̃n/Wn(R)
are always locally quasiisomorphic on Xzar.

The last theorem is closely related to strong divisibility in the sense of
[Fo] 1.3: Assume the assumptions (∗) and (∗∗) are satisfied. By the last
theorem the splitting of the Hodge filtration of the formal scheme X defines
a normal decomposition:

Hm(X,F jΩ·X/W (R)) = IRL0 ⊕ . . .⊕ IRLj−1 ⊕ Lj ⊕ . . .⊕ Ld

It is obvious from Definition 2.2 that the Frobenius Fj : Hm(X,N jWΩ·X/R)→
Hm(X,WΩ·X/R) is bijective if j is bigger than the dimension. Therefore
F0 ⊕ F1 ⊕ . . .⊕ Fd: induces a bijection:

IRL0 ⊕ . . .⊕ IRLd → L0 ⊕ . . .⊕ Ld

This is what strong divisiblility asserts.
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2 The Category of Displays

Let R be a ring, and let W (R) be the ring of Witt vectors. We set IR =
VW (R). If no confusion is possible we sometimes use the abbreviation I =
IR. Let Φ : M → N a Frobenius-linear homomorphism of W (R)-modules.
We define a Frobenius-linear homomorphism Φ̃:

Φ̃ : IR ⊗W (R) M → N
V ξ ⊗m 7→ ξΦ(m)

(4)

Definition 2.1 A predisplay over R consists of the following data:

1) A chain of morphisms of W (R)-modules

. . .→ Pi+1
ιi→ Pi → . . .→ P1

ι0→ P0.

2) For each i ≥ 0 a W (R)-linear map

αi : IR ⊗W (R) Pi → Pi+1.

3) For each i ≥ 0 a Frobenius linear map

Fi : Pi → P0.

The following axioms should be fulfilled

(D1) For i ≥ 1 the diagram below is commutative and its diagonal
IR ⊗ Pi → Pi is the multiplication.

IR ⊗ Pi
αi−−−→ Pi+1

IR⊗ιi−1

y ιi

y
IR ⊗ Pi−1

αi−1−−−→ Pi

For i = 0 the following map is the multiplication:

IR ⊗ P0
α0−−−→ P1

ι0−−−→ P0

(D2) Fi+1αi = F̃i : IR ⊗ Pi.→ P0
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We will denote a predisplay as follows:

P = (Pi, ιi, αi, Fi), i ∈ Z≥0.

Let X be a smooth and proper scheme over a scheme S. Then we obtain
a predisplay stucture on the crystalline cohomology through the Nygaard
complexes NmWnΩX/S which are built from the de Rham-Witt complex as
follows:

(Wn−1Ω
0
X/S)[F ]

d→ . . .
d→ (Wn−1Ω

m−1
X/S )[F ]

dV→ WnΩ
m
X/S

d→ WnΩ
m+1
X/S . . .

This is considered as a complex of Wn(OS)-modules. The index [F ] means
that we consider this term as a Wn(OS)-module via restriction of scalars
F : Wn(OS)→ Wn−1(OS).

Let IS,n = VWn−1(OS) ⊂ Wn(OS) be the sheaf of ideals. We define three
sets of maps:

α̂m : IS,n ⊗Wn(OS) NmWnΩ
·
X/S → Nm+1WnΩ

·
X/S

ι̂m : Nm+1WnΩ
·
X/S → NmWnΩ

·
X/S

F̂m : NmWnΩ
·
X/S → Wn−1Ω

·
X/S

(5)

These maps are given in this order by the maps between the following verti-
cally written procomplexes (the index n is omitted):

IS ⊗ (WΩ0
X/S)[F ] −−−→ (WΩ0

X/S)[F ]
p−−−→ (WΩ0

X/S)[F ]
id−−−→ WΩ0

X/S

IS⊗d
y d

y d

y d

y
. . . . . . . . . . . .

IS ⊗ (WΩm−1
X/S )[F ] −−−→ (WΩm−1

X/S )[F ]
p−−−→ (WΩm−1

X/S )[F ]
id−−−→ WΩm−1

X/S

id⊗dV
y d

y dV

y d

y
IS ⊗ (WΩm

X/S)
F̃−−−→ (WΩm

X/S)[F ]
V−−−→ WΩm

X/S

F−−−→ WΩm
X/S

id⊗d
y dV

y d

y d

y
IS ⊗WΩm+1

X/S

mult−−−→ WΩm+1
X/S

id−−−→ WΩm+1
X/S

pF−−−→ WΩm+1
X/S

id⊗d
y d

y d

y d

y
IS ⊗WΩm+2

X/S

mult−−−→ WΩm+2
X/S

id−−−→ WΩm+2
X/S

p2F−−−→ WΩm+2
X/S

. . . . . . . . . . . .
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The first unlabeled arrows on the left hand side denote the maps V ξ ⊗ ω 7→
ξω, where the product is taken in WΩi

X/S (without restriction of scalars).

Definition 2.2 Let S = SpecR be an affine scheme. Let X/S be a smooth
and proper scheme. Then we associate a predisplay. We set:

Pi = Hd(X,N iWΩX/S)

The predisplay structure on the Pi is easily obtained by taking the cohomology
of the maps (5).

Here we write NmWΩ·X/R = lim
←−

n

NmWnΩ
·
X/R. The Pi coincide with the

cohomology of R lim
←−

n

RΓ(X,N iWnΩX/S) by the proof of [LZ] Prop. 1.13

(compare [BO] Appendix).

Remark: Let S = Spec k be the spectrum of a perfect field. Then I(k) is
isomorphic to W (k) as W (k)-module. The maps of complexes which define
α̂i and ι̂i are in this case the maps F̃ and Ṽ used by Kato in his definition
of the F -gauges GHd(X/S).

Let A/S be an abelian scheme. Then the predisplay structure on the crys-
talline cohomology H1(A/W (R),OA/W (R)) is in fact a 3n-display structure
in the sense of [Z2]. We will introduce additional properties of predisplay
structures which arise in the crystalline cohomology of smooth and proper
varieties.

Let P be a predisplay. Then we have a commutative diagram:

Pi
Fi−−−→ P0

ιi

x p

x
Pi+1

Fi+1−−−→ P0

(6)

Indeed, let y ∈ Pi+1. Then we obtain from (D1) that

αi(
V 1⊗ ιi(y)) = V 1y

If we apply Fi+1 to the last equation and use (D2), we obtain:

Fi(ιi(y)) = pFi+1(y)
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Definition 2.3 A predisplay P = (Pi, ιi, αi, Fi) is called separated if the
map of Pi+1 to the fibre product induced by the commutative diagram (6) is
injective.

Remark: Predisplays form obviously an abelian category. To each predis-
play P we can associate a separated predisplay Psep and a canonical surjec-
tion P → Psep. This is defined inductively: P sep

0 = P0 and P sep
i+1 is the image

of Pi+1 in the fibre product of:

P sep
i

F sep
i−−−→ P 0 p←−−− P 0

The functor P 7→ Psep to the category of separated displays is left adjoint to
the forgetful functor, but it is not exact.

It is not difficult to prove that a separated predisplay has the following
property: Consider the iteration of the maps α:

I⊗k ⊗ Pi
αi−−−→ I⊗k−1 ⊗ Pi+1

αi+1−−−→ . . .
αi+k−1−−−−→ Pi+k (7)

Here the maps α pick up the last factor of I⊗. The following map is called
the “Verjüngung”:

ν(k) : I⊗k → I
V ξ1 ⊗ . . .⊗ V ξk 7→ V (ξ1 · . . . · ξk)

(8)

For a separated display the iteration (7) factors through the Verjüngung:

I⊗k ⊗ Pi
ν(k)

−−−→ I ⊗ Pi −−−→ Pi+k

The last arrow will be called α
(k)
i . In particular this shows that the iteration

(7) is independent of the factors we picked up, when forming αj.
For a separated display the data αi, i ≥ 0 are uniquely determined by

the remaining data. This is seen by the following commutative diagram:

11



I ⊗ Pi

Pi+1

Pi P0

P0

Fi

ιi

F̃i

p

Fi+1

αi

(∗)

�
�
�
�
�
�
�
�
��

�
�
��

�
���

���
��*

6 6

-

-

For a predisplay P the cokernel Ei+1 := Coker αi is annihilated by I. It
is therefore an R-module.

Definition 2.4 We say that a predisplay is of degree d (or a d-predisplay),
if the maps αi are surjective for i ≥ d.

A separated predisplay of degree d is already uniquely determined by the
data:

P0, . . . Pd, ι0, . . . ιd−1, F0, . . . , Fd, α0, . . . , αd−1 (9)

For this consider the diagram (∗) above for i = d. The data already given
determine a map of I⊗Pd to the fibre product. This map is αd and the image
is Pd+1. Thus inductively all data of the display are uniquely determined.

Conversely assume that we have data (9) which satisfy all predisplay
axioms reasonable for these data. Then we define Pd+1 by the diagram (∗)
above. We obtain also the maps αd, ιd, and Fd+1. The axioms for the
extended data are trivially satisfied, except for the requirement that

I ⊗ Pd+1 → I ⊗ Pd → Pd+1

is the multiplication. But this follows easily by composing the diagram (∗)
for i = d, with the arrow id⊗ιd : I ⊗ Pi+1 → I ⊗ Pi. Inductively we see that
a set of data (9) satisfying the predisplay axioms may be extended uniquely
to a predisplay of degree d.
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We may define the twist of a predisplay. Let

P = (Pi, ιi, αi, Fi)

be a predisplay. Then we define its Tate-twist

P(1) = (P ′i , ι
′
i, α
′
i, F

′
i ) (10)

as follows: For i ≥ 1 we set P ′i = Pi−1, ι
′
i = ιi−1, α

′
i = αi−1, F

′
i = Fi−1. We set

P ′0 = P0 = P ′1, F
′
0 = pF0, ι

′
0 = idP0 . Finally α′0 : I ⊗ P0 → P0 is defined to be

the multiplication. If we repeat this n-times we write P(n).

We define a predisplay U = (Pi, ιi, αi, Fi) called the unit display as follows:
P0 = W (R), Pi = I for i ≥ 1. The chain of the maps ι is as follows:

. . . I
p→ I . . .

p→ I → W (R), (11)

where the last map ι0 is the natural inclusion.
The maps Fi : I = Pi → W (R) for i ≥ 1 coincide with the map

V −1 : I → W (R), V ξ 7→ ξ.

