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Abstract. Let p be a prime. Let V' be a discrete valuation ring of mixed
characteristic (0,p) and index of ramification e. Let f: G — H be a homo-
morphism of finite flat commutative group schemes of p power order over V
whose generic fiber is an isomorphism. We bound the kernel and the cok-
ernel of the special fiber of f in terms of e. For e < p — 1 this reproves a
result of Raynaud. As an application we obtain an extension theorem for
homomorphisms of truncated Barsotti-Tate groups which strengthens Tate’s
extension theorem for homomorphisms of p-divisible groups. In particular,
our method provides short new proofs of the theorems of Tate and Raynaud.
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1 Introduction

Let p be a rational prime. Let V be a discrete valuation ring of mixed
characteristic (0,p). Let K be the field of fractions of V. Let k be the
residue field of V. Let e be the index of ramification of V. Let G and H
be two finite flat commutative group schemes of p power order over V. For
n € N*, let G[p"] be the schematic closure of Gk[p"] in G. The goal of the
paper is to prove the following theorem and to get several applications of it.
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Theorem 1 There exists a non-negative integer s that depends only on V'
and that has the following property.

For each homomorphism f : G — H whose generic fiber fx : Gx — Hg
is an isomorphism, there exists a homomorphism ' : H — G such that
flfof =p'idg and f o f = p°idy and therefore the special fiber homo-
morphism fr : Gy — Hy has a kernel and a cokernel annihilated by p°.
If moreover H is a truncated Barsotti—Tate group of level n > s, then the
natural homomorphism fp"~*] : G[p"~*| — H[p"*] is an isomorphism.

The number s admits computable upper bounds in terms only of e. For
instance, if p is odd then we have s < (log, e +ord, e +2)(ord, e +2) — 1 (cf.
Examples 2 and 4). If e < p — 2, then s = 0 (cf. Example 1) and therefore
we regain in a different way the following classical theorem of Raynaud.

Corollary 1 We assume that e < p — 2 (thus p is odd). Then each finite
flat commutative group scheme of p power order over K extends in at most
one way to a finite flat commutative group scheme over V.

Corollary 1 was first proved in [R], Theorem 3.3.3 or Corollary 3.3.6 and
more recently in [VZ2], Proposition 15. The first part of the next result is
an equivalent form of the first part of Theorem 1.

Corollary 2 Let h : Gg — Hg be a homomorphism over K. Then p°h ex-
tends to a homomorphism G — H (i.e., the cokernel of the natural monomor-
phism Hom(G, H) < Hom(G g, Hg) is annihilated by p®). Thus the natural
homomorphism Ext'(H,G) — Ext'(Hg, Gk) has a kernel annihilated by p°.

The following two results are a mixed characteristic geometric analogue
of the homomorphism form [V], Theorem 5.1.1 of the crystalline boundedness
principle presented in [V], Theorem 1.2.

Corollary 3 We assume that G and H are truncated Barsotti—Tate groups
of level n > s. Let h : Gx — Hg be a homomorphism. Then the restriction
homomorphism h[p"~*] : Gk[p"*] — Hkl[p"°] extends to a homomorphism
Glp"=*] — H[p"’].

Corollary 4 We assume that n > 2s. Let H be a truncated Barsotti—Tate
group of level n over V. Let G be such that we have an isomorphism h :
Gx — Hpy. Then the quotient group scheme G[p"~*|/G[p®] is isomorphic
to H[p" %] and thus it is a truncated Barsotti-Tate group of level n — 2s.
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Let Y be a normal noetherian integral scheme with field of functions L
of characteristic zero. A classical theorem of Tate ([T], Theorem 4) says
that for every two p-divisible groups D and F' over Y, each homomorphism
D — Fp extends uniquely to a homomorphism D — F. From Corollary 3
we obtain the following sharper version of this theorem.

Theorem 2 Let Y and L be as above. Then there exists a non-negative
integer sy which has the following property.

Let G and 'H be truncated Barsotti—Tate groups over Y of level n > sy
and of order a power of the prime p. Let h : G, — Hy, be a homomorphism.
Then there exists a unique homomorphism g : G[p" Y] — H[p" V] that
induces h[p"~*¥] over L.

Section 2 recalls for p > 2 (resp. for p = 2) the classification of finite flat
(resp. connected finite flat) commutative group schemes of p power order
over V in terms of Breuil modules that holds when k is perfect and V is
complete. This classification was conjectured by Breuil (see [Br]), was first
proved in [K1] (resp. [K2]), and was generalized (using a covariant language)
in [VZ1] and [L]. In Section 3 we provide recursive formulas for s as well as
explicit upper bounds of it. In Section 4 we prove Theorem 1. The above
four Corollaries and Theorem 2 are proved in Section 5. In Section 6 we
present extra applications to different heights associated to G.

2 Breuil modules

Let V — V' be an extension of discrete valuation rings such that the index
of ramification of V' is also e. Theorem 1 holds for V' if it holds for V. There
exists an extension V' which is complete and has a perfect residue field. If
we find an upper bound of s only in terms of e which holds for each complete
V' with perfect residue field, then this upper bound of s is also good for V.

Thus from now on we assume that V' is complete and that k is a perfect
field. Let W (k) be the ring of Witt vectors with coefficients in k. We will
view V' as a W(k)-algebra which is a free W(k)-module of rank e. Let
ord, : W(k) — NU{oo} be the p-adic valuation normalized by the conditions
that ord,(p) = 1 and ord,(0) = co. Let u be a variable and let

S = W(k)[[u]].



We extend the Frobenius endomorphism o of W (k) to & by the rule o(u) =
uP. Forn € N* let 6,, :== &/p"G. If M is a G-module let

M =& ®,s M.
Let 7 be a uniformizer of V. Let
E=FEu)=u’+a,u" +- +au+a € W(k)u]

be the unique Eisenstein polynomial in w which has coefficients in W (k) and
which has 7 as a root. For i € {0,...,e — 1} we have a; € pW (k); moreover
ap is p times a unit of W (k). We have a W (k)-epimorphism

Gr: S >V
that maps u to 7.

Definition 1 By a (contravariant) Breuil window relative to ¢, : & — V we
mean a pair (Q, @), where Q) is a free S-module of finite rank and where ¢ :
Q) — Q is a &-linear map (Frobenius map) whose cokernel is annihilated
by E. By a (contravariant) Breuil module relative to ¢, : & — V we mean
a pair (M, ), where M is a S-module annihilated by a power of p and of
projective dimension at most one and where ¢ : M) — M is a G-linear map
(Frobenius map) whose cokernel is annihilated by E. We say that (M, ) is
connected if its reduction modulo u defines a connected Dieudonné module
over k (this makes sense as E modulo u is p times a unit of W (k) ).

Definition 2 Let B (resp. B¢) be the category of Breuil modules (resp. of
connected Breuil modules) relative to ¢ : & — V. Let By (resp. B{) be the
full subcategory of B (resp. of B¢) whose objects are Breuil modules (M, )
relative to q. : & — V with M annihilated by p. Let F (resp. F°¢) be the
category of finite flat commutative group schemes (resp. of connected finite
flat commutative group schemes) of p power order over V. Let Fy (resp.
F¢) be the full subcategory of F (resp. of F¢) whose objects are finite flat
commutative group schemes over V annihilated by p.

If M is annihilated by p, then it is easy to see that M is a free G;-module
(cf. [VZ2], Section 2, p. 7); its rank is also called the rank of (M, ¢). In this
paper we will use the shorter terminology (connected) Breuil module.



2.1 The case p > 2

In this Subsection we assume that p > 2. We recall the following classification
first proved in [K1], Theorem 2.3.5 and generalized in [VZ1], Theorem 1 and
(L.

Theorem 3 There exists a contravariant functor B : F — B which is an
antiequivalence of categories, which is Zy-linear, and which takes short exact
sequences (in the category of abelian sheaves in the faithfully flat topology of
Spec V') to short exact sequences (in the category of S-modules endowed with
Frobenius maps).

It is easy to see that B induces an antiequivalence of categories B : F; —
By which takes short exact sequences to short exact sequences. For an object
G = Spec R of F, let o(G) € N be such that p°© is the order of G i.e., is
the rank of R over V.

We check that if G'is an object of Fi, then the object B(G) of B; has
rank o(G). We have a short exact sequences 0 — G° — G — G — 0, where
G° is connected and G is étale. As B : F; — B; takes short exact sequences
to short exact sequences, we can assume that G is either étale or connected.
The case when G is étale is easy and left as an exercise. Thus we can assume
that G is connected. The contravariant Dieudonné module D(Gy) of Gy, is
equal to k ®, ¢ B(G), where we denote also by o its composite with the
epimorphism & — k = &/(p, u) (the covariant part of this statement follows
from either [Z1], Theorem 6 or [Z2], Theorem 1.6 once we recall that G is the
kernel of an isogeny of connected p-divisible groups over V'). This implies
that the rank of B(G) is o(G).

Let H be an object of F. If p" annihilates H, then to the chain of natural
epimorphisms

H — H/H[p] - H/[p*] — -+ — H/H[p"] =0
corresponds a normal series of the Breuil module B(H) = (M, )

0= (Mp,n) C(My_1,pn-1) C -+ C (Mo, o) = (M, )

by Breuil submodules whose quotient factors are objects of B;. As each
M;_1/M; is a free G1-module of finite rank, the multiplication by u map
w: M — M is injective. One computes the order p°") of H via the formulas

n

o(H) =o0(M,yp) = Zrankgl(Mi,l/Mi) = lengthG(p)(M(p)).
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Proposition 1 Let f : G — H be a morphism of F. We write g := B(f) :
B(H) = (M,¢) — B(G) = (N,v). Then we have:

(a) The homomorphism fx : Gx — Hy is a closed embedding if and only
if the cokernel of g : M — N is annihilated by some power of u.

(b) The homomorphism fr : Gx — Hg is an epimorphism if and only
if the &-linear map g : M — N is a monomorphism.

(c) The homomorphism fr : Gx — Hp is an isomorphism if and only if
the S-linear map g : M — N 1is injective and its cokernel is annihilated by
some power of u.

Proof. Let N := Coker(g). We prove (a). We first show that the assumption
that fx is not a closed embedding implies that N is not annihilated by a
power of u. This assumption implies that there exists a non-trivial flat,
closed subgroup scheme G of G which is contained in the kernel of f and
which is annihilated by p. Let (No, 1) := B(Gyp); the &1-module Ny is free
of positive rank. From the fact that G is contained in the kernel of f and
from Theorem 3, we get that we have an epimorphism N — N,. Thus N is
not annihilated by a power of u.

To end the proof of part (a) it suffices to show that the assumption that N
is not annihilated by a power of u implies that fx is not a closed embedding.
Our assumption implies that also Ny := N / pN is not annihilated by a power
of u. As &, = kl[u]] is a principal ideal domain, we have a unique short exact
sequence of G;-modules

0—>N2—>N1—>N0—>07

where N, is the largest G1-submodule of N; annihilated by a power of u and
where Nj is a free G;-module of positive rank. The G-linear map NI(U) — N
induced naturally by ¥ maps N2(J) to Ny and thus it induces via quotients a
G-linear map )y : Néo) — Ny. As 1 is a quotient map of v, its cokernel is
annihilated by E. Therefore the pair (Ny, ) is a Breuil module. From this
and Theorem 3 we get that there exists a non-trivial flat, closed subgroup
scheme G of G which is contained in the kernel of f and for which we have
B(Go) = (No, o). Thus fx is not a closed embedding. Therefore (a) holds.

Part (b) is proved similarly to (a). Part (c) follows from (a) and (b). O



2.2 The case p =2

In this Subsection we assume that p = 2. Based on [K2], Theorem 1.3.9
or its generalizations in [VZ1], Introduction and [L], we have the following
analogue of Theorem 3.

Theorem 4 There exists a contravariant functor B : F¢ — B¢ which is an
antiequivalence of categories, which is Z,-linear, and which takes short exact
sequences (in the category of abelian sheaves in the faithfully flat topology of
Spec V') to short exact sequences (in the category of S-modules endowed with
Frobenius maps).

Due to Theorem 4, everything in Subsection 2.1 holds for p = 2, provided
we work in the connected context (i.e., G and H are connected).

2.3 Basic lemmas

Let n € N*. Let t € N. Let H be a truncated Barsotti-Tate group of level n
over V. If p =2, then we assume that H is connected. Let (M, ) := B(H);
thus M is a free ©,,-module of finite rank. Let d be the dimension of H and
let h be the height of H. There exists a direct sum decomposition M =T H L
into free &,,-modules such that the image of ¢ is ET' @ L and T has rank d.
The existence of such a direct sum decomposition follows from the existence
of normal decompositions of Breuil windows relative to ¢, : & — V (for
the covariant context with p > 2 see [VZ1], Section 2; the case p = 2 is the
same). The existence of the direct sum decomposition M = T'@® L implies the
existence of two &,,-bases {ey,...,ep} and {vy,...,v5} of M such that for
ie{d+1,...,h} we have p(1®e;) = v; and for i € {1,...,d} the difference
o(1®e;) — Ev; belongs to the G-submodule of M generated by the elements
Vgil,-- -, Up. Indeed, we consider the composite map

M — M@ — oM7) — M/T,

where the first map m — 1 ® m is o-linear, where the second map is ¢, and
where the third map is induced by the natural projection of M on T along
L. We tensor this composite map with the residue field k£ of &

k®s, M = k®s, M - kg, p(M?) - ks, M/T.