The map F0 is the Frobenius on W (R). The map α0 : I ⊗W (R)→ I is the
multiplication. The maps αi : I ⊗ I → I are the Verjüngung ν(2). Since the
“Verjüngung” is surjective the unit display has degree zero.

A 3n-display (P,Q, F, V −1) as defined in [Z2] gives naturally rise to data
of type (9) with P0 = P , P1 = Q, F0 = F , F1 = V −1 and therefore extends
naturally to a predisplay of degree 1 as we explained above. We will make
this explicit later on.

Let R be a reduced ring. Then the multiplication by p is injective on
W (R). LetM be a projectiveW (R)-module, and F : M →M be a Frobenius
linear map. Then we set:

Pi = {x ∈M | F (x) ∈ piM}

We obtain maps
Fi = (1/pi)F : Pi → P0 = M

For ιi we take the natural inclusion Pi+1 → Pi. For αi we take the maps
I ⊗ Pi → IPi ⊂ Pi+1 induced by multiplication. The data (Pi, ιi, αi, Fi)
constructed in this way are a separated predisplay.

The predisplays we are interested in arise from a construction which we
explain now.
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Definition 2.5 The following set of data we will call standard data for a
display of degree d.

A sequence L0, . . . , Ld of finitely generated projective W (R)-modules.

A sequence of Frobenius linear maps for i = 0, . . . d:

Φi : Li → L0 ⊕ . . .⊕ Ld

We require that the map ⊕iΦi is a Frobenius linear automorphism of L0 ⊕
. . .⊕ Ld
From these data we obtain a predisplay in the following manner: We set:

Pi = (I ⊗ L0)⊕ . . .⊕ (I ⊗ Li−1)⊕ Li ⊕ . . .⊕ Ld
for i ∈ Z, i ≥ 0.

We note that Pi = Pd+1 for i > d. But these identifications are not
part of the predisplay structure we are going to define. They depend on the
standard data!

We define “divided” Frobenius maps:

Fi : Pi → P0

The restriction of Fi to I⊗Lk for k < i is Φ̃k, and to Li+j for j ≥ 0 is pjΦi+j.

The map ιi : Pi+1 → Pi is given by the following diagram:

(I ⊗ L0)⊕ . . .⊕(I ⊗ Li−1)⊕(I ⊗ Li)⊕Li+1⊕ . . .⊕Ld
p

y p

y mult

y id

y id

y
(I ⊗ L0)⊕ . . .⊕(I ⊗ Li−1)⊕ Li ⊕Li+1⊕ . . .⊕Ld

(12)

The map αi : I ⊗ Pi → Pi+1 is given by the following diagram:

I ⊗ (I ⊗ L0)⊕ . . .⊕I ⊗ (I ⊗ Li−1)⊕ I ⊗ Li ⊕I ⊗ Li+1⊕ . . .⊕I ⊗ Ld
ν

y ν

y id

y mult

y mult

y
(I ⊗ L0) ⊕ . . .⊕ (I ⊗ Li−1) ⊕(I ⊗ Li)⊕ Li+1 ⊕ . . .⊕ Ld

(13)

Here ν = ν(2) is the Verjüngung. We leave the verification that P =
(Pi, ιi, αi, Fi) is a separated predisplay to the reader.

14



Definition 2.6 A predisplay is called a display if it is isomorphic to a pre-
display associated to standard data.

Remark: Let us assume that pR = 0. There is the notion of an F -zip
by Moonen and Wedhorn. The relation to displays is as follows. Let P =
(Pi, ιi, αi, Fi) be a display over R. We define an F -zip structure on M =
P0/IRP0 by the following two filtrations. Let Ci as the image of Pi in P0/IRP0

given by the composite of the maps ιk. This gives the decreasing “Hodge
filtration”:

. . . ⊂ Cd ⊂ Cd−1 ⊂ . . . ⊂ C1 ⊂ C0 = M.

We set Di = W (R)FiPi + IRP0/IRP0 and obtain an increasing filtration,
called the “conjugate filtration”:

0 = D−1 ⊂ D0 ⊂ D1 ⊂ D2 ⊂ . . . ⊂ Dd ⊂ . . . ⊂M.

The morphisms Fi for i ≥ 0 induce Frobenius linear morphisms:

Fi : Ci/Ci+1 → Di/Di−1 (14)

These are Frobenius linear isomorphisms of R-modules. Indeed, if we choose
a normal decomposition {Li} we obtain identification:

Ci/Ci+1 ∼= Li/IRLi and Di/Di−1
∼= W (R)FiLi/IRW (R)FiLi

The two filtrations C · and D· together with the operators (14) form an F -zip
[MW] Def. 1.5.

Let P be the display associated to the standard data (Li,Φi) as above.
Let Q = (Qi, ιi, αi, Fi) be a predisplay. Assume we are given homomorphisms
ρi : Li → Qi. Then we define maps τi:

Pi = (I ⊗ L0)⊕ . . .⊕ (I ⊗ Li−1)⊕ Li ⊕ . . .⊕ Ld −→ Qi

On the summand (I ⊗ Li−k) the map τi is the composite:

I ⊗ Li−k
id⊗ρi−k−−−−−→ I ⊗Qi−k

α(k)

−−−→ Qk

On the summand Li+j the map τi is the comoposite:

Li+j
ρi+j−−−→ Qi+j

ι(j)−−−→ Qi,

where the last arrow is a compositions of ι′s.
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Proposition 2.7 The maps τi define a homomorphism of predisplays P →
Q if and only if the following diagrams are commutative:

Li
ρi−−−→ Qi

Φi

y Fi

y
P0

τ0−−−→ Q0

We omit the verification.

If P = (P,Q, F, V −1) is 3n-display in the sense of [Z2], then any normal
decomposition P = L0 ⊕ L1, Q = IL0 ⊕ L1 defines standard data, which
determine this display.

We will now define the tensor product of displays: Assume that P =
(Pi, ιi, αi, Fi) and P ′ = (P ′i , ι

′
i, α
′
i, F

′
i ) are displays over R.

A tensor product T = (Ti,
◦
ιi,
◦
αi,

◦
Fi) may be constructed as follows. We

choose normal decompositions

P0 = ⊕
n≥0

Ln, P ′0 = ⊕
n≥0

L′n.

More precisely this means, that we fix isomorphisms of P resp. P ′ with
standard displays. We obtain:

Pi = I ⊗ L0 ⊕ · · · ⊕ I ⊗ Li−1 ⊕ Li ⊕ . . .

We denote the restriction of Fi : Pi −→ P0 to the direct summand Li by Φi.

We obtain data for a standard display Kl,
◦
Φl, l ≥ 0, if we set

Kl = ⊕
n+m=l

(Ln ⊗ L′m).

Then ⊕lKl = P0 ⊗ P ′0, and we define Frobenius linear maps

◦
Φl : Kl −→ P0 ⊗ P ′0,

by
◦
Φl =

∑
n+m=l

Φn ⊗ Φ′m

From the standard data Kl,
◦
Φl we obtain a display

16



T = (Ti,
◦
ιi,
◦
αi,

◦
Fi) (15)

We will show that T is up to canonical isomorphism independent of the
normal decompositions of P resp. P ′.

In order to do this we define bilinear forms of displays. Let T be an
arbitrary predisplay. A bilinear form

λ : P × P ′ −→ T .

consists of the following data.
λ is a sequence of maps of W (R)-modules

λij : Pi ⊗ P ′j −→ Ti+j.

We require that the following diagrams are commutative:

Pi ⊗ P ′j −−−→ Ti+j

Fi⊗F ′
j

y y ◦
F i+j

P0 ⊗ P ′0 −−−→
id

T0

Pi ⊗ P ′j −−−→ Ti+j

ι⊗id

x ◦
ι

x
Pi+1 ⊗ P ′j −−−→ Ti+j+1

Pi ⊗ P ′j −−−→ Ti+j

id⊗ι′
x x◦

ι

Pi ⊗ P ′j+1 −−−→ Ti+j+1

IR ⊗ Pi ⊗ P ′j −−−→ IR ⊗ Ti+j
αi⊗id

y y◦
αi+j

Pi+1 ⊗ P ′j −−−→ Ti+j+1

IR ⊗ Pi ⊗ P ′j −−−→ I ⊗ Ti+j
id⊗α′j

y y◦
αi+j

Pi ⊗ P ′j+1 −−−→ Ti+j+1.

Remark: We will consider also the maps

Pi ⊗ Pj −→ Tk, for i+ j ≥ k,

which are the compositions of λij and Ti+j −→ Tk, the iteration of ι.
If i+ j > k we obtain a commutative diagram:
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Pi−1 ⊗ Pj −→ Tk
ι⊗ id ↑ ↑

Pi ⊗ Pj −→ Tk+1.
(16)

We will denote the set of bilinear forms of displays in this sense by

Bil(P × P ′, T ).

We return to the display T given by the standard data Kl,
◦
Φl. We will now

define maps λij : Pi ⊗ P ′j −→ Ti+j. For this we write Pi ⊗ P ′j according to
the normal decompositions:

Pi ⊗ P ′j = (
⊕
n<i
m<j

I ⊗ I ⊗ Ln ⊗ L′m)⊕ (
⊕
n<i
m≥j

m+n<i+j

I ⊗ Ln ⊗ L′m)

⊕(
⊕
n≥i
m<j

n+m<i+j

(I ⊗ Ln ⊗ L′m))⊕ (
⊕
n<i
m≥j

n+m≥i+j

I ⊗ Ln ⊗ L′m)

⊕(
⊕
m≥i
m≤j

n+m≥i+j

(I ⊗ Ln ⊗ L′m)⊕ (
⊕
n≥i
m≥j

Ln ⊗ L′m).

(17)

We have six direct sums in brackets, which we denote by Zi, i = 1, . . . , 6 in
the order as above.

By definition Ti+j has the decomposition

Ti+j = (
⊕

n+m<i+j

I ⊗ Ln ⊗ L′m)⊕ (
⊕

n+m≥i+j

Ln ⊗ L′m). (18)

We define λij : Pi⊗P ′j −→ Ti+j as a bigraded map with respect to n,m ≥ 0,
which is on the homogeneous components as follows.