As k is a perfect field, all these three maps are surjective. Therefore we find
by the lemma of Nakayama a S,,-basis {e1, ..., e,} of M such that the images
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v(l®eqs1), .., o(1®eyp) form a &,-basis of M/T. We can take L to be the
S,-submodule of M generated by vgy1 = (1 ® €gy1), ..., v = (1 @ €p).
We choose an arbitrary &,-basis {vq,...,v4} of T. As the image of ¢ is
ET @ L we obtain the desired &,-basis {vy,...,v,} by making a suitable
change of the &,-basis {vy,..., v} of T'.

Lemma 1 We assumet > 1. Letx € #M be such that p(1®x) € %M We
write x = Z? 1 oteq, where o € &,,. Then for each i € {1,...,h} we have
Eo(o;) € u'® VS, (equivalently, S F e 1.6, ) and thus oy € (p" ', u)S,,.

utpP

Proof. We compute

1®x =

for suitable elements 7; € % &,,. For i € {1,...,d} this implies directly that

Cpels, (1)

utp ut

The n; for i € {d+1,...,h} are of the form

= (o) +Z)\j0(%‘)7

utp

for some elements \; € G,,. If we multiply the last equation by £ we obtain
from (1) that its belonging relation also holds for i € {d+1,...,h}. O

Lemma 2 Let N be a G,,-submodule of #M which contains M. We assume
that ¢ induces a S-linear map N9 — N. Then we have ptN C M.

Proof. We will prove this by induction on ¢ € N. The case t = 0 is trivial.
For the passage from t — 1 to ¢ we can assume that ¢t > 0. Let x € N. From
Lemma 1 applied to x we get that px € UJ%M = utl,l

pN C V:=pN+ M C ut%lM It is easy to see that ¢ induces a




G-linear map N©) — N. By induction applied to N we get that p!~*N C M.
This implies that p!N C M. This ends the induction. 0

The technical part of the method we use in this paper can be summa-
rized as follows. With the notations of Lemmas 1 and 2, we will vary the
uniformizer m of V' to obtain a sharp upper bound %y of ¢ in such a way that
Lemma 2 can be improved to provide a smaller number s € {0, ..., ¢y} for
which we have a universal inclusion p°N C M.

3 Motivation, formulas, and bounds for s

In this Section we present recursive formulas for s and upper bounds of it in
terms of e. The main technical result that lies behind these formulas is also
presented in this Section (see Proposition 2 below).

For a real number z, let || be the integral part (floor) of z (i.e., the
greatest integer smaller or equal to z). We define

m := ord,(e).
Let a. := 1 and

Ey = Z a;ul = apLijupLﬁ + -+ agu 4 apuf 4 ag € W(k)[uP).
1€pNN[0,€]

Let Ey := E — Ey € W(k)[u]. We define the numbers 7 and ¢ as follows.
If m =0, then let 7(7) := 1 and ¢(7) := 0.
If m>1, let 7(7) € N*U{oo} be the content ord,(E;) of Ey. Thus

7(m) := ord,(£1) = min{ord,(a;)|i € {1,2,...,e — 1} \ pN*}.

If m > 1and 7(7m) < oo, let ¢(m) € {1,2,...,e — 1} \ pN* be the smallest
number such that we have

7(m) = ord,(a,x)) > 0.
For all m > 0 we define
7 = 71y := min{7(7)|7r a uniformizer of V}.
If 7 < oo, then we also define

v = vy = min{¢(7)|7 a uniformizer of V with 7(7) = 7}.



Lemma 3 We have t <m + 1 < 00o.

Proof. If m = 0, then this holds as 7 = 1. Thus we can assume that m > 1.
We consider a new uniformizer 7 := w + p of V. The unique Eisenstein
polynomial E(u) = U + Qe_qu 4 - + ayu + Gp in w with coefficients in
W (k) that has 7 as a root is E(u) = E(u — p). Thus de_1 = —pe + ey =
—p™*tle + a._;. Therefore p™*2 does not divide either a._; or d._;. This

implies that either 7(7) <m+1or 7(7) <m+ 1. Thus 7 <m+1 < c0. O

Proposition 2 Let n and t be positive integers. Let C = C(u) € & be a
power series whose constant term is not diwvisible by p™. We assume that

Eo(C) € (u',p")6. (2)
If 7(m) = 00, then we have t < ne. If T(m) # oo, then we have
t < min{7(m)e + ¢(7), ne}.

Moreover, if m = 0, then we have po(C) € (u,p™*)& and if m > 1, then we
have p" ™+ g (C) € (ut,p")&.

Proof. Clearly we can remove from C' all monomials of degree ¢ such that
pt > t. Therefore we can assume that C' is a polynomial of degree d such
that pd < t. As Eyo(C) and E;0(C') do not contain monomials of the same
degree, the relation Eo(C) € (u*, p")& implies that

Eyo(C) € (u,p")& and Eio(C) € (uf,p")6.

We first consider the case when p does not divide e (i.e., m = 0). Thus
Ey divided by p is a unit of &. Therefore we have po(C) € (u',p")S. As
pdeg(C) = pd < t, we get that po(C) =0 mod p™. As F; =u° mod p we
get u¢o(C) € (uf, p™)&. As the constant term of C' is not divisible by p™ this
implies that ¢ < e = min{7(n)e + «(7), ne}.

From now on we will assume that ple. By the Weierstrafl preparation
theorem ([Bo], Chapter 7, Section 3, number 8) we can assume that C' is
a Weierstrafl polynomial of degree d (i.e., a monic polynomial of degree d
such that C' — u? is divisible by p). Indeed, let ¢ € {0,...,n — 1} be such
that p° is the content of C. We set C' := (1/p°)C. The constant term of
C is not divisible by p"~¢. As Eo(C) € (u!,p" )&, it suffices to prove the
proposition for C. But C is a unit times a Weierstrafl polynomial.

Before we continue, we first prove the following Lemma.
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Lemma 4 Letn andt be positive integers. We assume that p divides e. Let
C=Cu) =u+cgu™ 4+ -+ cyu+co € W(k)u]

be a Weierstrafs polynomial such that pd < t and ¢y ¢ p"W (k). We also
assume that

Eyo(C) € (u*,p™)6.
Then d = (n —1)7 and for each i € {0,1,...,n — 1} we have:

ord,(cie) =n—i—1, and ord,(c;) >n—i, for 0<j< is. (3)
P p

Moreover we also have t < ne.
Proof: We write
o(C) = u® + vl 4 P 4 5.

We define ¢; and v, to be 1. For [ < 0 or [ > d, we define ¢; = 3, = 0. We
have ord,(y;) = ord,(¢;) for all I € Z. Moreover we set

€
d+e

Eaor(C) =S Bpu?, By € W(K).
=0

By our assumption (3, is divisible by p™ if jp < t and in particular if j < d.
For j € {0,...,d + %} we have the identity

Bijp = aoVj + apyj—1 + -+ AeYj—<- (4)

By induction on j € {0,...,d} we show that (3) holds. This includes the
equality part of (3) if j = i2. Our induction does not require that i < n.
But of course, the assumption that ¢ > n in the equality part of (3) (resp.
the assumptions that j < d and i > n+1 in the inequality part of (3)), leads
(resp. lead) to a contradiction as the order of any ¢; can not be negative.

The case j = 0 follows by looking at the constant term of Fqo(C). The
passage from j — 1 to j goes as follows. Let us first assume that (i — 1)§ <
j < ¢ for some integer ¢ > 1 (we do not require i¥ < d).

We show that the assumption ord,(c;) = ord,(v;) < n — i leads to a
contradiction. Indeed, in this case the first term of the right hand side of
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(4) would have order < n — i but all the other terms of the right hand side
of (4) would have order strictly bigger than n — i. Note for example that
j—35 < (i—1)% and therefore ordy(y;-<) > n—i+1 by induction assumption.
As ord,(f;,) > n we obtain a contradiction to (4).

Finally we consider the passage from j — 1 to j in the case when j =
Then we use the equation

()

By the induction assumption we have ordp(ae’y(i_l)i) = n — 1. From the

Bie = apYie + apYic—1 + 1+ Qe (i-1)¢-

i3
P

inequality part of (3) we get the inequalities
ordp(ap%%,l) >n—i+1,... ,ordp(ae,p%r(i_l)%) >n—1q+1.
As B = B, € p"W(k), it follows from (5) that
ordy(agyie ) = ordp(acyi-1s) =n —i.

Thus ordp(%%) =n —i —ordy(ap) =n —i— 1. This ends our induction.

We check that d = (n —1)%. If d is of the form 7, then 0 = ord,(cs) =
n—i—1 gives i = n—1 and thus d is as required. We are left to show that the
assumption that d is not of this form, leads to a contradiction. Let ¢ be the
smallest integer such that d <. Then the inequality 0 = ord,(cq) > n —i
gives ¢ > n. But then ordp(c(i,l)i) = n — 1 contradicts the assumption that

C'is a Weierstrafl polynomial and therefore that ¢(_1)c € pW (k). O

Corollary 5 With the notations of Lemma 4, let | € {0,1,...,e — 1}. Let
Ey = Ey(u) = u' + b_ju!™ + -+ + byu + by € W(k)[u] be a Weierstrafs
polynomial of degree 1. If we have Eyo(C) € (u',p™)&, then | > t.

Proof: If n = 1, then d = 0 and C' = ¢ is a unit of W (k); thus Ey € (u?,p")&
and therefore [ > ¢. Thus we can assume that n > 2. We write:

I+pd

i=0
Let q := []%J < +. We have the equation:
5l =% + bl—p’)/l + bl—qp7q~ (6)
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therefore ord,(b_;,vi) > n. As ord,(v) =n — 1, from (6) we get ord,(d;) =
n — 1. From this and the assumption Fyo(C) € (u',p™)S, we get [ >¢. 0

For i € {0,...,q} we have ord,(y;) > n — 1 (cf. Lemma 4 and n > 2);

We are now ready to prove Proposition 2 in the case when ple (i.e., m >
1). We remark that the case 7(m) = oo follows directly from Lemma 4. Hence
we can assume that 7(m) < oo.

If 7(7r) > n, then p"™*15(C) € (u!,p")& and we conclude by Lemma
4 that t < ne < 7(m)e; thus t < min{7(n)e + ¢(7),ne}. Therefore we can
assume that 7(m) < n.

As 7(m) = ord,(E, ), by Weierstral preparation theorem we can write

E1 = pT(ﬂ) EQQ,

where 6 € G is a unit and where Ey € W (k)[u] is a Weierstrafl polynomial
of degree (1) < e. As FE10(C) € (u',p™)& and as n > 7(7), we get that

Eyo(C) € (ul, p" ™6,
We consider the polynomial
Cr=Cy(u) =u +cgqu™ 4+ + CT(W)guT(“)i € W(k)[u.
It follows from Lemma 4 that ord,(c;) =2 n — 7(7) for j < 7(7)¢. Thus
C, — C € p» ™G and therefore we obtain
Ey0(Cy) = By (Cy — C) + Fyo(C) € (u!,p" ™™)6. (7)

We write C; = u"™#%C,. Then the constant term of Cy is Cr(m)e and thus it is
not divisible by p" "™ cf. (3). Asn > 7(), the relations (n — 1)e = pd < t
imply that ¢t — 7(m)e > 0. Thus from (7) we get that

Eyo(Cy) € (ut=me pn=mm &, (8)
A similar argument shows that

Eyo(Cy) € (ut7™e pr=m) &, (9)

From Corollary 5 applied to the quadruple (t—7(m)e, Cy, Ey,n—7(7)) instead
of (t,C, Ey,n), we get that «(m) = deg(Cy) <t —7(m)e. As ¢(m) < e—1and
asn > 7(m) 4+ 1, we conclude that ¢t < 7(m)e + ¢(7) = min{r(7)e + (), ne}.
As o(m) < e — 1, the relations (n — 1)e = pd < t < min{7(7)e + (), ne}
imply that n = 7(7) + 1; thus p"™+'¢(C) € (uf,p")&. This ends the proof
of the Proposition 2 in the second case ple. O
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3.1 Recursive formulas for s

For a uniformizer 7 of V', Lemma 1 and Proposition 2 motivate the intro-
duction of the following invariant

T(m)e + u(m)

tm) = [

| € NU {oo}.

Always there exists a 7 such that ¢(7) is finite, cf. Lemma 3.

Based on the last sentence of Proposition 2, we define ¢ € {0,1} as
follows. If m = 0, then € := 0 and if m > 1, then € := 1. Next we will define
recursively a number z € N and z pairs (tg, so), . .., (2, s.) € N? as follows.

Let o be the minimum of ¢(7) for all possible m; thus to = [225]. Let

s0:=0. If tg — L%j < T + ¢, then let 2 := 0. The recursive process goes as

follows. For j € N* such that (o, so),. .., (tj—1,5j-1)’s are defined, we stop
the process and set z = j — 1 if ¢t;_; + L%J < 7 + €, and otherwise we set

ti_
(tj,s5) == (L%J’Sj—l +7+¢€).
We note that

O=sp<s1<--<s, and 0<t, <t,_1 < -+ <ty

Moreover the following relations hold:

_'_
fd S, <taoi+Ss1 <o <t s <to+se=ty= L;e fJ. (10)

If p > 2, we define s = sy :=1t, + s,.
If p = 2 we modify this definition as follows. Let v be the largest number
such that a primitive root of unity of order 2 is contained in V. We set:

s=sy :=v+2t, +s,).