Case Z1: n < i,m < j

I ⊗ I ⊗ Ln ⊗ L′m −→ I ⊗ Ln ⊗ L′m
V ξ ⊗ V η ⊗ ln ⊗ l′m 7−→ V (ξη)⊗ ln ⊗ l′m
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Case Z2: n < i, m ≥ j, n+m < i+ j

pm−j id : I ⊗ Ln ⊗ L′m −→ I ⊗ Ln ⊗ L′m

Case Z3: n ≥ i, m < j, n+m < i+ j

pn−i id : I ⊗ Ln ⊗ L′m −→ I ⊗ Ln ⊗ L′m

Case Z4: n < i, m ≥ j, n+m ≥ i+ j

pi−n−1 id : I ⊗ Ln ⊗ L′m −→ I ⊗ Ln ⊗ L′m
Case Z5: n ≥ i, m < j, n+m ≥ i+ j

pj−m−1 id : I ⊗ Ln ⊗ L′m −→ I ⊗ Ln ⊗ L′m

Case Z6: n ≥ i, m ≥ j

id : Ln ⊗ L′m −→ Ln ⊗ L′m.

Proposition 2.8 The homomorphism λij : Pi⊗P ′j −→ Ti+j defined by Z1−
Z6 above define a bilinear form of displays.

Proof: We omit the tedious but simple verification.

Lemma 2.9 The homomorphism

⊕i+j=kPi ⊗ P ′j −→ Tk

given by the sum of λij is surjective.

Proof: We have to show that all summand of (18) are in the image. Consider
the submodule Ln⊗L′m ⊂ Tk where n+m ≥ k. We set i = n and j = k− i =
k − n ≤ m. By Z6 this submodule is in the image of Pi ⊗ P ′j −→ Tk. Next
we consider a submodule I ⊗Ln⊗L′m ⊂ Tk, where n+m < k. We set i = n
and j = k− i = k−n > m. Thus we are in the case Z3 with factor pn−i = 1.
Again the submodule is in the image of Pi ⊗ P ′j −→ Tk. Q.E.D.

Proposition 2.10 Let P and P ′ be displays. Let T = (Ti,
◦
ιi,
◦
αi,

◦
Fi) be the

display (15). Let Q be a separated predisplay. There is a canonical isomor-
phism of abelian groups

Bil(P × P ′,Q) ∼= Hom(T ,Q).
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Proof: Assume that we are given a bilinear form. We set T = P ⊗ P ′.
The maps Ti −→ Qi are constructed inductively. For i = 0 this map is λ00,
where λ denotes the bilinear form. For the induction step to i+1 we consider
the diagram

Ti −−−→ Qi
Fi−−−→ Q0x p

x
Ti+1

Fi+1−−−→ T0 −−−→ Q0

(19)

We claim that (19) is commutative. By Lemma 2.9 it suffices to show the
commutativity if we compose the diagram with the maps Ps ⊗ P ′r −→ Ti+1,
for s+r = i+1. This amounts to the commutativity of the following diagram

Pr ⊗ P ′s

Qi+1

Qi Q0

Q0

Fi

ι

Fr ⊗ Fs

p

�
�
�
�
�
�
�
�
��

�
�
��

���
���

���*

6 6

-

-

But the diagram is commutative by the definition of a bilinear form. Now
the commutativity of (19) gives a map: Ti+1 −→ Qi ×Fi,Q0,p Q0. It is clear
from the diagram above and Lemma 2.9 that this map factors through Qi+1.
Q.E.D.

Corollary 2.11 The display (15)

T = (Ti,
◦
ιi,
◦
αi,

◦
F i)

does not depend up to canonical isomorphism on the normal decompositions
of P and P ′. We write

T = P ⊗ P ′

This is clear because of the universal property of T proved in the last propo-
sition. Q.E.D.
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Remark: Assume that P and P ′ are given by standard data (Li,Φi) and
(L′i,Φ

′
i). Assume we are given bilinear forms of W (R)-modules:

βij : Li ⊗ L′j → Qi+j.

Composing this with the iterration of ι, Qi+j → Q0, we obtain a bilinear
form

P0 ⊗ P ′0 = (⊕iLi)⊗ (⊕jL′j)→ Q0

Let us assume that the following diagrams are commutative:

Li ⊗ L′j
Φi⊗Φ′

j−−−−→ P0 ⊗ P ′0
βij

y y
Qi+j

Fi+j−−−→ Q0

Then the βij extend uniquely to a bilinear form

P × P ′ → Q

In [Z2] Definition 18 the notion of a bilinear form of 1-displays was defined.
It is obvious from the formulas there, that a bilinear form on two 1-displays
in the sense of loc.cit. is the same as a bilinear form

P × P ′ → U(1),

where the right hand side is the twisted unit display (11).
Starting from the normal decomposition of a display P it is easy to write

down the standard data of a candidate for the exterior power
∧k P . It comes

with an alternating map ⊗kP →
∧k P . One proves as above that

∧k P has
the universal property.

We will now define the base change for displays. Let R −→ S be a
homomorphism of rings. Let P = (Pi, ιi, αi, Fi) be a display over R. We will
define a display PS = (Qi, ιi, αi, Fi) over S, with the following properties.
There are W (R)-linear maps

Pi −→ Qi,

such that the following diagrams are commutative
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Pi −−−→ Qi

ιi

x xιi

Pi+1 −−−→ Qi+1

Qi
Fi−−−→ Q0x x

Pi
Fi−−−→ P0

IR ⊗Qi
αi−−−→ Qi+1x x

IR ⊗ Pi
αi−−−→ Pi+1

(20)

Proposition 2.12 There is a unique display PS as above which enjoys the
following universal property.

If T = (Ti, ιi, αi, Fi) is an arbitrary display over S and

Pi −→ Ti

is a set of W (R)-linear morphisms, such that the diagrams above, with Qi

replaced by Ti are commutative, then there is a unique morphism of displays
over S

PS −→ T ,

such that the following diagrams are commutative:

Qi
// Ti

Pi

``@@@@@@@

??�������

The display PS may be constructed using a normal decomposition of P .
Let P0 = ⊕Li be such a decomposition, and let Φi : Li −→ P0 be the
maps induced by Fi. Then Li,Φi are standard data for a display over R.
We can define PS to be the display over S associated to the standard data
W (S)⊗W (R) Li, with the Frobenius linear maps F ⊗W (R) Φi = Φ′i.

We will now see that this definition is up to canonical isomorphism inde-
pendent of the normal decomposition chosen. It suffices to see that PS has
the universal property Proposition 2.12.

The obvious maps Pi −→ Qi make the diagrams (20) commutative.

Lemma 2.13 The following W (S)-module homomorphism is surjective

W (S)⊗W (R) Pi ⊕ IS ⊗W (S) Qi−1 −→ Qi.
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Proof: This is clear from the definitions.
Assume that Pi −→ Ti is a set of maps as in Proposition 2.12. We

construct inductively maps Qi −→ Ti, which are compatible with Fi, ιi, αi.
Therefore we obtain the desired morphism of displays PS −→ T . Since
P0 −→ T0 is W (R)-linear, we obtain a map

Q0 = W (S)⊗W (R) P0 −→ T0.

Assume we have already constructed W (S)-module homomorphisms

Qj −→ Tj,

which are compatible with F, ι and α for j ≤ i.
Consider the diagram

Ti
Fi−−−→ T0x xp

Qi+1 −−−→ T0.

(21)

The arrow Qi+1 −→ Ti is the composition Qi+1
ι−→ Qi −→ Ti and the arrow

Qi+1 −→ T0 is the composition Qi+1
Fi+1−→ Q0 −→ T0. By Lemma 2.13 we

deduce that (21) is commutative. Thus it induces a map

Qi+1 −→ Ti ×Fi,T0,p T0. (22)

It suffices to show that the last map factors through Ti+1. This is seen easily
by composing (22) with the morphism of the lemma.

The uniqueness of the constructed morphism PS −→ T is obvious. This
proves the proposition. Q.E.D.

3 Degeneracy of some Spectral Sequences

Proposition 3.1 Let π : X → Y be a separated and quasicompact mor-
phism. Let K · be a complex of of flat π−1OY -modules on X which is bounded
above. We assume that each Ki is a quasicoherent OX-module. Then for
each m the hypercohomology groups Rmπ∗K

· are quasicoherent OY -modules.
If M is a quasicoherent OY -module there is a canonical isomorphism

Rπ∗(K · ⊗L
π−1(OY ) π

−1M) ∼= Rπ∗K · ⊗L
OY

M (23)
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Proof: We may assume that Y is affine. Let U = {Ui} be a finite affine
covering of X. Let F · = C ·(U , K ·) be the Cech complex. It is the complex
of global sections of a sheafified Cech complex on Y : F · = C·(U , K ·). The
sheaves in this complex are acyclic with respect to π∗ because the cohomology
of an affine scheme vanishes. One concludes [EGA III] Prop. 1.4.10 that
Rπ∗Km are quasicoherent OY -modules namely the sheaves associated to the
cohomology of F ·. Since the modules and sheaves involved are flat with
respect to Y the projection formula reduces to the trivial equation:

C ·(U , K · ⊗OY
M) ∼= F · ⊗Γ(Y,OY ) Γ(Y,M)

Q.E.D.
Let π : X → S be a proper morphism of schemes, such that S is affine. In

this section we consider a bounded complex K · of flat π−1(OS)-modules. We
assume that each Ki is a quasicoherent OX-module. Moreover we assume
that the following conditions are satisfied:

(i) Rjπ∗K
i is a locally free OS-module of finite type for any i and j.

(ii) the spectral sequence of hypercohomology degenerates:

Eij
1 = Rjπ∗K

i ⇒ Rnπ∗K
·

One can easily see that with these assumptions the simple complex as-
sociated to C ·(U , K ·) as above is quasiisomorphic to the direct sum of its
cohomology groups. It follows that Rmπ∗K

· commutes with arbitrary base
change for any m. For the same reason the cohomology groups Rjπ∗K

i com-
mute with arbitrary base change.