By Lemma 3 there exists a 7 such that 7(7) < m-+1 (with m = ord,(e)).

For p > 2 we have s < L;e_*l‘J and thus, as t < e — 1, we get

5 < 2¢ — 1+ eordp(e). (1)
p—1
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If p = 2, then inequalities : < e—1,v <m+ 1, and s < v+ 2(7e +¢) imply
s <4de—1+ (2e+ 1)ordy(e). (12)

Example 1 We assume that e < p—2. Thuspisodd, m = =0, and 7 = 1.
We have s < -, cf. (10). Therefore s = 0.

1?7

Example 2 We can midify slightly the recursive process to define s as follows.
We stop the process if ;1 + [tj;IJ < 7 + € and continue it if this equality
does not hold. Then z + 1 steps might be necessary but in this case we have

toi1+S.01 =1, +s,. Let us assume m = 0 and p > 2. Let

u

tozz%pj, 0<a;<p, a, #0 (13)

J=0

be the p-adic expansion. As 7 = 7 4+ ¢ = 1, the modified recursive process

stops after u + 1 steps at the pair (0,u + 1). Thus we find s = u + 1. As

to=[;5], wehave s = lifand only if p—1 < e < (p—1)*4+p—2=p?*—p—1.

In general, we have s < 1+ log, e.

Example 3 We assume that £ = v? — p. Then 7(7) = oo. For n € N* we

have Eo(d"7 , p""u'1) = uP™; the power pn goes to infinity when n — oc.
Let T =cop+cm+---+ cp,ﬁﬂ’_l be another uniformizer of V. We have

Co,C1,C1 Y, Coynn ,Cp1 € W(k). Tt is easy to see that 77 is congruent modulo
p? to an element of pW (k). Thus, if E(u) = u? + a,_u?~' + - -+ + Go is the
Eisenstein polynomial that has 7 as a root, then for i € {1,...,p — 1} we

have a; € p?W (k). Therefore 7 > 2. But 7 < m+1 = 2, cf. Lemma 3. Thus
7 = 2. From Subsection 3.1 we get that for p > 2 we have s < %. Thus
for p = 3 we have s < 4 and for p > 5 we have s < 3. Similarly we argue
that if p = 2, then we have s < v + 10.

Example 4 We consider the case p > 3 and m > 1. We consider again
the p-adic expansion (13). The number of steps z in the recursive process
is at most u + 1 and the pair (¢,,s,) is such that £, < 7. Thus we have
s < (u+1)(r+ 1)+ 7. We have the inequalities (7 + 1)e/(p — 1) > ¢y and
log, tg > u. Moreover 7 < m + 1 by Lemma 3. We find the inequality

s < (log,(m +2) +log,e —log,(p — 1) + 1)(m +2) + m + 1.
As m = ordy e, log,(m + 2) < m, and log,(p — 1) € (0,1), we find that
s < (log, e +ord, e+ 2)(ord, e +2) — 1.
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4 Proof of Theorem 1

We prove that Theorem 1 holds for the number s of Subsection 3.1 if V is
complete and has perfect residue field k. We already noted in Section 2 that
it is enough to treat this case. We distinguish two cases as follows.

4.1 The case p > 2

We choose the uniformizer 7 of V' in such a way that 7 = 7(7) is minimal
and ¢ = (). Let z € N, the sequence of pairs (g, o), ..., (t,s.), and s € N
be as in Subsection 3.1. Thus tg = |(te+¢)/(p—1)] =to(7) and s = ¢, +s..

Let f : G — H be a homomorphism of finite flat commutative group
schemes of p power order over V', which induces an isomorphism fx : Gg —
Hy in generic fibers. We first remark that if there exists a homomorphism
f'+ H — G such that fo f' = p®idy, then we have f} = p°fx' and thus the
equality ' o f = p®idg also holds as it holds generically; moreover, as the
equalities continue to hold in the special fibre we conclude that the kernel
and cokernel of f; are annihilated by p®.

We choose an epimorphism &y : H — H from a truncated Barsotti-Tate
group H. We consider the following fiber product

G L. @
fcl lﬁH
¢ L. m

in the category F. Then fr is an isomorphism. Assume that there exists a
homomorphism f’ : H — G such that fo f' =p*o idz. Then {g o f"is zero
on the finite flat group scheme Ker(£y) because this is true for the generic
fibers. Thus there exists f’ : H — G such that f' o &y = &g o f'. One easily
verifies that fo f/ = p®idy.

Thus to prove the existence of f' we can assume that f = f and that
H = H is a truncated Barsotti-Tate group of level n > s.

Next we translate the existence of f’ in terms of Breuil modules. Let
(M, ) and (N,®) be the Breuil modules of H and G (respectively). We
know by Proposition 1 (¢) that to f corresponds a G-linear monomorphism
M < N whose cokernel is annihilated by some power u‘. We will assume
that t is the smallest natural number with this property. We put aside the
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case t = 0 (i.e., the case when f : G — H is an isomorphism) which is trivial.
The existence of f': H — G is equivalent to the inclusion

p’N C M. (14)

Before we prove this inclusion we show that (for p > 2) Theorem 1 follows

from it. It remains to prove the last sentence of the Theorem 1. Hence again
let H be a truncated Barsotti—Tate group of level n > s.

The identity fo f' = p®idy means that we have a commutative diagram:

o-r-q

A

H.

We note that a homomorphism of finite flat group schemes over V' is zero if
it induces the zero homomorphism at the level of generic fibers. Therefore
we obtain a commutative diagram:

H)(Hp) L~

b

H.

We see that f’ is a closed immersion because the oblique arrow is. Now we
apply the functor [p"~*] (see Section 1) to the last diagram:

H(Hp ) 2 G

\ lf(p"‘ﬂ

Hp"~2].

The horizontal homomorphism is again a closed immersion. As it is a ho-
momorphism between finite flat group schemes of the same order, it has to
be an isomorphism. The oblique arrow is trivially an isomorphism. Thus
fIp" %] : G[p"~*] — H[p" *] is an isomorphism and therefore G[p"~*] is a
Barsotti—-Tate group. This shows the last sentence of Theorem 1 when p > 2.
It remains to prove the inclusion (14).

We will prove by induction on j € {0,...,z} that we have p* N C U%JM
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We remark that by Lemma 2 this implies that p' ™5 N C M. Ass =t.+s,
the induction gives the desired inclusion (14) and ends the proof of Theorem
1 (for p > 2). We also remark that already the base of the induction 7 = 0
implies the Theorem 1 but with the much weaker bound s = .

For the base of the induction it suffices to show that ¢t < ;. Let z € N be
such that u'~'x ¢ M. With {ej,...,e,} a &,-basis of M as before Lemma

1, we write
h

T = Z%ei, a; € 6,,.
i=1
From Lemma 1 we get that for each ¢ € {1,...,h} we have Fo(«a;) €
u'*~Y&,. By the minimality of ¢, there exists iy € {1,...,h} such that
a;, is not divisible by u. Let C' = C(u) € & be such that its reduc-
tion modulo p" is a;,. The constant term of C' is not divisible by p" and
we have Eo(C) € (u'®V p")&. From this and Proposition 2 we get that
t(p — 1) <min{re + ¢,ne}. Thus t <ty = [(te+1¢)/(p —1)].

If 0 < j < z, then the inductive step from j — 1 to j goes as follows.
We assume that p%-1N C i M. Let l;_; € {0,...,t;_1} be the smallest
number such that we have p*-*N C UZJ%M If i,_4 =0, then p%'N C M
and thus, as s;_; < s;, we also have p" N C M C u%]M Therefore we can
assume that 1 <1[;_; <t;_;. Let y € p¥'N. We write

h
_ Z "
y - uni €i7
=1

where 1, € 6,, \ uS,, and where n; € {0,...,l;_1}. Let C; = Ci(u) € & be
such that its reduction modulo p™ is ;. We want to show that p™*y € U%M :
For this it suffices to show that for each i € {1,...,h} we have p™*Ji €
ﬁ@n. To check this we can assume that n; > t; + 1. As

f1— LIfj_1J 1> tji—1+1 > lj_1+1’
p p p
we get that pn; —;_ > 1. As b = %, from Lemma 1 we get that

Eo(Culi-1—m) € (uP~Yh-1 p")&. This implies that

Eo(C;) € (uP™ =1 p"& C (u,p)6.
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As n; € 6, \ uG,, the constant term of C; is not divisible by p™. Thus from

Proposition 2 applied to (C;, pn; — ;1) instead of (C,t) and from the defini-

tion of € in Subsection 3.1, we get o(p™*<C;) = p" 0 (C;) € (uPri=li-1 p)&.

This implies that we can write p™C; = A; + B;, where A; € p"& and where
li_

B; € w51, Thus

Z» 1 1 1
(R S S L S
=Y =y uls

u- r P

p

u

Therefore p™ ¢y € U%M As s; =s;_1+7+eand asy € p*~' N is arbitrary,
we conclude that p N = p™p%i-1 N C ULM . This ends the induction. [

tj

4.2 The case p =2

In this Subsection we assume p = 2. Thus s = v + 2w, where w :=t, + s,
(cf. Subsection 3.1). Using Theorem 4 as a substitute of Theorem 3, we get:

(i) Everything in Subsection 4.1 holds, provided G and H are connected. In
this case Theorem 1 holds with s replaced by w.

We will show the existence of a homomorphism f’ : H — G such that
fof =p°idy in four steps. Let us start with three general remarks on finite
flat commutative group schemes G and H over a discrete valuation ring V'
of mixed characteristic (0, p) with field of fractions K.

(a) If H is étale, the natural homomorphism Hom(H, G) — Hom(Hg, Gk)
is an isomorphism. Indeed, by passing to an unramified Galois extension K’
of K we can assume that H is constant étale. In this case the assertion
follows from the fact that V' is integrally closed in K.

(b) Let G — H be a homomorphism such that H is étale. If Gx —
Hy is an fppf epimorphism, then G — H is also an fppf epimorphism.
Indeed, the assumption implies that there exists a K’ as in (a) such that we
have an epimorphism G(K') — H(K'). To prove that G — H is an fppf
epimorphism, we can pass from K to K’'. Thus we can assume that H is
constant étale and that G(K) — H(K) is an epimorphism. But then we find
a section of Gx — H; by (a) it extends to a section of G — H.

(c) If H is étale, then from (a) we easily get that the natural homomor-
phism Ext'(H,G) — Ext'(Hg,G k) is a monomorphism.

Step 1. We reduce the existence of f’ to the case where H is connected. We
consider the short exact sequence 0 — H° — H — H¢ — 0 such that H*
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is an étale group scheme over V' and H° is connected. Then f induces an
fppf epimorphism G — H¢ because this is true in the general fiber, cf. (b).
Therefore f induces a morphism of extensions:

0 G, G H — 0
0 He H Het — 0.

As H? is connected we can assume that there exists a homomorphism ¢’ :
H° — G such that g o ¢ = p®idyo.. The homomorphism p*f' : Hx — G
is a morphism of extensions inducing gy on H;y x and p® on H k.

Let 0 — Gy — G* — H — 0 be the pull back of the first row in (15) by
p’idye and let 0 - Gy — G' — H ¢ — 0 be the push forward of the lower
row in (15) by ¢'.

Then p*f;.' induces an isomorphism of extensions G’ — G%. Therefore
the extensions G’ and G* are isomorphic, cf. (c). From the choice of an
isomorphism G' — G* we obtain a commutative diagram of extensions.

0 G, G Ht — 5 0
QIT f/T psidHe'tT
0 He H Het — 0.

With this " we get f o f/ = p®idy +u, where u : H¢ — H° is a homo-
morphism. But the homomorphism ff}l oug : Hy g — Hy g — Gk extends
by (a) to a homomorphism wu; : He — G such that fou, : H* — Gy — H®
is the homomorphism u. Replacing f’' by f'—u; we get fo f/ = p®idy. This
ends the reduction to the case where H = H° is connected.

Step 2. We will reduce the existence of f’ to the following statement:

(ii) Let f : G — H be a homomorphism such that fx is an isomorphism.
We assume that G is étale and H is connected. Then there exists a homo-
morphism f': H — G such that fo f' = p*t*idy.

Indeed, let f : G — H be an arbitrary homomorphism such that fx is
an isomorphism. To show the existence of f’ we may assume by Step 1 that
H is connected. Let G° be the connected component of G. Let H; be the

scheme theoretic closure of the homomorphism G° — G L, H. We obtain a
commutative diagram
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0 —— G° Get 0

G
f{ fl le (16)
H H, 0
whose vertical arrows induce isomorphisms in generic fibers. By (i) and the
assertion (i) we can find homomorphisms f] : H; — G° and f} : Hy — G
such that fi o f{ = p¥idy, and fyo fi = p* " idy,.