The degeneration of this spectral sequence may be reformulated as fol-
lows. Let us denote the by σ≥mK · and σ<mK · the truncated complexes with
respect to the naive truncation. Then the cohomology sequence of

0→ σ≥mK · → K · → σ<mK · → 0,

splits into short exact sequences:

0→ Rqπ∗(σ
≥mK ·)→ Rqπ∗K

· → Rqπ∗(σ
<mK ·)→ 0. (24)

Indeed, take a Cartan-Eilenberg resolution K · → I · by injective sheaves of
abelian groups. Let L· = π∗I

·. This complex comes with a filtration FilmL·
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which is induced by the naive filtration of K. The spectral sequence in
question is the spectral sequence of this filtered complex. The condition (24)
is equivalent to the requirement that the maps

Hq(Film+1L·)→ Hq(FilmL·)

are injective for each q and m, as one may see easily from the exact coho-
mology sequence. This injectivity may be restated as follows:

d(FilmLq−1) ∩ Film+1Lq = d(Film+1Lq−1).

We conclude by [De3] Prop. 1.3.2.
The observation shows that the spectral sequences of hypercohomology

of the truncated complexes σ≥mK · and σ<mK · degenerate too.

Proposition 3.2 Let π : X → S and K · be as in Proposition 3.1. Let
. . . → M0 → M1 → M2 → . . . be a sequence of OS-modules (not necessarily
a complex). We consider the complex

L· : . . .→ K0 ⊗OS
M0 → K1 ⊗OS

M1 → K2 ⊗M2 → . . .

Then the spectral sequence

Eij
1 : Rjπ∗L

i ⇒ Rp+qπ∗L
·

degenerates.

Proof: We assume without loss of generality that Ki = 0 for i < 0. We
say that a sequence M0 → M1 → . . . is m-stationary if it is isomorphic to a
sequence of the form:

M0 → . . .→Mm−1 →Mm = Mm = . . .

Because K · is bounded it suffices to show the theorem for m-stationary se-
quences. We argue by induction. For m = 0 this is clear from the projection
formula (23). Assume that the proposition holds for r-stationary sequences
with r < m. For an m-stationary sequence we consider the following mor-
phism of complexes:

L· → I · (25)
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K0 ⊗M0 . . . Km−2 ⊗Mm−2 −−−→ Km−1 ⊗Mm−1 −−−→ Km ⊗Mm . . .

id

y id

y y id

y
K0 ⊗M0 . . . Km−2 ⊗Mm−2 −−−→ Km−1 ⊗Mm −−−→ Km ⊗Mm . . .

If we apply the induction assumption to I · we obtain an exact sequence for
each q and the given m.

0→ Rqπ∗(σ
≥mI ·)→ Rqπ∗I

· → Rqπ∗(σ
<mI ·)→ 0. (26)

The morphism of complexes (25) induces a commutative diagram:

Rqπ∗σ
≥mL· −−−→ Rqπ∗L

·

id

y y
Rqπ∗σ

≥mI · −−−→ Rqπ∗I
·

By our induction assumption (26) it follows that the upper horizontal arrow
is injective.

We have to prove that the following sequences are exact for arbitrary
integers q and n.

0→ Rqπ∗(σ
≥nL·)→ Rqπ∗L

· → Rqπ∗(σ
<nL·)→ 0.

We have seen this for n = m. For n > m we have to consider the maps.

Rqπ∗(σ
≥nL·)→ Rqπ∗(σ

≥mL·)→ Rqπ∗L
·

It suffices to show that the first arrow is injective. But this follows from the
beginning of our induction.

Finally we consider the case n < m. By the cohomology sequence it is
sufficient to see that the map

Rqπ∗L
· → Rqπ∗(σ

<nL·)

is surjective. But this map factors as:

Rqπ∗L
· → Rqπ∗(σ

<mL·)→ Rqπ∗(σ
<nL·)

We need to show that the second map is surjective. But the complex σ<mL· is
the tensor product of σ<mK · with an (m−1)-stationary sequence of modules.
Therefore the map is surjective by induction assumption and we are done.
Q.E.D.
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Proposition 3.3 Let T : C → D be a left exact functor of abelian categories
such that C has enough injective objects. Let K · be a complex in C which is
bounded below. We assume that the spectral sequences in hypercohomolgy

Eij
1 = RjTKi ⇒ Ri+jTK ·

degenerates. Let f · : K · → K · be a homomorphism of complexes. Then
for each integer m the corresponding spectral sequence of hypercohomology
associated to the complex

K(m, f) :
d→ Km−2 d→ Km−1 fmd→ Km d→ Km+1 → . . .

degenerates.

We omit the proof because it uses exactly the same arguments as above.

4 Filtered Comparison Theorems for the de

Rham-Witt complex

Let R be a ring such that p is nilpotent in R. We consider a smooth scheme
X over R. We will fix a natural number n. Assume we are given a smooth
lifting X̃/Wn(R). If X̃ admits a Witt-lift ([LZ] Def.3.3) OX̃ −→ Wn(OX) we
obtain a morphism of complexes

Ω·
X̃/Wn(R)

−→ Ω·Wn(X)/Wn(R) −→ WnΩ
·
X/R. (27)

It is shown in [LZ] 3.2 and 3.3, that even if X̃ admits no Witt lift, there is a
natural isomorphism in the derived category D+(Xzar,Wn(R)) of sheaves of
Wn(R)-modules on X:

Ω·
X̃/Wn(R)

−→ WnΩ
·
X/R.

The aim of this section is to prove a filtered version of this isomorphism.
For typographical reasons we use the abbreviations:

Ω̃·n = Ω·
X̃/Wn(R)

, WnΩ
· = WnΩ

·
X/R.

Let us denote by FmΩ·
X̃/W (R)

the complex

IR,n ⊗Wn(R) Ω̃0
n

pd→ . . .
pd→ IR,n ⊗Wn(R) Ω̃m−1

n
d→ Ω̃m

n
d→ Ω̃m+1

n → . . . . (28)

27



Conjecture 4.1 There is a canonical isomorphism in the derived category
D+(Xzar,Wn(R)) between the Nygaard complex and the complex (28):

NmWnΩ
·
X/R
∼= FmΩ·

X̃/Wn(R)

This question is closely related to the work of Deligne and Illusie [DI]. We
will now see that the complexes in question are always locally isomorphic.

Let us assume we are given a Witt-lift. It induces a map

κ : Ω̃·n −→ WnΩ
·.

By composition with the Frobenius F : WnΩ
· → Wn−1Ω

·
[F ] we obtain a map

F̃ :IR,n ⊗Wn(R) Ω̃·n −→ Wn−1Ω[F ].
V ξ ⊗ ω 7−→ ξ Fκ(ω)

Using F̃ we obtain a morphism of complexes of FmΩ̃· −→ NmWnΩ:

IR ⊗ Ω̃0
n

pd−−−→ . . .
pd−−−→ IR ⊗ Ω̃m−1

n
d−−−→ Ω̃m

n
d−−−→ . . .

F̃

y F̃

y y
Wn−1Ω

0
[F ]

d−−−→ . . .
d−−−→ Wn−1Ω

m−1
[F ]

dV−−−→ WnΩ
m d−−−→ . . .

(29)

Let us consider the morphism (29) in the following simple situation:
Let A = R[T1, . . . , Td] and X = SpecA. We set Ã = Wn(R)[T1, . . . Td]

and X̃ = Spec Ã. We consider the Witt-lift:

Ã −→ Wn(A)

Ti −→ [Ti].
(30)

It is the unique map of Wn(R)-algebras, which maps Ti to its Teichmüller
representative in Wn(A).

Proposition 4.2 For the Witt-lift (30) the induced morphism

FmΩ·
X̃/Wn(R)

−→ NmWnΩ
·
X/R (31)

is for any m ≥ 0 a quasiisomorphism.
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Proof: We use the Wn(R)-basis of Ωl
Ã/Wn(R)

given by p-basic differential

forms. For each weight function k : [1, d]→ Z≥0 we fix an order on the set

Supp k = {i1, . . . , ir}, such that

ordpki1 ≤ · · · ≤ ordpkir .

For any ascending partition of Supp k into disjoint intervalls

P : Supp k = I0 t I1 t · · · t Il,

such that It 6= ∅ for 1 ≤ t ≤ l, we have the p-basic differential

ẽ(k,P) = T kI0

(
p−ordpkI1dT kI1

)
· · · · ·

(
p−ordpkIldT Il

)
. (32)

The order on Supp k is fixed once for all and therefore not indicated in the
notation (compare [LZ] 2.1).

In [LZ] 2.2 we have defined the basic Witt differentials

en(ξ, k,P) ∈ WnΩ
l
A/R.

They are defined for functions k : [1, d]→ Z≥0[
1
p
], and ξ ∈ V u(k)Wn−u(k)(R),

where u(k) is the minimal nonnegative integer, such that the weight pu(k)k
takes integral values.

In our case the map (27) is the unique Wn(R)-linear map given by

Ωl
Ã/Wn(R)

−→ WnΩ
l
A/R.

ẽ(k,P) 7−→ en(1, k,P).
(33)

The map F̃ looks as follows

F̃ :IR ⊗Wn(R) Ωl
Ã/Wn(R)

−→ Wn−1Ω
l
A/R,[F ]

V ξ ⊗ ẽ(k,P) 7−→ en−1(ξ, pk,P).

For each weight k : [1, d] −→ Z≥0[
1
p
], we consider the subgroupWnΩ

l
A/R(k)

of WnΩ
l
A/R, which is generated by basic Witt-differentials en(ξ, k,P) of fixed

weight k. The complex NmWnΩ splits into a direct sum of subcomplexes
Nm(k):

Wn−1Ω
0
[F ](pk)

d→ · · · d→ Wn−1Ω
m−1
[F ] (pk)

dV→ WnΩ
m
[F ](k)→ · · · .
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Similarly let Ωl
Ã/Wn(R)

(k) ⊂ Ωl
Ã/Wn(R)

the Wn(R)-submodule generated

by the p-basic differentials ẽ(k,P) of fixed integral weight k. Then FmΩ̃· is
the direct sum of the following subcomplexes Fm(k):

IR ⊗Wn(R) Ω̃0
n(k)

pd→ · · · pd→ IR ⊗Wn(R) Ω̃m−1
n (k)

d→ Ω̃m
n (k)→ · · · .

It is obvious that for integral weight k the map

Fm(k) −→ Nm(k) (34)

is an isomorphism of complexes. Therefore the proposition follows if we
show that for k not integral the complexes Nm(k) are acyclic. This follows
in degrees not equal to m− 1 or m from the corresponding statement for the
de Rham-Witt complex (see [LZ] Proof of thm. 3.5).

For non-integral k consider a cycle ω ∈ Wn−1Ω
m−1
[F ] (k), i.e. dV ω = 0.

Because of the relation FdV = d, it follows that ω is also a cycle in the de
Rham-Witt complex Wn−1Ω

· and consequently a boundary, because k is not
integral.

Finally consider a cycle ω ∈ WnΩ
m(k). It may be uniquely written as a

sum

ω =
∑
P

en(ξP , k,P).

By [LZ] Prop. 2.6 ω is a cycle, iff P = ∅ t P ′, i.e. iff the first intervall I0 of
the partition P is empty, for all en(ξP , k,P) 6= 0 which appear in the sum.
Since k is not integral the coefficient ξP is of the form ξP = V τP and

d V en−1(τP , pk,P) = en(ξP , k,P).

Q.E.D.

We make n variable. We set A = R[T1, . . . , Td], An = Wn(R)[T1 . . . Td].
We extend the Frobenius homomorphism F : Wn(R) −→ Wn−1(R) to a map

φn :An −→ An−1,

Ti 7−→ T pi .
(35)

We denote δn : An −→ Wn(A) the Wn(R)-algebra homomorphism, such
that δn(Ti) = [Ti].
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Assume we are given an étale homomorphism A −→ B of R-algebras.
Then we find a unique set of lifting Bn of B, which are étale over An and
morphisms

ψn : Bn −→ Bn−1 and εn : Bn −→ Wn(B),

which are compatible with φn and δn, compare [LZ] Prop. 3.2.

Corollary 4.3 The map εn defines a quasiisomorphism of complexes:

IR ⊗ Ω0
Bn/Wn(R)

pd−−−→ . . .
pd−−−→ IR ⊗ Ωm−1

Bn/Wn(R)

d−−−→ Ωm
Bn/Wn(R) . . .

F̃

y F̃

y y
Wn−1Ω

0
B/R,[F ]

d−−−→ . . .
d−−−→ Wn−1Ω

m−1
B/R,[F ]

dV−−−→ WnΩ
m
B/R . . .

Proof: For the given number n, we find a numberm such that pmWn(R) = 0.
Let us denote by φm : Am+n −→ An the composite of m morphisms of type
(35). It is clear from the definition that

dφm : Am+n −→ Ω1
An/Wn(R)

is zero. Consider the commutative diagram

Bm+n
dψm

→ Ω1
Bn/Wn(R)

↑ ↑
Am+n

dφm

→ Ω1
An/Wn(R).

The derivation Am+n −→ Ω1
Bn/Wn(R) is zero. Since Bm+n/Am+n is étale, the

extension dψm is zero too.
Consider the commutative diagram

Bm+n
ψm

−→ Bm

↑ ↑
Am+n

φm

→ An.

It induces a morphism of algebras which are étale over An:

Bm+n ⊗Am+n,φm An −→ Bn. (36)
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This is an isomorphism. Indeed since An −→ A/pA has nilpotent kernel it
is enough to show that (36) becomes an isomorphism after tensoring with
⊗AnA/pA. But then we obtain the well-known isomorphism

B/pB ⊗A/pA,Frobm A/pA −→ B/pB

b⊗ a 7−→ bp
m · a.

From the isomorphism (36) we deduce an isomorphism

Bm+n ⊗Am+n,φm Ω·An/R−̃→ Ω·Bn/R

b ⊗ ω 7−→ ψm(b) · ω.
(37)

We note that (37) becomes an isomorphism of complexes if we take 1⊗ d
as a differential on the left hand side. Hence the first row of (4.3) is obtained
by tensoring the corresponding complex for Bn = An with Bn+m.

Let us consider the complex

Wn−1Ω
0
A/R,[F ]

d→ · · · d→ Wn−1Ω
m−1
A/R,[F ]

dV→ WnΩ
m
A/R

d→ · · · . (38)

We consider it as a complex of Wn+m(A)-modules via Fm : Wn+m(A) −→
Wn(A). Then all differentials become linear (compare [LZ] Remark 1.8).

This shows that we obtain the second row of diagram of Corollary 4.3 if
we tensorize (38) with Wn+m(B)⊗Wn+m(A),Fm . Because of the obvious iso-
morphism ([LZ] (3.2))

Bn+m ⊗An+m,δ Wn+m(A)→̃Wn+m(B),

the result is the same if we tensorize (38) by

Bn+m ⊗An+m,δφm .

Therefore the whole diagram of Corollary 4.3 is obtained from the corre-
sponding diagram for B = A by tensoring with Bn+m⊗An+m,φm . Since this
tensor product is an exact functor we obtain the corollary from the proposi-
tion. Q.E.D.

Let X/R be a smooth scheme. We assume that R is reduced and p ·R =
0. Then we consider still another complex derived from the de Rham-Witt
complex. We set WΩl = WΩl

X/R and define ImWnΩX/R starting in degree
0.
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pm−1VWn−1Ω
0 d→ pm−2VWn−1Ω

1 d→ · · · d→ VWn−1Ω
m−1 d→ WnΩ . . . . (39)

We recall the relation pd V ω = V dω of [LZ] 1.17. For varying n we obtain a
procomplex ImW·ΩX/R.

Proposition 4.4 Let R be a reduced ring of char p. The procomplexes
ImW·Ω and NmW·Ω are isomorphic in the pro-category of the category of
complexes of abelian sheaves on Xzar.

Proof: We have an obvious morphism of procomplexes

NmW·Ω −→ ImW·Ω (40)

Wn−1Ω
0
[F ]

d→ Wn−1Ω
1
[F ] . . . Wn−1Ω

m−1
[F ]

dV→ WnΩ
m d→ . . .

pm−1V ↓ pm−2V ↓ V ↓ id ↓

pm−1VWn−1Ω
0 d→ pm−2VWn−1Ω

1 . . . V Wn−1Ω
m−1 d→ WnΩ

m d→ . . . .

We have to prove that this induces an isomorphism of proobjects. We set
WΩ = lim

←−
WnΩ. On WΩ the multiplication by p and the Verschiebung are

injective. Therefore we have an inverse piVWΩ
p−iV −1

−→ WΩ[F ].

Lemma 4.5 Let n > k ≥ i+1. Then there is a map piVWnΩ
l −→ Wn−kΩ

l,
which makes the following diagram commutative

piVWnΩ
l
X/R −→ Wn−kΩ

l
X/R,[F ]

↑ ↑
piVWΩl

X/R

p−iV −1

−→ WΩl
X/R,[F ].

(41)

Proof of the lemma: Let n > k ≥ i. For ξ ∈ Wn(R) we denote by ξ̄
its restriction to Wn−k(R). Then we have a well-defined map

piVWn(R) −→ Wn−k(R)

pi V ξ 7−→ ξ̄.
(42)

Indeed, write ξ = (x0, . . . , xn−1). Then

pi V ξ = (0, . . . , 0, xp
i

0 , . . . , x
pi

n−i−1) ∈ Wn+1(R).
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Therefore the vector (x0, . . . , xn−i−1) ∈ Wn−i(R) is uniquely determined by
pi V ξ. We view Wn−i(R) as a Wn+1(R)-module via

Wn+1(R)
F−→ Wn(R)

Res−→ Wn−i(R).

Then we obtain a morphism of Wn+1(R)-modules because of the following
commutative diagram

piVW (R)
p−iV −1

−→ W (R)
↓ ↓

piVWn(R) −→ Wn−i(R).

The existence of the diagram (41) is clearly local for the Zariski-topology on
X.

We begin with the case, where X = SpecA and A = R[T1, . . . , Td] is a
polynomial algebra. In this case an element of piVWΩl

A/R may be expressed,
in terms of basic Witt-differentials:

ω =
∑

pi V en(ξP,k, k,P), ξP,k ∈ V u(k)Wn−u(k)(R). (43)

Note that en(ξP,k, k,P) = 0, when u(k) ≥ n.
The terms of the sum (43) are uniquely determined by [LZ] Prop.2.5

because of the direct decomposition

Wn+1Ω
l
A/R = ⊕k,PWn+1Ω

l
A/R(

k

p
,P).

Using loc. cit. we find:

pi V e(ξP,k, k,P) = pi V e(ξ′P,k, k,P), (44)

iff pi V ξP,k = pi V ξ′P,k, except in the case where k/p is not integral and I0 = ∅.
In the latter case the equality (44) holds, iff pi+1 V ξP,k = pi+1 V ξ′P,k.

With the lemma above this shows that the following map is well-defined:

piVWnΩ
l −→ Wn−(i+1)Ω

l

ω 7−→
∑

en−(i+1)(ξ̄k,P , k,P).

This proves the lemma in the case of a polynomial algebra A. Assume now
that A −→ B is a étale morphism.

The image of the canonical injection
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Wn+1(B)⊗Wn+1(A) p
iVWnΩA/R → Wn+1(B)⊗Wn+1(A) WnΩA/R ' Wn+1ΩB/R

coincides with piVWnΩB/R. This follows from the following commutative
diagram

Wn+1(B)⊗Wn+1(A),F WnΩA/R
∼−−−→ WnΩB/R

id⊗piV

y piV

y
Wn+1(B)⊗Wn+1(A) Wn+1ΩA/R

∼−−−→ Wn+1ΩB/R.

The top horizontal arrow is given by ξ ⊗ ω 7→F ξω and the lower horizontal
arrow is multiplication.

Now we find the desired map by tensoring piVWnΩA/R −→ Wn−(i+1)ΩA/R:

Wn+1(B)⊗Wn+1(A) p
iVWnΩA/R −→ Wn−i(B)⊗Wn−i(A),F Wn−(i+1)ΩA/R

o ↓ o ↓
piVWnΩB/R −→ Wn−(i+1)ΩB/R.

The composition of the last map with piV : Wn−(i+1)ΩB/R −→ Wn−iΩB/R is
just the restriction. This proves the lemma. Q.E.D.

The proposition follows immediately because we obtain an inverse to the
map (40):

pm−1VWn−1Ω
0 d→ pm−2VWn−1Ω

1 . . . V Wn−1Ω
m−1 d→ WnΩ

m . . .
↓ ↓ ↓ ↓Res

Wn−m−1Ω
0
[F ]

d→ Wn−m−1Ω
1
[F ] . . . Wn−m−1Ω

m−1
[F ]

dV→ Wn−m−1Ω
m . . .