We denote by 0 — G° — Gy — Hy — 0 the pull back of the upper
row in (16) by f}, : Hy — G°. The push forward of the lower row in (16)
by p¥fi : Hi — G° will be denoted by 0 — G° — G; — Hy — 0. The
commutative diagram

0 — H

0 — G4 — G — Gt —— 0

pvaKT pu+wfI;IT é’KT

0O — Higx —— Hy —— Hyg —— 0,

induces an isomorphism of extensions v : G1 x — G k. The groups G; and
(G, are connected and therefore the schematic closure G5 of the graph of v
in G1 xy Gy is as well connected. Therefore we find by (i) applied to the first
projection ¢; : G12 — G a homomorphism g : G; — G132 such that g og] =
p¥idg,. The composite g := go 0 g} : G1 — G5 extends p“7; here gy : G5 —
(G5 is the second projection. Then the natural composite homomorphism
f'+H— Gy % Gy — G extends the homomorphism pU+2® fr* and thus we
have f o f' = p**?¥idy. This ends the reduction step 2.

Step 3. It remains to prove (ii). Using Cartier duality it suffices to show that
there exists a homomorphism (f*)" : G* — H* such that ffo(f*) = p"™idg,
where f': H' — G is the Cartier dual of f. We consider a short exact
sequence 0 — Hy — H®* — H; — 0 such that Hj is an étale group scheme
over V and Hj is connected. Let G5 be the schematic closure of f}(Hjs k)
in G*. Let G4 := G'/G3. To check the existence of (f*)’, it suffices to show
that the following two statements hold:

(iii) there exists a homomorphism f} : G5 — Hj such that f5o f} = p"idg,;
(iv) both Hy and G4 (and thus also f, : Hy — G,) are annihilated by p*.

Indeed, as (f') we can take i3 o f5 o f5, where f5 : G* — G3 is the
natural factorization (cf. (iv)) of the endomorphism 2 : G* — G* and where
15 : Hy — H' is the natural inclusion.
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Both Hj and G3 are connected. Thus (iii) holds, cf. (i). Thus to end the
argument that f’ exists, we are left to prove that (iv) holds.

Step 4. The invariant v of V' does not change when V is replaced by an
unramified discrete valuation ring extension of it. Thus to prove (iv), we can
assume that k is algebraically closed. Therefore H, is a constant étale group
scheme and G is isomorphic to a direct sum @®!_,p,,, where [;’s are non-
negative integers whose sum is o(Gy) = o(Hy). As fix : Hyx — Gy is an
isomorphism, the étale groups (py; )k are constant. Thus, for each ¢ the field
K contains a primitive root of 1 of order 2%. From this and the definition of
v in Subsection 3.1, we get that we have [; < v for all i € {1,...,l}. Thus
2V annihilates both H, and Gy i.e., (iv) holds.

This ends the argument that f” exists. Thus Theorem 1 holds even when
p =2, cf. (i). This ends the proof of Theorem 1. O

5 Proofs of Corollaries 1 to 4 and Theorem 2

5.1 Proofs of the Corollaries

Corollary 1 follows from Theorem 1 and Example 1.

In connection with the other Corollaries, let G be the schematic closure
in G xy H of the graph of the homomorphism h : Gy — Hg. Via the two
projections q; : G Xy H — G and ¢y : G Xy H — H we get homomorphisms
p1: G — G and pa G — H. The generic fiber p; x of p; is an isomorphism.

We prove the first part of Corollary 2. Consider the commutative dia-
gram:

O—LtGxyHE >q

N

G.

By Theorem 1 there exists a homomorphism p} : G — G such that piop =
p®ids. Then gy 0o p) is the desired extension of p*h.

To check the last part of Corollary 2, let 0 — G — J — H — 0 be
a short exact sequence whose generic fibre splits. It defines an arbitrary
element v € Ker(Ext'(H,G) — Ext'(Hg,Gk)). Let h : Hx — Ji be a
homomorphism that is a splitting of 0 — Gx — Jx — Hxg — 0. Let g :
H — J be such that its generic fibre is p®h, cf. first part of Corollary 2. Let
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0—G— J;— H — 0 be the pull back of 0 - G — J — H — 0 via p°idy.
Then there exists a unique section g, : H — J;,0of 0 = G — J, — H — 0
whose composite with J; — J is g. Thus p*v = 0. This proofs Corollary 2.

We prove Corollary 3. From Theorem 1 we get that py [p"~*] : G[p"*] —
G[p™~*] is an isomorphism. This implies that G[p"~*] is a closed subgroup
scheme of G Xy H and thus via the second projection G xy H — H we
get a homomorphism G[p"~*] — H|[p"~°| which extends the homomorphism
h[p"™]: Gi[p"™*] — Hi[p"™°].

We prove Corollary 4 for n > 2s. As h : Gk — Hp is an isomorphism,
pa.x is also an isomorphism. Thus py[p"~*] : G[p"~*] — H[p"™*] is an
isomorphism, cf. Theorem 1. By applying Theorem 1 to the Cartier dual
(pr[p"=*1)" = (G[p"~])" — (G[p"~*])" of pr[p"~*] : G[p"~*] — G[p"~*],
we get that (G[p"~*])'[p"~%] is isomorphic to (G[p"~*])*[p" %] and thus
with H*[p"~2%]. Therefore {(G[p"~*1)![p"~2]}" is isomorphic to H[p"~%].
From this and the fact that we have a short exact sequence 0 — G[p®] —
Gp" %] — {(G[p"*])*[p" %]} — 0, we get that the Corollary 4 holds. [J

5.2 Proof of Theorem 2

Clearly the homomorphism ¢ : G[p"~*¥| — H[p" *¥] is unique if it exists. We
proved the case Y = SpecV in Corollary 3. Let y € Y be a point; let k(y)
be its residue field and let Spec R, be its local ring. If h[p"~*¥] extends to a
homomorphism g, : G, [p" "] — Hg,[p"~*¥], then h[p"~*¥] extends also to
a homomorphism gy, : Gy, [p" ] — Hy, [p"*¥] over an open neighborhood
Uy of yin Y. It follows from our assumptions that the extension g, of h[p" Y]
exists for each point y € Y of codimension 1. Indeed, if char x(y) # p the
group schemes Gr, and Hg, are étale and therefore an extension g, trivially
exists. If char k(y) = p, then Corollary 3 implies that g, exists provided we
have n > s, for a suitable non-negative integer s, that depends only on the
ramification index of the discrete valuation ring R,. As the set ©,(Y) of
points of Y of codimension 1 and of characteristic p is finite, we can define

sy = max{s,ly € Q,(Y)} e N.