The first m vertical maps defined by the lemma are equivariant with respect
to

Wn(R)
Res→ Wn−m(R)

F→ Wn−m−1(R)

The remaining maps are equivariant with respect to Wn(R) → Wn−m(R).
The commutativity of the diagram follows, since it is a homomorphic image of
a corresponding diagram for WΩ without level. This proves the proposition.
Q.E.D.
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Let X/R be a smooth scheme. Let us denote by JX/Wn(R) ⊂ OX/Wn(R)

the sheaf of pd-ideals. We denote by J [m]
X/Wn(R) its m-th divided power. Let

un : Crys(X/Wn(R)) −→ Xzar

be the canonical morphism of sites. We are going to define a morphism in
D(Xzar) the derived category of abelian sheaves on Xzar for m < p:

Run∗J [m]
X/Wn(R) −→ I

mWnΩ
·
X/R (45)

In order to define (45) we begin with the case, where X admits an embedding
in a smooth scheme Y/R, such that Y has a Witt-lift: Ỹ /Wn(R) and OỸ −→
Wn(OY ).

The left hand side of (45) may be computed with the filtered Poincaré
lemma [BO] Theorem 7.2: Let D be the divided power hull of X in Ỹ .
Let ID ⊂ OD be the pd-ideal. The pd-de Rham-complex Ω̆D/Wn(R) has the

following subcomplex FilmΩ̆D/Wn(R):

I
[m]
D Ω̆◦D/Wn(R)

d→ I
[m−1]
D Ω̆1

D/Wn(R)
d→ . . . IDΩ̆m−1

D/Wn(R)

d→ Ω̆D/Wn(R) . . . (46)

Then the left hand side of (45) is isomorphic to the hypercohomology of (46).
The Witt-lift defines a morphism

OỸ −→ Wn(OY ) −→ Wn(OX).

It maps the ideal sheaf of X ⊂ Ỹ to the ideal sheaf IX = VWn−1(OX) ⊂
Wn(OX). Since IX is endowed with divided powers, we obtain

OD −→ Wn(OX), (47)

mapping ID to IX . The homomorphism (47) induces a map of the pd-de
Rham complexes

Ω̆D/Wn(R) −→ Ω̆Wn(X)/Wn(R) −→ WnΩX/R.

Taking into account that I
[h]
X = ph−1IX for h < p, we obtain the desired

morphism from (46) to the complex ImWnΩ if m < p:

pm−1IXWnΩ
0
X/R −→ . . . −→ IXWnΩ

m−1
X/R

d→ WnΩX/R → . . . .
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We note that IXWnΩ
l
X/R = VWn−1Ω

l
X/R follows from the formula

V (ηdω1 . . . dωr) = V ηd V ω1 . . . d
V ωr.

Hence we obtain a morphism

Run∗J [m]
X/Wn(R)→̃Fil

mΩ̆D/Wn(R) −→ ImWnΩX/R. (48)

The independence of the last arrow from the embedding of X into a Witt
lift (Y, Ỹ ) is proved in a standard manner: Let X ↪→ Y ′ be an embedding
into a second Witt lift (Y ′, Ỹ ′). Then we obtain a Witt lift of the product
Y ×SpecR Y

′ : Indeed, Ỹ ×SpecWn(R) Ỹ
′ is a lifting of Y ×Y ′ and the two given

Witt lifts induce a morphism:

OỸ ⊗Wn(R) OỸ ′ −→ Wn(OY )⊗Wn(R) Wn(OY ′) −→ Wn(OY ⊗OY ′).

If P denotes the pd-hull of X in Ỹ ×SpecWn(R) Ỹ
′. We obtain a commutative

diagram

FilmΩ̆D/Wn(R)

��

((RRRRRRRRRRRRR

ImWnΩX/R

FilmΩ̆P/Wn(R)

66lllllllllllll

Since the vertical arrow induces by [BO] the identity on Run∗J [m]
X/Wn(R)

the independence of (45) of the chosen Witt lift follows.
If X admits no embedding in a smooth scheme Y which has a Witt lift,

one can proceed by simplicial methods [I] or [LZ] §3.2, but we omit the details
here.

Theorem 4.6 For each m < p and n the map in D+(Xzar,Wn(R))

Run∗J [m]
X/Wn(R) −→ I

mWnΩX/R (49)

is a quasiisomorphism.
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Proof: Clearly the question is local for the Zariski-topology on X. We
may therefore assume that X = SpecB, where the R-algebra B is étale over
R[T1, . . . , Td]. From the discussion above we know that any Witt-lift of B
leads to the same morphism (49). We choose a Frobenius lift {Bn}n∈N of the
algebra B as in the corollary 4.3. We begin with the reduction to the case
B = R[T1, . . . , Td]. Let J be the kernel of Bn −→ B. Then J [i] = pi−1IRBn,
where IR = VWn−1(R) ⊂ Wn(R). Hence we have to show that the following
morphism of complexes induces a quasiisomorphism:

pm−1IRΩ0
Bn/Wn(R)

d−−−→ . . . IRΩm−1
Bn/Wn(R)

d−−−→ Ωm
Bn/Wn(R)

d−−−→y y y
pm−1VWn−1Ω

0
B/R

d−−−→ . . . V Wn−1Ω
m−1
B/R

d−−−→ WnΩ
m
B/R

d−−−→

(50)

We choose a number s, such that psWn(R) = 0. We consider the groups
in the first complex as Bn+s modules via ψs : Bn+s → Bn. As shown in the
proof of Corollary 4.3 we obtain a complex of Bn+s-modules. The same is
true if we consider the groups in the second complex as Bn+s-modules by
ψs : Bn+s → Bn → Wn(B).

We obtain the diagram above from the corresponding diagram for B = A
by tensoring with Bn+s⊗An+s . Since Bn+s is étale over An+s, we have reduced
our statement to the case where B = R[T1, . . . , Td] and where the Witt-lift
is a standard one.

In the case of a polynomial algebra we have a decomposition of the de
Rham Witt complex according to weights [LZ] 2.17.

Because the operator V is homogenous, we have a similar decomposi-
tion for the complex ImWnΩA/R. In fact, by [LZ] Prop. 2.5 an element of
pm−l−1VWn−1Ω

l, for l ≤ m−1 may be uniquely written as a sum of elements
of the following types

en(p
m−l−1 V ξ, k, I0, . . . , Il) for k integral

en(p
m−l−1 V ξ, k, I0, . . . , Il) for I0 6= ∅, k not integral

en(p
m−l V ξ, k, I0, . . . , Il) for I0 = ∅, k not integral.

Here ξ ∈ Wn−1(R) for k integral and ξ ∈ V u(k)−1Wn−u(k)(R) for k noninte-
gral. Clearly the elements of the first type span a subcomplex of ImWnΩA/R

which is isomorphic to the complex in the first row of (50). Indeed, the p-
basic differentials of this complex are mapped to basic Witt-differentials of
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the first type above. The last two types of Witt-differentials above span an
acyclic subcomplex because of the formula

den(p
m−l−1 V ξ, k, I0, . . . , Il) = en(p

m−l−1 V ξ, k, φ, I0, . . . , Il),

for I0 6= ∅ and k not integral. The exactness of the non integral part at
WnΩ

m
B/R follows in the same way. Q.E.D.

Let Xn/Wn(R) be a compatible system of smooth liftings of X/R for
n ∈ N. The Theorem 4.6 provides an isomorphism in the derived category
between ImWnΩX/R and

pm−1IRΩ0
Xn/Wn(R) → pm−2IRΩ1

Xn/Wn(R) → . . . IRΩm−1
Xn/Wn(R) → Ωm−1

Xn/Wn(R) . . . .

(51)
We know by Proposition 4.4 that {ImWnΩX/R} is isomorphic to the procom-
plex {NmWnΩX/R}. The same argument shows that the procomplex (51) is
quasiisomorphic to {FmΩ·Xn/Wn(R)}n∈N . Passing to the projective limit we
obtain:

Corollary 4.7 Let R be a reduced ring. Let X/R be a smooth and proper
scheme. Assume that Xn/Wn(R) is a compatible system of smooth liftings
of X. Then there is for each number m < p a natural isomorphism in the
derived category D+(Xzar,W (R)):

NmWΩ·X/R
∼= FmΩ·X/W (R),

where X = lim
−→

Xn in the sense of EGA I Prop. 10.6.3.

This is a weak form of the Conjecture 4.1 which asserts this for every level
separately.

5 Display Structure on crystalline cohomol-

ogy

Let R be a ring such that p is nilpotent in R. Let (A, σ, α) be a frame for R
[Z1]. This means that A is a torsion free a p-adic ring with an endomorphism
σ : A → A, which induces the Frobenius endomorphism A/pA → A/pA.
The map α : A→ R is a surjective ring homomorphism, such that the ideal
a = Kerα has divided powers.
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Definition 5.1 An A-window consists of

1) A finitely generated projective A-module P0.

2) A descending filtration of P0 by A-submodules

. . . Pi+1 ⊂ Pi ⊂ · · · ⊂ P2 ⊂ P1 ⊂ P0. (52)

3) σ-linear homomorphisms

Fi : Pi → P0.

The following conditions are required.

(i) aPi ⊂ Pi+1 and the factor module Pi+1/aPi is a finitely generated pro-
jective R-module Ei+1 for i ≥ 0. We set E0 = P0/aP0.

(ii) The inclusions Pi+1 → Pi induce injective R-module morphisms

· · · → Ei+1 → Ei → · · · → E0,

such that Ei+1 is a direct summand of Ei.

(iii) aPi = Pi+1 if i is big enough.

(iv) Fi(x) = pFi+1(x) for x ∈ Pi+1.

(v) The union of the images Fi(Pi) for i ∈ Z≥0 generate P0 as an A-module.

A window is called standard if it arises in the following way. Let L0, . . . , Ld
be finitely generated projective A-modules. Let

Φi : Li →
d⊕
j=0

Lj

be σ-linear homomorphisms, such that the determinant of Φ0⊕ · · · ⊕Φd is a
unit. Then we set for i ≥ 0

Pi = aiL0 ⊕ ai−1L1 ⊕ . . .⊕ aLi−1 ⊕ Li ⊕ · · · ⊕ Ld.

40



We define Fi on this direct sum as follows: The restriction of Fi to ai−kLk
for k < i resp. Lk for k ≥ i to is defined by

Fi(ax) = σ(a)
pi−k Φk(x) for 0 ≤ k < i, x ∈ Lk, a ∈ ai−k

Fi(x) = pk−iΦk(x) for i ≤ k x ∈ Lk.

It is clear that (Pi, Fi) form a window.
Each window is isomorphic to a standard window. Indeed, let E0 = ⊕L̄j

be a splitting of the filtration (52) in the definition:

Ei = ⊕j≥iL̄j.

Let Li be a finitely generated projective A-module which lifts L̄i. We find
homomorphisms Li → Pi which make the following diagrams commutative:

L̄i −−−→ Eix x
Li −−−→ Pi.

It follows from the lemma of Nakayama that ⊕Li → P0 is an isomorphism,
since it is modulo a. By induction we obtain

Pi = aiL0 ⊕ · · · ⊕ aLi−1 ⊕ Li ⊕ · · · ⊕ Ld. (53)

We set Φi = Fi|Li. The condition (v) implies that ⊕Φi : ⊕Lj → ⊕Lj is a
σ-linear epimorphism and therefore an isomorphism.

Remark: A window (Pi) is of degree d, if Pi+1 = aPi for i ≥ d. To
give a window of degree d it is enough to give only the modules P0, . . . , Pd.
The axioms may be formulated in the same way for this finite chain of mod-
ules. The axiom (v) then requires that the union of F0(P0), F1(P1) . . . , Fd(Pd)
generates P0 as an A-module.

We will now see that an A-window induces a display over R. There
is a natural ring homomorphism δ : A → W (A), such that for the Witt-
polynomials wn there is the identity

wn(δ(a)) = σn(a), a ∈ A.

Consider the composite ring homomorphism.

κ : A→ W (A)→ W (R).
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We have by [Z1] Prop. 1.5:

κ(σ(a)) = Fκ(a) for a ∈ A

κ(σ(a)
p

) = V −1κ(a) for a ∈ a.

The last equation makes sense because κ(a) ∈ VW (R) for a ∈ a.
It is clear that a datum (Li,Φi) for a standard window over A induces the

datum (W (R)⊗W (A)Li, F ⊗Φi) for a standard display over R. We will show
that the resulting display does not depend on the decomposition P0 = ⊕Li
we have used.

We give an invariant construction of a display (Qi, ιi, αi, Fi) from a win-
dow (Pi, Fi). The display comes with morphisms τi : Pi → Qi such that the
following diagrams commute

Pi
τi−−−→ Qix ιi

x
Pi+1

τi+1−−−→ Qi+1

Pi+1
τi+1−−−→ Qi+1x αi

x
a⊗ Pi −−−→ IR ⊗W (R) Qi

P0
τ0−−−→ Q0

Fi

x Fi

x
Pi+1

τi−−−→ Qi.

(54)

We construct Qi and τi inductively, such that the diagrams (54) commute.
We set Q0 = W (R)⊗κ,A P0 and we let τ0 : P0 → Q0 be the canonical map.

Assume that τk : Pk → Qk was constructed for k ≤ i. Then we consider
the following commutative diagrams:

Pi
τi // Qi

Fi // Q0

Q0

p

OO

Pi+1

ι

OO

Fi+1 // P0

τ0

OO
Qi

Fi // Q0

IR ⊗Qi

OO

F̃i // Q0

p

OO

We obtain a morphism to the fibre product

(W (R)⊗A Pi+1)⊕ (IR ⊗Qi)→ Qi ×Fi,Q0,p Q0. (55)

We define Qi+1 as the image of (55). This gives a map Pi+1
τi+1→ Qi+1. We

define ι : Qi+1 → Qi and Fi+1 : Qi+1 → Q0 and αi : IR ⊗ Qi → Qi+1 as
the canonical maps determined by these data. A routine verification shows
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that this construction gives the same result as the construction via standard
windows.

Moreover the following universal property holds. Let (Q′i, ι
′
i, α
′
i, F

′
i ) be a

display over R and let τ ′i : Pi → Q′i be maps such that the diagrams (54) for
τ ′i commute. Then the maps τ ′i are the composition of τi and a morphism of
displays (Qi, ιi, αiFi)→ (Q′i, ι

′
i, α
′
i, F

′
i ).

Let A
α→ R, σ, a as before. Let X → SpecR be a scheme which is

projective and smooth. Let Y f→ Spf A be a smooth pA-adic formal scheme,
which lifts X. We set An = A/pn and Yn = Y ×Spf A SpecAn. For big n the

map α factors through An
αn→ R. The kernel an inherits a pd-structure. We

consider the crystalline topos (X/A)crys. Let JX/An ⊂ OX/An be the pd-ideal
sheaf. We are interested in the cohomology groups:

H i(X,J [m]
X/A) = lim

←−
n

H i
crys(X/An,J

[m]
X/An

). (56)

Remark: It would be more accurate to consider the cohomology groups
of R lim

←−
n

RΓ(X/An,J [m]
X/An

). But under the Assumptions 5.2 and 5.3 we are

going to make these groups will coincide.

By [BO] 7.2 the groups H i
crys(X/An,J

[m]
X/An

) are the hypercohomology

groups of the following complex Fil[m]Ω·Yn/An
:

a[m]
n ⊗An Ω0

Yn/An
→ a[m−1]

n ⊗An Ω1
Yn/An

· · · → an⊗An Ωm−1
Yn/An

→ Ωm
Yn/An

. . . (57)

We will make the following assumptions:

Assumption 5.2 The cohomology groups Hq(Yn,Ω
p
Yn/An

) are for each n lo-
cally free An-modules of finite type.

Assumption 5.3 The de Rham spectral sequence degenerates at E1

Epq
1 = Hq(Yn,Ω

p
Yn/An

)⇒ Hp+q(Yn,Ω
·
Yn/An

).

Since Yn is quasicompact and separated by assumption the cohomology
sheafs Rmfn∗Ω

·
Yn/An

are quasicoherent. From the assumption we see that
these sheaves are locally free of finite type. Hence the complex Rfn∗Ω·Yn/An

is quasiisomorphic to the direct sum of its cohomology groups. This im-
plies that the cohomology groups Rmfn∗Ω

·
Yn/An

commute with arbitrary base
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change. The same applies to the cohomology groups Rqfn∗Ω
p
Yn/An

. By Propo-

sition 3.2 and the projection formula (Proposition 3.1) we obtain a degener-
ating spectral sequence

Eij
1 = Hj(Yn,Ω

i
Yn/An

)⊗An a[m−i] ⇒Hi+j(Yn, F il
[m]Ω·Yn/An

)

‖
H i+j
crys(X/An,J

[m]
X/An

)

If we pass to the projective limit we obtain a degenerating spectral sequence

Eij
1 = a[m−i] ⊗Hj(Y ,Ωi

Y/A)⇒ H i+j
crys(X/A,J

[m]
X/A). (58)

The groups involved have no p-torsion.
We set X̄ = X ×SpecR Spec R̄, where R̄ = R/pR. By [BO] 5.17 there is a

canonical isomorphism

H i
crys(X/A,OX/A) ' H i

crys(X̄/A,OX̄/A). (59)

The absolute Frobenius on X̄ and σ on A induce an endomorphism on the
right hand side of (59) and therefore an endomorphism

F : H i
crys(X/A,OX/A)→ H i

crys(X/A,OX/A).

Lemma 5.4 Let p[m] be the maximal power of p which divides pm/m! Then
the image of the following composition

H i
crys(X/A,J

[m]
X/A)→ H i

crys(X/A),OX/A)
F→ H i

crys(X/A,OX/A)

is contained in p[m]H i
crys(X/A,OX/A).

Proof: The argument is well known [K], but we repeat it in the generality we
need. We may replace A by An. We embed X into a smooth and projective
An-scheme Z, such that there is an endomorphism σ : Z → Z which lifts
the absolute Frobenius modulo p and which is compatible with σ on An. We
may take for Z the projective space. Consider the pd-hull D of X in Z.
It is also the pd-hull of X̄ in Z. Therefore σ extends to D/An and to the
pd-differentials Ω̆D/An . We obtain by [BO] an isomorphism

Hi(X, Ω̆·D/An
)
∼−→ H i

crys(X/A,OX/An),
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which is equivariant with respect to the action of σ on the left hand side and
F on the right hand side.

Consider the morphisms

X̄ → D → Z.

Let I(X̄) be the ideal of X̄ in Z and J̄D be the ideal of X̄ in D. Consider
the diagram

(OZ , I(X̄)) //

σ

��

κ

''NNNNNNNNNNN
(OD, J̄D)

σD

��
(OZ , I(X̄)) // (OD, J̄D)

The composite κ maps I(X̄) to p · OD. This follows because

σ(z) ≡ zp mod p for z ∈ OZ . (60)

If z ∈ I(X̄) the image of zp in J̄D becomes divisible by p, because we have
divided powers. Therefore the induced map σD on the divided power envelope
maps J̄D to pOD. Therefore

σ(J̄ [m]
D ) ⊂ p[m]OD.

For z ∈ OZ we find from (60) that in Ω̆1
D/An

:

dσ(z) ≡ 0 mod p.

The composite map of the lemma is induced by a map of complexes:

J [m]
D Ω̆◦D/An

−−−→ . . . −−−→ J [m−i]
D Ω̆i

D/An
−−−→ . . .

σ

y σ

y
Ω̆◦D/An

−−−→ . . . −−−→ Ω̆i
D/An

−−−→ . . . .

(61)

The image of this map lies in p[m] · Ω̆·D/An
= p[m]An ⊗L

An
Ω̆D/An . The last

equality follows since by [BO] 3.32 the sheaf OD is flat over An. The hyper-
cohomology of the last complex is by the projection formula

p[m]An ⊗L RΓ(X, Ω̆D/An) = p[m]An ⊗L RΓcrys(X/An,OX/An)
= p[m]An ⊗L RΓ(Yn,Ω

·
Yn/An

)
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But the cohomology of the last complex is p[m]Hi(Yn,Ω
·
Yn/An

), since we as-

sumed that the cohomology is locally free. This shows that (61) factors on
the hypercohomology through p[m]Hcrys(X/An,OX/An) = p[m]Hi(Yn,Ω

·
Yn/An

).
Q.E.D.