With this sy, there exists an extension gy : Gy[p"*Y] — Hyl[p" *¥] of
h[p"~*¥] over an open subscheme U C Y such that codimy (Y \ U) > 2.
As Y is a normal noetherian integral scheme, the existence of an exten-
sion g : G[p" Y] — H[p" Y] of gy is a general fact which holds for every
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locally free coherent Oy-modules M and N and for each homomorphism
ay : My — Ny of Op-modules. O

6 Upper bounds on heights

In this Section we assume that V is complete and k is perfect. Let m € V
and ¢, : & — V be as in Section 2. We will study three different heights of
a finite flat commutative group scheme G of p power order over V. If p = 2,
then we will assume that both G and its Cartier dual G* are connected.

Definition 3 (a) By the Barsotti-Tate height of G we mean the smallest
non-negative integer hi(G) such that G is a closed subgroup scheme of a
truncated Barsotti-Tate group over V' of height hy(G).

(b) By the Barsotti-Tate co-height of G we mean the smallest non-
negative integer ha(G) such that G is the quotient of a truncated Barsotti—
Tate group over V' of height ho(G).

(c) By the generator height of G we mean the smallest number hs3(G) of
generators of the S-module N, where (N,1) := B(G).

6.1 Simple inequalities

We have hy(G) = hi(G'). If G is a truncated Barsotti-Tate group, then
hi(G) = ho(G) = h3(G) are equal to the height of G. Based on these two
properties, it is easy to check that in general we have

h3(G) = h3(G*) < min{h(GQ), ha(G)}.
Lemma 5 We have hi(G) < 2h3(G).

Proof. The proof of this is similar to the proof of [VZ1], Proposition 2 (ii) but
worked out in a contravariant way. If hy(G) € {0,..., h3(G)} is the smallest
number of generators of Im(¢))/EN, then as in loc. cit. we argue that there
exists a Breuil window (Q, ¢) relative to ¢, : & — V which has rank h3(G) +
h4(G) and which is equipped naturally with a surjection (Q,¢) — (N,v).
More precisely, starting with S-linear maps yr : 7 = &"(@ — N and
xz 1 L= &M@ — Im(¢) such that yr is onto and Im(¢)) = Im(xz) + EN,
one can take () := T @ L and the surjection xyr & xr : Q@ — N.
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The existence of the surjection (@, ¢) — (N, ) implies that G is a closed
subgroup scheme of the p-divisible group of height h3(G) + hy(G) over V
associated to (@, ¢). Thus hi(G) < h3(G) + ha(G) < 2h3(G). O

If o(G) is as in Section 2, then we obviously have
hs(G) < o(G). (17)
If we have a short exact sequence
0—-G —G—Gy—0

of finite flat group schemes over V', then as the functor B takes short exact
sequences to short exact sequences (in the category of &-modules endowed
with Frobenius maps), we have the subadditive inequality

hs(G) < ha(Gh) + ha(Ga). (18)

Proposition 3 For every truncated Barsotti—Tate group H over V' of height
r and for each G whose generic fiber is isomorphic to Hi, we have

h3(G) < (25 + 1)h.
Therefore we have max{hi(G), h2(G), h3(G)} < (4s + 2)r.

Proof. Let n be the level of H. If n < 2s, then from (17) we get that
h3(G) < o(G) < 2sr. We now assume that n > 2s. Then from Corollary 4 we
get that G[p"~*]/G[p*] is isomorphic to H[p" %] (if p = 2, then this forces
both H and H*® to be connected). Therefore we have h3(G[p"~*|/G[p*]) = r.

As the orders of G[p®] and G/G[p"~*| are equal to sr, from inequal-
ities (17) and (18) we get first that hs(G[p"~*]) < hs(G[p"~*|/G[p°]) +
h3(G[p®]) < r+ sr = (s + 1)r and second that h3(G) < h3(G[p"*]) +
hs(G/G[p" %) < (s+ 1)r+sr=(2s+ 1)r.

The group scheme G' satisfies the same property as G i.e., Gb is iso-
morphic to H} and, in the case when p = 2, it is connected and has a
connected Cartier dual. Thus we also have h3(G") < (2s 4+ 1)r. From this
and Lemma 5 we get that ho(G) = hi(G") < 2h3(G) < (4s + 2)r. Similarly,
hi(G) < 2h3(G) < (4s+ 2)r. Thus max{hi(G), ha(G), h3(G)} < (4s +2)r.0

Acknowledgments. Both authors would like to thank Bielefeld and Bing-
hamton Universities for good work conditions.

25



References

[Br]

[Bo]

Breuil, Ch.: Schémas en groupes et corps de normes, 13 pages,
unpublished manuscript (1998).

Bourbaki, N.: Eléments de mathématique. Algebre commu-
tative. Chapitres 5 a 7. Reprint. Masson, Paris, 1985.

Raynaud, M.: Schémas en groupes de type (p,...,p), Bull. Soc.
Math. France, Vol. 102 (1974), pp. 241-280.

Kisin, M.: Crystalline representations and F'-crystals, Al-
gebraic geometry and number theory, pp. 459-496, Progr.
Math., Vol. 253, Birkhé&user Boston, Boston, MA, 2006.

Kisin, M.: Modularity of 2-adic Barsotti—Tate representa-
tions, Invent. Math.. Vol. 178 (2009), no. 3, pp. 587-634.

Lau, E.: Frames and finite group schemes over complete reg-
ular local rings, 22 pages, http://arxiv.org/abs/0908.4588.

Tate, J.: p-divisible groups, 1967 Proc. Conf. Local Fields
(Driebergen, 1966), pp. 158183, Springer, Berlin.

Vasiu, A.: Crystalline boundedness principle, Ann. Sci. Ecole
Norm. Sup. 39 (2006), no. 2, pp. 245-300.

Vasiu, A. and Zink, Th.: Breuil’s classification of p-divisible
groups over regular local rings of arbitrary dimension, to ap-
pear in Advanced Studies in Pure Mathematics, Proceeding
of Algebraic and Arithmetic Structures of Moduli Spaces,
Hokkaido University, Sapporo, Japan, 2007.

Vasiu, A. and Zink, Th.: Purity results for p-divisible groups
and abelian schemes over regular bases of mixed characteris-
tic, 28 pages, http://arxiv.org/abs/0909.0969.

Zink, Th.: The display of a formal p-divisible group, Co-
homologies p-adiques et applications arithmétiques. I, J.
Astérisque, No. 278 (2002), pp. 127-248.

26



[Z2] Zink, Th.: Windows for displays of p-divisible groups. Moduli
of abelian varieties (Texel Island, 1999), pp. 491-518, Progr.
Math., Vol. 195, Birkhauser, Basel, 2001.

Adrian Vasiu, Email: adrian@math.binghamton.edu
Address: Department of Mathematical Sciences, Binghamton University,
Binghamton, New York 13902-6000, U.S.A.

Thomas Zink, Email: zink@math.uni-bielefeld.de

Address: Fakultat fiir Mathematik, Universitéat Bielefeld,
P.O. Box 100 131, D-33 501 Bielefeld, Germany.

27