Theorem 5.5 Let R be a ring, such that p is nilpotent in R. Let X be a
scheme which is projective and smooth over R. Let A → R be a frame. We
assume that X lifts to a projective and smooth p-adic formal scheme Y/ Spf A
such that the assumptions 5.2 and 5.3 are fullfilled. Then for each number
n < p the canonical maps

Hn
crys(X/A,J

[m]
X/A)→ Hn

crys(X/A,J
[m−1]
X/A )→ · · · → Hn

crys(X/A,OX/A)

are injective. The A-modules Pm = Hn
crys(X/A,J

[m]
X/A) for m ≤ n together

with the maps
1

pm
F = Fm : Pm → P0

given by Lemma 5.4 form a window of degree n.

Proof: We consider a number m ≤ n. Then we have Jm
X/A = J [m]

X/A, a
m =

a[m]. We write Fil[m]Ω·Y/A = lim
←−

n

Fil[m]Ω·Yn/An
. Then we find a canonical

isomorphism

Pm = Hn(X,Fil[m]ΩY/A)
∼
= Hn

crys(X/A,Jm
X/A) (62)

From the degenerating spectral sequence (58) we obtain the injectivity of
Pm → Pm−1, since we have injectivity on the associated graded groups.

In the following considerations m,n can be arbitrary natural number,
without the restriction m ≤ n < p. Then Fil

[m]
Y/A will be the complex FilmY/A

amΩ0
Y/A → am−1Ω1

Y/A → · · · → aΩm−1
Y/A → Ωm

Y/A → . . .

Consider the following morphism:

a⊗Hn(X,FilmΩ·Y/A)→ Hn(X, aFilmΩ·Y/A). (63)

We have for aFilmΩ·Y/A a degenerating spectral sequence as (58). Therefore

the right hand side of (63) is a subgroup of Hn(X,FilmΩ·Y/A).
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We claim that the induced inclusion is an equality

aHn(X,FilmΩ·Y/A) = Hn(X, aFilmΩ·Y/A). (64)

This equality holds for m = 0 by the projection formula. Indeed, consider
the canonical map:

FilmΩY/A → amΩ0
Y/A → 0.

The kernel is the following complex C:

0→ am−1Ω1
Y/A → · · · → aΩm−1

Y/A → Ωm
Y/A → . . . .

This complex C is of the same nature as FilmΩ·Y/A but with less ideals
involved. By an induction we may assume that

aHn(X,C) = Hn(X, aC).

By the projection formula we find

aHn(X, amΩ0
Y/A) = am+1Hn(X,Ω0

Y/A).

The assertion (64) follows from the diagram

Hn(X, aC) −−−→ Hn(X, aFilmΩ·Y/A) −−−→ Hn(X, am+1Ω0
Y/A)

‖
x ∪

x ‖
x

aHn(X,C) −−−→ aHn(X,FilmΩ·Y/A) −−−→ aHn(X, amΩ0
Y/A)

(65)

The upper line is a short exact sequence by a spectral sequence argument
as above. The lower line is a complex. The first arrow is injective and the
second surjective but it is a priori not exact in the middle term. One sees
that the upper and lower line in (63) must be isomorphic. This proves (65).

We have already seen that the following maps are injective

Hn(X, aFilmΩ·Y/A)→ Hn(X,Film+1Ω·Y/A)→ Hn(X,FilmΩ·Y/A).

Therefore we obtain an exact sequence

0→ Hn(X, aFilmΩ·Y/A)→ Hn(X,Film+1Ω·Y/A)→ Hn(X, σ≥m+1Ω·X/R)→ 0.

Since by (64) the map a⊗Hn(X,FilmΩY/A)→ Hn(X, aFilmΩ·Y/A) is surjec-
tive, we see that

Pm = Hn(X,FilmΩ·Y/A) and Em = Hn(X, σ≥mΩ·X/R)
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fullfill the conditions (i)-(iii) for a window without any restriction on m and
n. We note that for fixed n we have Pm+1 = aPm for m ≥ n. As explained
after the definition of a window, we can obtain a decomposition

Pm = amL0 ⊕ am−1L1 ⊕ · · · ⊕ am−nLn,

with the convention that ak = A if k ≤ 0.
Concretely we can find the liftings Li as follows. We consider the maps:

Hn(X,FilmΩ·Y/A)→ Hn(X, σ≥mΩ·Y/A)→ H(n−m)(X,Ωm
Y/A)

Then Lm is obtained by splitting the last surjection. This construction gives
isomorphisms:

Lm ∼= H(n−m)(X,Ωm
Y/A)

We now impose the condition m ≤ n < p of the theorem. By lemma 5.4
and (62) the Frobenius endomorphism F : P0 → P0 is divisible by pm when
restricted to Pm. We set

Φm =
1

pm
F|Lm .

The assertion that {Pm} is a window is then equivalent with the condition
that

⊕ni=0Φi : ⊕ni=0Li → ⊕ui=0Li

is a σ-linear isomorphism, or in other words that det(⊕ni=0Φi) is a unit in
W (A). Clearly it suffices to show that for any homomorphism R → k to a
perfect field k the image of det(⊕Φi) by the morphism

A
κ→ W (R)→ W (k)→ k

is a nonzero. The compositum map A → W (k) respects the Frobenius and
induces a map on crystalline cohomology

Hn
crys(X/A,OX/A)→ Hn

crys(Xk/W (k),OXk/W (k))

which respects the Frobenius. It is induced by the base change map for de
Rham cohomology.

Hn(X,Ω·Y/A)→ Hn(Xk,Ω
·
Y⊗AW (k)/W (k)).
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The special decomposition we have chosen

Hn(X,Ω·Y/A) = ⊕Li,

induces a similar decomposition

Hn(Xk,Ω
·
YW (k)/W (k)) = Hn(X,Ω·Y/A)⊗AW (k) = ⊕Li ⊗AW (k).

Therefore we have reduced our assertion to the case R = k a perfect field and
A = W (k). This case was proved by Mazur (Compare [Fo] p.91 and Kato
[K] Prop.2.5). We give an argument in the case n < p− 2 which is based on
the comparison Corollary 4.7 but doesn’t use gauges.

For any complex A· of abelian sheaves on X consider the exact sequence
induced by the naive filtration.

0→ σ>iA· → A· → σ≤iA· → 0,

where i is an arbitrary integer. If n+ 1 ≤ i we obtain an isomorphism

Hn(X,A·) ∼= Hn(X, σ≤iA·).

We apply this to the Nygaard complex NmWΩ·X/k and to the de Rham-

Witt complex WΩ·X/k. For i ≤ m− 1 the operator F̂m (5) induces clearly a
bijection of the truncated complexes

F̂m : σ≤iNmWΩ·X/k → σ≤iWΩ·X/k

Therefore if n+ 1 ≤ i ≤ m− 1 we obtain a bijection

Fm : Hn(X,NmWΩ·X/k)→ Hn(X,WΩ·X/k)

We set m = n + 2. Since m < p by assumption (and because k is reduced)
there are canonical isomorphisms in the derived category:

NmWΩ·X/k
∼= FmΩY/W (k)

∼= FilmΩY/W (k)

But since m > n the map Fm is identified with the linearization of ⊕Φi. This
says that the last map is a Frobenius linear isomorphism. Q.E.D.

Remark: The proof shows that Hn
DR(Y) with its Hodge filtration is

strongly divisible (compare [Fo] 1.2 Prop.) for n < p − 2. If we knew that
NmWΩ·X/k and FmΩY/W (k) are quasiisomorphic, the last argument would

imply that Hn
DR(Y) is strongly divisible without restriction on n. We note

also that the last argument works directly over any reduced ring k.
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Corollary 5.6 Let X be a smooth and projective scheme over a ring R such
that p is nilpotent in R.

Let us assume that there is a frame A→ R and a smooth and projective
p-adic lifting Y/ Spf A of X, which satisfies the conditions of the theorem.

Then we obtain for n < p by base change a display structure of degree
n on Hn

crys(X/W (R),OX/W (R)). This display structure is independent of the
frame A and the formal lifting Y we have chosen if p ·R = 0.

Proof: For a given frame A the independence of the lifting Y is clear,
because the window structure is purely defined in terms of the crystalline
cohomology of X/A.

If we have a morphism of frames B → A and a formal lifting Z of X to
B, then we set Y = ZA. Then the window associated to Y is obtained from
the window associated to Z by base change (one should think in terms of
decompositions (53)). Therefore the induced displays are the same.

If p·R = 0 and A′ and A′′ are 2 frames, we obtain a new frame A′×RA′′ →
R. Then σ′×σ′′ is an endomorphism of A′×RA′′ because σ′ and σ′′ induce the
same endomorphism on R. If Y ′/ Spf A′ and Y ′′/ Spf A′′ are formal liftings,
we obtain a formal lifting Y ′×κ Y ′′ of X over A′×RA′′. Therefore we obtain
the same display structure by base change.

Theorem 5.7 Let R be a reduced ring of characteristic p. Let X/R be
a smooth projective scheme. Assume that there is a compatible system of
smooth and projective liftings Yn/Wn(R). We assume that the assumptions
5.2 and 5.3 are satisfied with An = Wn(R)

Then there is a display structure on Hn
crys(X/W (R),OX/W (R)) for n < p,

where
Pm = Hn(X,NmWΩX/R) = Hn

crys(X/W (R),J [m]
X/W (R)).

Proof: The second equality is the filtered comparison theorem. If we
had a p-adic lifting Y/ SpfW (R), the theorem would follow from the last
one because W (R) → R is a frame. The slightly more general statement
follows by the same reasoning as the last theorem. Q.E.D.

We make the following conjecture:

Conjecture 5.8 Let R be a ring such that p is nilpotent in R. Let X/R be
a smooth projective scheme. Let us assume that the crystalline cohomology
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groups H i
crys(X/Wn(R)) are locally free Wn(R)-modules for i ≥ 0 and n > 1,

and that the de Rham spectral sequence

Ep,q
1 = Hq(X,Ωp

X/R)⇒ Hp+q(X,Ω·X/R)

degenerates.
Then the canonical predisplay struture on Pm = Hn(X,NmWΩX/R) is a

display structure.
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[De1] Deligne,P.: Relèvement des surfaces K3 en charactéristique
nulle, in: Surfaces Algébriques, Lecture Notes in Mathematics
868, Springer 1981.

[De2] Deligne, P: Cohomologie des intersections completes, in: SGA
7, Groupes de Monodromie en Géomt́rie Algébrique, Lecture
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